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FOREWORD

“The statistical theory of communication has proven to be a powerful methodology for the

design, analysis, and understanding of practical systems for electronic communications and

related applications. From its origins in the 1940’s to the present day, this theory has

remained remarkably vibrant and useful, while to evolve as new modes of communication

emerge. The publication in 1960 of Introduction to Statistical Communication Theory

(ISCT)was a landmark for the field of statistical communication theory – randomprocesses,

modulation anddetection, signal extraction, information theory –we combined into a single,

unified treatment at a level of depth and degree of completeness which have not been

matched in any subsequent comprehensive work. Moreover, ICST introduced a further

interdisciplinary feature, in which relevant physical characteristics of communication

channels were incorporated into many topics.”

I wrote thesewords inmy foreword to the 1996 IEEE Press reissue of DavidMiddleton’s

classic book Introduction to Statistical Communication Theory (ISCT). In the decades after

hewrote ISCT andwell into the 2000s,Dr.Middleton pursued avery active research program

motivated by the above last-mentioned feature of his book, namely, the incorporation of

physics into communication theory.Among other considerations, this work notably brought

in two features that were not evident in ISCT: the spatial dimension and the fact that many of

the noise phenomena arising in applications are not well modeled as Gaussian random

processes. Through this research, he greatly expanded our understanding of the physical

aspects of communication, and this book was conceived as a synthesis of that work.

David Middleton was a giant in the field of statistical communication theory, and the

physicist’s perspective he brought to the field was somewhat rare. Sadly, he did not live to

complete this book, his full vision for which is described in the introductory chapter.

However, thematerial that he did complete is nevertheless of considerable value in exposing

the insights that he gained over more than six decades in the field.

H. Vincent Poor

Princeton, New Jersey



VISUALIZING THE INVISIBLE

Hanging onmy apartment wall is a framed line drawing entitledCat withMouse from 1959.

The abstract profile of tail and rear haunches connects in swift sweeping lines across the

paper to form pointed ears, whiskers, and culminates in a half hiddenmouse enveloped in its

paws, its fate uncertain. It has a Picasso-like quality, curvilinear strokes of the oil crayon

made with verve, remarkable for the empty space surrounding the lines as for the seductive

feline form. The artist was David BlakesleeMiddleton, my father, and judging from the date

on thedrawingheprobablymade this sketch oneeveningafter aday inhis studyproofreading

the galleys for his soon to be published An Introduction to Statistical Communication

Theory. Drawing on a big manila pad was one of his ways to unwind, perhaps to

counterbalance the intense analytical left brain activity with some right brain visual and

emotional release through imaginative sketches. Oftentimes this was also a clever way to

entertain his young children before bedtime. I can vividly recall various creatures—cats in

particular were a favorite—and other-worldly landscapes magically taking shape on the

blank paper. Witnessing these forms unfolding from my father’s pen, to an impressionable

child it seemed that science and drawing were naturally linked thus:

father ¼ scientist; father ¼ artist; therefore scientist ¼ artist:

In this Preface I’d like to share a few recollections about how the arts, and drawing in

particular, played an integral part in David Blakeslee Middleton’s creative process. And

since I amanarchitect, the readerwill hopefully forgive“artistic license” to speculate that his

ability to visualize an otherwise invisible world of signals and noise through drawing

contributed to the evolution of his research in communication theoryover a sixty year period,

culminating in this book.



My father was gifted with a marvelous drawing hand and a free imagination. No doubt

being raised in a family of creative artists fostered this talent. His mother played violin.

His father was a poet, one uncle a playwright, another uncle the Austrian �emigr�e painter
Joseph Amadeus Fleck, and one aunt was the author of well known western novels

including My Friend Flicka. Dad was married twice, to women who were both gifted

artists. On top of this arsenal of artistic influences, my father was a seasoned classical

pianist. While never quite ready for Carnegie Hall, he would practice regularly and with

evident pleasure into the late evening hours the sonatas of Beethoven, Schubert and

Chopin. He accrued over many years a large library of history, biography, and many

books on painting and sculpture.

The inclination—possibly the compulsion—to draw was, I think, a natural part of his life

and heritage. It manifested itself on an endless stream of drawings on small white note or

oversized manila artist pads, on gift cards for friends and family, doodles with authorial

inscriptions in his books, and diagrams andmarginalia surrounding hismanuscripts onyellow

lined writing tablets. He drew animals—phantasmagorical or real—incessantly, and when

clearing out his papers after his death in 2008, my siblings and I discovered a trove of these

drawings. One can discern the evolution of his drawing style from an early reliance on ruled

lines and graphs, along with somewhat rigid Cubist-like animal profiles and caricatures, to

some three decades later drawings full of squiggles and agitated contours, where straight lines

are only rarely evident. In one image of a dragon (another favorite subject) the profile is so

diffused and fuzzy it seems like the poor creature has been intercepted by intense noise signals

and is being jostled to the point of being truly indeterminate. Over time, this tendency to

greater abstraction of figure, of fluctuating line weight, and verve of the freehand line may

also be indicative of his later research encompassing quantum theory and its attendant

complexity and fluidity. My father’s technical diagrams and illustrations, usually drawn

by hand and directly transcribed into his first two books and a host of his published

research papers, appear to become more visually dynamic and complex over time. This

may due to the increasing complexity of the science involved, or to better explain the

concept to the reader, or both.

I doubt a day ofworkwent by thatmy father didn’t draw a graph or figurewhileworking

his physics. I would stop in his study upstairs to say hi and there would be invariably a

handful of colored pens, always fine point, scattered on his crowded desk or stowed in his

shirt pocket (I never saw a pocket liner—but often an ink stain ruining another button-

down Oxford). A typical draft manuscript would have at least several squiggles and

amoeboid-like drawings, with darts of straight lines, attended by numeric or alphabetical

punctuation, piercing through or oscillating around the perimeters of these figures.

Parabolic arcs, waves both regular and asymmetrical, conic sections and planar inter-

sections, vast irregular rhomboids and tori: these would all be lovingly drawn, in a fine

line, exacting proportion, and precise annotation. They strike the uninitiated (at least this

non-scientist) as abstract volumes and forms in a state of visual tension, yet somehow

poised, not unlike figures in a Miro or early Kandinsky painting. As a young adult,

struggling in calculus and marginally apprehending the finer points of Newton’s Three

Laws, these drawings made physics more accessible, more “real.” To this day I remain

baffled as to the actual science, but they gave graphic shape and substance to equations

describing a part of the electromagnetic spectrum. These diagrams remain for me a rich

formal vocabulary intriguing in their geometry and multi-dimensions, making visible the

world of detecting signals in a cosmos of noise.

xviii VISUALIZING THE INVISIBLE



My father’s working method was really like that of a visual artist or even a composer.

If one looks at any of his early drafts of his abstracts or papers it resembles a score by

Beethoven, full of scratches and ink blotches and re-scribed measures. One would never

perceive them as “Mozartian”, immaculately and precisely inscribed the first time set to

paper. Indeed, some “final” drafts of his abstracts or even the chapters for this book look

like collages. They are full of rub outs, white-outs (liquid or tape!), edits scribbled

vertically in the margins in multiple ink colors, here and there whole sections cut out

with a razor and replaced with revised equations and text. Few pages in a final draft

would escape this sort of surgery. And almost everything was done long hand; type-

writers just weren’t capable of constructing the architecture of these dense and complex

equations. While the technology of computational devices evolved rapidly in his

lifetime, my father rarely if ever availed himself of a computer, even when they became

a household appliance. Trained on a slide rule, for many years his only concession to

modern hardware was a 1987 Hewlett Packard hand held calculator with Reverse Polish

Notation only occasionally dusted off to verify a certain summation. Otherwise the entire

math for his abstracts and various research papers was done in his head, augmented with

a set of yellow or white lined paper pads to work through some of the calculations. I was

astonished to notice that over all the decades he almost always wrote his manuscripts on

ink and paper. Pencil drafts are rarely evident. And despite the time it required, I can

discern an almost joyful immersion in the tactility of “cut and paste”. I can not attest to

the science, but the manuscript process provided one heck of show: It was “messy

vitality” at its finest!

“Creation,” as the architect Le Corbusier once said, “is a patient search.” I grew up

with my father modeling this dictum every day. Dad’s efforts had all the dead ends

and small victories familiar to any creative artist—or scientist: many hours of quiet,

methodical sorting and testing, punctuated by intermittent sturm und drang of frustra-

tion, occasional late nights of revisions to remove some small theoretical imperfection,

or re-drafting to get it “just right”. Science is a rigorous, un-sentimental, and empirical

pursuit. This effort was one of mental exertion, but it seemed to me often one of physical

endurance for my father. Sometimes in the early evening when he came downstairs from

his study and said “it was a hard day at the office,” he surely meant it.

It wasn’t until his last days in the hospital, still proofing and re-writing sections of the

chapters of this book while cancer gnawed away at him, that I began to appreciate the

implication of his intention to include “a space-time treatment” in the title of this

monograph—and to apprehend how much visualization was a key to his particular type

of research. Not unlike his drawing style, I believe his research evolved from a cool

“classical” foundation in statistics to the rarefied and “romantic” world of quantum

theory. He didn’t say much about this compulsion to draw, but didn’t have to: one can

easily discern the delight and care he took to making the diagrams illuminate, punctuate,

and indeed more richly describe what his summations and differentials express (to my

untrained eye) in their inscrutable syntax. Only later in life did I come to realize that not

all scientists had this gift, and that for many their “patient search” was less tactile and

literally more cerebral.

I’m convinced my father’s research relied on intensely visualizing the natural

environment—imagining the shape and texture of a stochastic universe—in order to

tease out the abstract equations that would accurately account for the sometimes

predictable but more likely random events and features of a world full of physical
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uncertainty. It is a world of turbulence, under the sea or in the air, waves of all shapes and

sizes and curves, chaotic and sublime. Today this world is super-saturated with signals,

from radar and sonar and radio, from ELF to microwave broadcasts, cell phones and

Blue-Tooth and E-Z Pass readers, all seeking a receptor of one sort or another, always

under threat of being scattered. As I reflect on how David Blakeslee Middleton’s work

sought to find order and predictability in chaos, I am awed at how fantastically rich the

physics of something that can not be seen readily has had such an impact on our modern

life, and the role my father played in enhancing the connective-ness we today take for

granted.

David Blakeslee Middleton
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EDITOR’S NOTE

When IEEE Press and its Series on Digital and Mobile Communication signed a contract

withDavidMiddleton in 1996,we could not expect that the bookwould take 16years and run

to 24 chapters. By the time of his passing in 2008, David had completed versions of 10

chapters, and more than one version of several. How should one prepare such a manuscript

for publication? Unlike F.X. Suessmayr, the young assistant who completed Mozart’s

Requiem, I have not made up new text and whole chapters. The Requiem became a beloved

piece of music, even with its Suessmayr chapters, but after much deliberation we have

decided to limit David’s book to nine chapters. Successive chapters are more rough in form

and contain newer material, and it becomes steadily more risky to guess Middleton’s

intentions. With Chapter 10, we could find no practical way to create a reliable text. Those

who would like to see for themselves–and perhaps attempt a revision–can view this part of

the manuscript on the Wiley book Web site.

Thus, we present a book of nine chapters. David Middleton’s original “Introduction” is

reproduced as he wrote it, and the reader can see there the magnificent opus that he had in

mind. In the rest of the book, we have removed all mention of the missing parts and we have

aimed to make the book a coherent work in nine chapters. Exercises existed for Chapters 4

and 6 only, and these are included. There were to be many appendices, but the text for only

two exists; these are included.

Middleton’s style employed a multitude of equation and section references, and these

presented a special problem because they often referred to early versions now lost. Usually

they could be re-established, but where there was a serious risk of error, they were deleted.

References to conclusions reached in Chapters 11–24 were softened or deleted, since in

many cases it was doubtful that they exist. Many typed manuscript passages were not

proofread by the author, and contained obvious errors andmisspelled foreign names that had

to be corrected.With thousands of corrections, it is certain there are errors andmisguesses in

this editorial process. We regret this, and ask for the indulgence of the reader.

What then is this book about? As the title suggests, it is about detection and estimation

when statistics are neitherGaussiannorhomogeneous.For example, inChapter 2,Middleton



extends Wiener–Khintchine theory to this case. But Middleton believes that the essence of

the problem is transmission medium, and he devotes the later of the nine chapters to

complicated multilayer inhomogeneous media, whose transmission is as much by diffusion

as by electromagneticwaves.Another recurring theme in the book, as pointed out byVincent

Poor, is processing in four-dimensional space–time. A perhaps more subtle theme is sonar

and signaling in the ocean.His hope seems to have been that later chapterswould tie together

these frightfully complexmediawith traditional detectionandestimation.Hehadavision for

how to do this. Could he have carried it out as he wished? Can anyone carry it out, or is a

practical and understandable solution beyond our comprehension? We will not find the

answer this time around.

The attentive reader can find more than these technical matters. David Middleton’s

book is a window to a past now nearly forgotten: to mid-twentieth century pioneers in

detection, estimation, and signal processing; to organizations that changed the world; to a

Cold War with doomsday submarines; and to a much smaller research community,

sometimes employed by opposing armies, who nonetheless knew each other’s work. At

the end of Chapter 3, readers can find an interesting history of the matched filter, which

Middleton helped discover. An historical oddity is that Middleton was a coauthor of the

first paper, Vol. 1, No. 1, p. 1, published by the prestigious IEEE Transactions on

Information Theory (Ref. 1 in Chapter 4). It is also interesting thatMiddleton’s day-to-day

research world was almost free of computers. He mentions them from time to time, but a

researcher in this field today would base his or her thinking much more on algorithms and

what they could and could not do, and verify the work every step of the way with

computations.

We wish you happy reading!

John B. Anderson
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INTRODUCTION

In his Introduction, David Middleton refers to the parts of his book that were not

completed; we have left them in place so that the reader may see the original plan for

the book — Editors.

This Introduction explainsmypurposeofwriting this book and its earlier companion [1]. It is

based on the observation that communication is the central operation of discovery in all the

sciences. In its “active mode,” we use it to “interrogate” the physical world, sending

appropriate “signals” and receiving nature’s “reply.” In the “passive mode,” we receive

nature’s signals directly. Since we never know a priori what particular return signal will be

forthcoming, we must necessarily adopt a probabilistic model of communication. This has

developed over approximately 70 years since its beginning into a statistical communication

theory (SCT). Here, it is the set or ensemble of possible results that is meaningful. From this

ensemble, we attempt to construct an appropriatemodel format, based on our understanding

of the observed physical data and on the associated statistical mechanism, analytically

represented by suitable probability measures.

Since its inception in the late 1930s, and in particular subsequent toWorldWar II, SCThas

grown into a major field of study. As we have noted above, SCT is applicable to all branches

of science. The latter itself is inherently and ultimately probabilistic at all levels. Moreover,

in the natural world, there is always a random background “noise” as well as an inherent a

priori uncertainty in the presentation of deterministic observations, that is, those that are

specifically obtained, a posteriori.

THE BOOK’S TITLE

Let me now begin with a brief explanation of the title of the book.

Non-Gaussian Statistical Communication Theory, David Middleton.
� 2012 by the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.



Elements of Non-Gaussian Space–Time Statistical Communication Theory,

Propagation, Noise, and Signal Processing in the Canonical Channel

My choice of “elements” is intended to signify a connected development of fundamental

material, but with an exposition that is inevitably incomplete, with many important topics

necessarily omitted, primarily for reasons of space. “Elements,” however, includes the

propagation physics of the channel, the role of spatial coupling (e.g., apertures and arrays),

and noise models, both physically founded. The analyses also treat deterministic and

random scatter, Doppler effects, and, of course, four-dimensional (i.e., space and time)

signal processing, with particular attention to threshold reception in arbitrary noise

environments. Non-Gaussian noise receives special analysis, since it is a phenomenon

of increasing practical importance. Moreover, it is a topic that presents much greater

complexities than the familiar Gaussian noise model, which has dominated so much of

recent as well as earlier studies.

In addition, the class of signals considered here is entirely general or “canonical,”1 so that

the coding results of parallel studies in Information Theory2 [2] can be readily applied in

specific cases. This book (Book 2) may also be considered an extension of Book 1 (An

Introduction to Statistical Communication Theory, [1]). Book 1 considers primarily

random processes and continuously sampled noise and signals. Here, on the other hand,

Book 2 deals with many earlier features of Book 1. These that require a four-dimensional

space–time formulation now involve random fields. Particular attention is also given here to

the physics of propagation. In this context, another portion of this book is then devoted to

physical problems of signal detection and extraction in a Bayesian formulation, with

particular attention to threshold (or weak signal) operation.

Finally, both homogeneous and inhomogeneous media are considered here. Such media

are linear provided their equations of propagation are themselves linear where the require-

ment, of course, is that the superposition principle holds: Ifa is a typical field in suchmedia,

we have, symbolically for two fields a ¼ a1;a2ð Þ!a12 � a1 þ a2. On the other hand, for

nonlinear media a1;a2ð Þ!a12 6¼ a1 þ a2: superposition is violated. Furthermore, statio-

narity or nonstationarity itself does not invalidate linearity or nonlinearity. Note, however,

that the presence of a (finite) boundary is itself an inhomogeneity of themedium, and thus is a

component of nonlinearity by the above definition. The presence of scattering elements

(inhomogeneities) is also a major topic of interest as are the probability distributions

generated by such scattering elements.

COMMUNICATION THEORY, THE SCIENTIFIC METHOD, AND THE

DETAILED ROLE OF SCT

As I have noted above, this book is primarily an analytical presentation. For numerical

results, itmaybe regardedasprovidinga set ofmacroalgorithms, todirect the computationof

the desired numerical quantities in specific cases. Because of the availability of cheap and

powerful computing today as well as the modest software costs, such numerical results

should be readily and quickly available, once the needed programs (software) are obtained

1 Here the usage of “canonical” is to indicate a form independent of a particular choice in specific applications or

branch of physics.
2 See Fig. 1.
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from theaforementionedmacroalgorithms.Thesemacroalgorithmsare the consequenceof a

well-known scientific methodology whose basic principles are stated in somewhat simpli-

fied terms below:

Hypothesisþ Experiment ¼ Theory3 ð1Þ

Loosely stated, “hypothesis” is a conjecture or proposition; experiment is the procedure

required to verify or to disprove the proposition. Verification here implies replication by any

qualified observer any number of times. “Theory” is the result of successful verification. A

theory is thus potentially acceptable (or not) as long as it is empirically verified by

appropriate observation. A fruitful theory is one that not only accounts for the observed

phenomena but also leads to further discoveries. For science, the arena of application is the

physical world, where it is the ontology “what and how” of the universe, not its “why.”

Here I employ two familiar types of theory. These I call a posteriori and a priori theories.

In the former, everything is already known, for example, equations of state, boundary

conditions, propagation relations, and so on. It remains only to calculate a numerical result,

where all of its elements collectively constitute a unique representation, that is, a determin-

istic result. For the latter, the same structure exists, but it is not knownwhich representation is

a priori present, except that a particular result will have a certain probability of actually

occurring in a universe of possible outcomes. It is this fundamental uncertainty that is the key

added feature, defining the field of statistical communication theory. It is this probabilistic

nature, combined with a set of deterministic representations and associated probability

measures, that in turn defines the subject. This concept that was introduced systematically in

the 1930was accelerated by the SecondWorldWar (1939–1945), and has continued into the

peace time explosion of the new science and its corresponding technology.

Apart from the broad and fundamental impact, SCT is the science indicated at the

beginning of this Introduction. SCT also has a microstructure that has the specifically

detailed role of including the physical sciences. Figure 1 illustrates other interdisciplinary

relationships.

Figure 1 representsmy subjectiveviewofwhere statistical communication theoryfits into

the scientific enterprise and specifically where the signal processing and channel physics lie

in this hierarchy. The double set of arrows ("#, #") indicates the interrelationships of the
various fields of study and emphasizes their interdependence. Intimately involved in all of

this is the role of technology,which provides the instruments of discovery, investigation, and

study. The direct arrow in the diagram between SCT and the physical science further

emphasizes the aforementioned fact that communication is the link connecting the natural

world with themethodology used to study it. In fact, communication in one form or another,

appropriate to the scale of the phenomenon under study, is the necessary vehicle here. The

progression is from the micro to the macro, that is, the very small at the quantum level (e.g.,

the quantum fluctuations of the vacuum) to the astronomical dimensions of the fluctuating

gravity fields of galaxies [3].

As we have noted at the beginning, physical science is also based on model building.

This in turn requires both the interrogation for and the reception of data from the physical

3 This simple relation is well understood by the scientific community. It is often confused by the public, where the

terms “theory” and “hypothesis” are frequently interchanged and the essential role of the “experiment” is often

omitted or misinterpreted. Such confusion can have serious consequences, since it is the public that ultimately

supports scientific endeavors.
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world. The probabilistic nature of the physical world is inherent according to modern

understanding (as exemplified by Heisenberg’s uncertainty principle and the behavior of

subatomic particles), along with the ultimate uncertainty of measurement itself. The

former is a fundamental property of matter and energy; the latter is independently a

problem of technique. These remarksmay be concisely summarized by the following three

observations:

(1) Physical science is a model building operation.4

(2) Physical science is fundamentally a probabilistic endeavor, refer to Eq. (2).

(3) Communication is the process by which hypothesis is converted into theory, refer to

Eq. (1).

Thus, the communication process either actively interrogates the real world or passively

receives its “messages.” This in either case embodies the role of experimental verification

(or rejection), refer to Eq. (1). Although there is nothing really original about these remarks

(1)–(3), they may serve as useful reminders of the scientific process. The quantitative

language of science is, of course, mathematics.

Note the key place of noise theory in the hierarchy of Fig. 1. Although the role of noise

ismostly a negative one from the point of viewof treatment here in “Signal Processing” it has

Physical Science
(Models and Applied Mathematics)

(Technology)
Mathematics

Computer
Science

Software
Hardware

Noise
Theory

Physics
(Propagation)

(Subdisciplines)

Astro-
Physics

(Subdisciplines)

Other Chemistry Biology Medicine Other

Subdisciplines

Statistical
Communication Theory

Signal Processing
and Channel Physics

Detection, Estimation, Classification

Information Theory
(Coding) The principal subject of

this book

Science–Informed Technology–Technoscience

FIGURE 1 The role of statistical signal processing (SSP) in the physical sciences.

4 Whether model building is an act of discovery, an approximation of a reality independent of the observer

(Platonism), or an act of invention, a Cartesian picture of reality dependent on the observer, is an unresolved

philosophical question. The (“cogito ergo sum”) empirical success of quantum mechanics, where the observer is

part of the system, suggests at least some combination of the two, which then reduces to the not so simple physical

reality; see [4].
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proved to be a highly productive field in the broader context of modern physics since the

beginningof the twentieth century [5]. For example,Einstein used it to prove the existence of

atoms in1905,whichwas ahighly controversial topic up to that time.Ahost of other eminent

scientists, among them Boltzmann and Langevin [5], also advanced its theory. See, for

example, Ref. [3–6]. Since “noise,” a basic random phenomenon, pervades every field of

science, its study since then has yielded a host of discoveries and new methodologies. Its

history has indeed proved “glorious,” as Cohen has so aptly described it in his recent

enlightening review article [6].

Although I have focused here on the deleterious and ubiquitous effects of noise on signal

reception (particularly, in Parts 1 and 3 of the present book), its physical and analytical

description, especially for non-Gaussian noise, is a necessary and significant major subject

for discussion (cf. Part 2, Chapters 11–13). The dominant relation of noise to the physical

problems inherent in signal processing is well known. Its important companion discipline in

SCT, Information Theory,5 is emphasized by the direct arrow in Fig. 1, as well as its

connection to the physics of propagation. The close mutual relationship of the ensuing

technology is also noted and is a major part of the advances discussed here and appearing in

all fields of science.

THE SCOPE OF THE ANALYSIS AND NEW GENERAL RESULTS

Before summarizing the contents of this book, letmedescribe the physical domain ofmost of

its contents. Topics not treated here are also noted. The principal areas of application are

mainly acoustical and electromagnetic. Exceptions are quantummechanical (thevery small)

and astrophysical (the very large), where elements of statistical communication theory are

also specifically although briefly considered. In all cases from SCT viewpoint, we have to

deal with noise, and signals in such noise, propagating in space–time. From SCT viewpoint,

these are determined by the physical properties of the channel. Throughout, the appropriate

language is statistical, specifically for the inherently random character of these channels

and for reception, namely, detection and estimation in the face of uncertainty, that is, in an

a priori theory.

Weare also dealing heremostlywithmedia that are regarded as continuous.Thesemaybe

described by the following simple hierarchy:

(1) Vacuum: Empty space, no matter present at all. This is typically the usual assump-

tion made here for most electromagnetic propagation. Such media, of course, do not

support conventional acoustic propagation.

(2) Gas: A low-density continuum, for example, earth’s atmosphere, and other low-

density environments. These media clearly do not support a shear: r� a ¼ 0,

(a¼ displacement field; here a is also said to be irrotational.)

5 In the Information Theory community, the space–time formulation represents the simultaneous use of separate

multiple channels, whichmay be statistically related and possibly coupled for simultaneous new versions, of one or

more signals received together. The details of the spatial environment in the immediate neighborhood of the

separate receivers, however, are not directly considered from a physical point of view. The effects of the different

receiver locations are subsumed in the different received waveforms. These are usually suitably combined in the

receiver to take advantage of their common structure at the transmitter. The noise background at the receivers on the

other hand can have noticeable statistical correlations, which can enhance the received signal(s) in reception, as is

typical of MIMO (multiple input–multiple output) reception [7].
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(3) Liquid: Usually of greater density than gas, for example, the ocean. These also do not

support a shear, for example, r� a ¼ 0. Here we consider the propagation of

acoustic waves primarily.

(4) Solids: These are dense enough to maintain their shape or at most suffer minor

distortions from a rest condition, that is, undergo and restore shape modifications.

Such media are comparatively elastic, deformable, and restorable. These bodies can

support a shear, for example, r� a 6¼ 0. When subject to stresses alone, these

deformable media produce a displacement (vector) D¼a that is solenoidal, that is,

r� a ¼ 0. Electromagnetic and acoustic radiation is also possible in all the above

media (except the latter in a vacuum). The magnitude of the results in the acoustic

and electromagnetic cases depends, of course, on the physical properties of the

media involved. For example, EM radiation in fresh and salt water is significantly

weaker than acoustic radiation, but may be enhanced in certain conducting solids

vis-à-vis vacuum or liquids. In all cases, we must pay attention to the appropriate

conductive properties of the medium in question.

Wedefine the domainsof the analysis here in termsof the range of frequencies used for the

signals and hence for the accompanying propagation whether ambient or signal generated

(i.e., scattering). For acoustic applications, we have (for an average speed of sound in water

c0¼ 1.5� 103m/s), a frequency range is the order of (1–107Hz) or in wavelengths6 from

l¼ 1.5� 103m to l¼ 1.5� 10�4m. For the EMcases, we consider frequencies in the order

of (100–1012Hz)with the speed of light in space c0¼ 3� 108m/s,which inwavelengths is in

the order of (3� 107–3� 10�4m). (These frequencyor equivalentwavelength intervals, are,

of course, somewhat loose and exceeded in any optical and quantum mechanical examples

that are discussed here.)

Figure 2 illustrates the ranges of frequencies to be used in the (i) electromagnetic and

(ii) acoustic applications.
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FIGURE 2 Current frequency range of signals used in general electromagnetic and acoustic

communications, for example, radar, sonar, and telecommunications (from the relation lf¼ c0).

6 I use fl¼ c0, a dispersionless approximation in both acoustic and EM cases.
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SOME SPECIFIC NEW RESULTS

With theabove inmind, letmenote nowwhat I believe tobe themajornewmaterial presented

in this book. These are discussed in detail in subsequent chapters, some of which have also

been published in recent journal papers. Note the following (mostly new) SCT topics

specifically:

(1) A space–time formulation, largelywith discrete sampling of continuous noise and

signal fields. This includes space–time matched filters for optimum performance

in reception, including quantification of system degradation, in particular for

ultrawide-band (UWB) signals when optimal space–time (ST) processing is

replaced by the usual separate space and time (S� T) processing in conventional

receivers.

(2) A theory of jointly coupled detection and estimation, as developed by the author and

R. Esposito, and generalized in Chapters 6 and 7, with additional new references.

(3) Extensions of classical noise theory (Langevin equations, Fokker–Planck approx-

imations, and classical scatter methods) to include random spatial phenomena

(Chapter 9 of Part 2).

(4) New methods in scattering theory (1997–), from which first- and second-order

probability densities are directly obtained (refer to Chapter 10 of Part 2 for this

physical statistics (PS) approach vis-à-vis the limited classical statistical physics

(SP) techniques discussed in Chapter 9).

(5) Physically-based non-Gaussian noise models (Class A and class B canonical noise

distributions), developed since 1974 by the author and presented inChapters 11 and

12, of Part 2.

(6) A systematic program of threshold (or weak signal) detection and estimation for

general noise fields, particularly for non-Gaussian noise, and including as a special

case, the Gaussian noise of earlier treatments (Part 3).

(7) The physics of propagation, in context of channel description and its space–time

coupling, in transmission and reception for a variety of media, with general

boundary conditions.

(8) An emphasis on the interdisciplinary character of the presentation throughout (see

Fig. 1), with specific examples: astrophysics and computer traffic probabilities. This

also leads to the development of canonical expressions independent of particular

physical disciplines, which permits their treatment by a common methodology.

(9) An extension of the scalar field analysis of Part 2 (Chapters 8–14) to vector fields in

Part 4, specifically illustrated by the full electromagnetic field, with the typical

reception applications.

(10) Avery concise treatment of quantumdetection and estimation is presented in Part 4.

OVERVIEW: PARTS 1–4

The following provides a brief summary of the contents ot this book.

Note that Chapters 11–24 were not completed — Ed.
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An Introduction to Non-Gaussian Statistical Communication Theory—A Bayesian

Formulation

Part 1 presents most of the basic statistical apparatus needed to apply statistical decision

theory from the Bayesian probabilistic point of view. These are the ultimate problems of

statistical communication theory, namely, optimal and suboptimal detection (D) and

extraction (E) of desired signal and noise. Chapters 1–3 introduce the subjects of space–

time optimality of detection. These employ space–time Bayes matched filters and Gaussian

fields, as well as coupling of the canonical channel7 to receiver and transmitter. Inhomoge-

neous andnonstationary (non-Hom-Stat) conditions are considered aswell as themore usual

Hom-Stat situations, along with an introductory discussion of one- to three-dimensional

arrays for explicit channel coupling. Discrete sampling is also introduced in these chapters,

in contrast to the earlier treatment of Book 1 [1], in accordance with the usual digitalized

handling of most data today. These first three chapters provide an introduction to the

chapters that follow. Chapters 4 and 5 are reviews ofmuch of thematerial in Chapters 21–23

of Book 1 [1] extended to space as well as time. On the other hand, Chapters 6 and 7 present

mostly new material, namely, a theory of jointly coupled signal detection and extraction

[cf. (1) above], for both binary and M-ary (M> 2) signals in noise.

Part 2. The Canonical Channel: Deterministic and Random Fields, Non-Gaussian

Noise Models and Doppler

Part 2 introduces some essential elements of the classical theory of propagation. This is

needed in our effort to apply these elements to the quantitative description of the channel

itself, which is the origin of much of the noise which interferes and limits reception. The

aim here is to go beyond the “black box” labeled “noise” and postulated ad hoc statistics,

to the physically observed and analytically derived statistical distributions, in both time

and space. Thus, propagation is a complex operation, involving the structure of the

medium, boundaries, boundary and initial conditions. This is especially the case for

inhomogeneous scattering media, and which in addition may be absorptive (i.e. dissipa-

tive). Chapter 8 discusses with deterministic cases, examples of a posteriori formulations.

These in turn may next be regarded as “representations,” which in turn form a statistical

ensemble when suitable probability measures are assigned to them. This randomizing

feature is characteristic of the a priori theory mentioned above (I), and which is our main

concern here.

Two classes of problems are considered in Chapter 9: (1), where the ensemble of

dynamical equations are deterministic and the driving source is itself a random field

GT(R, t), so that the resulting field a(R, t) is the probabilistic solution to Lð0ÞaH ¼ �GT

(or aH ¼ M̂
ð0Þ
GT ); M̂¼ integral Green’s function. The second class of problem is the

more difficult one of scattering, represented by the ensemble of equations of the form

aðQÞ ¼ aH þ ĥ Qð ÞaðQÞ, which is nonlinear in the scattering elements � Q̂
� �

. The a priori

approach is next introduced for the classical treatment of scattering. It is noted that again

here scattering is a nonlinear property (with respect to the scattering elements) of such

random media. (It is also a similar type of nonlinearity for the deterministic inhomoge-

neous media of Chapter 8.) The principal results here are the low-order moments of the

governing probability distributions. Only in special cases (involving linear Langevin

7 That is, in analytic forms applicable to a variety of different specific physical cases, i.e. acoustic, or

electromagnetic, etc.
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equations, Gaussian statistics, and Markoff assumptions) of the first class, are analytic

solutions for a full treatment generally available. Chapter 10 following, however,

remedies this situation with a new, purely probabilistic approach. Its advantages, and

limitations with respect to the classical treatment of Chapter 9, are also discussed in

Chapter 10.

Chapter 11 and 12 turn next to canonical forms,8 as well as physical, derivations of three

major classes of non-Gaussian noise, namely Poisson, Class A, and Class B noise,9 which

represent most physical random noise processes, including Thermal, Shot, and Impulse

Noise. Chapter 11 presents the first-order pdf’s of these three general classes of noise,

Chapter 12 extends the treatment to the second-order cases. Physical non-Gaussian

noise models are also considerably more analytically complex than Gaussian noise models

are often encountered in practical receiving systems.Moreover, PoissonClassA andBnoise

(of interest to us here in the frequency ranges of Fig. 2, cf. Chapters 10 and 12 of [1]) are now

usually a dominant component of interference in the channel. As a possible alternative to

these relating complex, physical models we use Chapter 13 to present a brief treatment of

various common, so-called ad hoc noise pdf’s. These have comparatively simple analytic

forms but their relationship to the underlying physical mechanisms is relatively tenuous.

Chapter 14 concludes Part 2 with formulations for deterministic and random doppler, which

arise inmanypractical situationswhen the transmitting and/or receiving sensor platformsare

in relative nation to one another, and or to a fixed frame of reference.

Part 3: Threshold Theory: Detection and Estimation – Structure and Performance.

Part 3 is devoted to optimum and near optimum cases of threshold signal processing in

general noise environments, in particular non-Gaussian noise whose explicit pdf’s are

obtained in Part 2. Here we are concerned not only with the structures of the detector and

estimator, which are themselves generally sufficient statistics, but also with their perfor-

mance. Chapter 15 develops canonical forms of such signal processors from the general

arbitrary pdf’s of the noise. This is done for both additive, and multiplicative signals and

noise, suchas theseproduced in inhomogeneousmediawith scattering elements, c.f.Chapter

16. We then apply these results to both optimum and suboptimum signal detection, while

Chapter 17 considers analogous results for signal estimation.Chapters 18 and 19 are devoted

respectively to examples from fluids, i.e., underwater acoustics, from elastic solids, and

analogous electromagnetic vector field formulations, all in weak-signal regimes, which

permit a general treatment.

Part 4: Special Topics

Part 4concludes ourgeneral treatment andconsists of avarietyof special problems, basedon

the results of Parts 1-2 and selected papers. Chapter 20 describes acoustic problems

connected with the reception of sonar signals in the ocean, where wave surface, volume,

and bottom scatter are the principal interference mechanisms. Chapter 21 extends the

analysis for radar in the full electromagnetic formulation.Chapter 22 considers next avariety

8 That is, in analytic forms applicable to a variety of different specific physical cases, i.e. acoustic, or

electromagnetic, etc.
9 The author’s designation.
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of special problems listed below, which address briefly various additional features of the

preceding analyses of Parts 1–3.

(i) Effect on performance of the separation of space (S) and time in reception, [S� T]

vs. [ST]; See (xi) below;

(ii) Path integrals, for Class A and B noise;

(iii) Optical communications and quantum effects; lasers as technical enablers;

(iv) (Introductory) exposition of Quantum Mechanics for Communications (lasers,

optics, etc.);

(v) Matched field processing (MFP);

(vi) Noise signals in noise – the (non-singular) Gaussian case for space–time fields;

(vii) Soliton models, spectrum; Wind-wave surface structures;

(viii) Astrophysics and computer LAN traffic applications;

(ix) Signal fading and multipath;

(x) Ocean wave surface models – Surface scatter, etc.

(xi) Ultra Wide-band systems (see (i) above)

(xii) Propagations for time-reversal or reciprocal media.

The book concludes with a series of Appendixes, mathematical relations needed above,

and additional references.

LEVEL OF TREATMENT

The analytic requirements are comparable to that required in texts on theoretical physics or

engineering. Reference [8] is noted in particular with the addition of the special probability

methods guided by SCT. From the physical point of view here, the slogan “more vigor than

rigor” is to be expected. The («, d) and so on, of pure mathematics are implied, and are

presented elsewhere. For example, the Dirac delta function d(x� x0) and its generalizations

have been shown to belong to the class of “generalized functions.” These are described in

Lighthill’s book [9], based on the concepts of Lebesque, Stieltjes, and L. Schwartz

(cf. Chapters 2 and 3 of Ref. [9]), and the various extensions of the limit concept in

integration. In addition, to facilitate the handling of the mathematical details in the

propagation models, an operator formalism is frequently employed here. This provides a

certain measure of compactness to the analytic treatment in many cases (see, in particular,

Part 2).

The class of functions representing the physicalmodels used here and in similar problems

can and has been shown to give correct answers for these physical models, in addition to

satisfying one’s intuitive expectations. I have thus tried to avoid “cluttering up” the physical

arguments represented by these macroalgorithms (refer to the first section of Introduction)

by avoiding the full rigor of the associated “pure” mathematics, with its often arcane (to us)

symbolisms and operations.

Finally, I have also included examples of the so-called Engineering Approach to these

problems.Here, the (linear) canonical channel is represented by a linear time–variable filter.

It is shown that this representation is valid, that is, it is equivalent to the general physical

10 INTRODUCTION



description of the channel in the cases treated here, only in the far-field (Fraunhofer)

regimes. Moreover, it does not explicitly indicate range effects, namely, the attenuation of

the propagating field due to “spreading.” Additional conditions on the channel itself are that

the signal applied to each sensor of the transmitting array must be the same and that the

receiving portion of coupling to the channel must be an all-pass network (see Section 8.2).

These conditions can often be met in practice, and they are usually acceptable in

applications.

REFERENCING, AND SOME TOPICS NOT COVERED

In addition to the above, let me add a few remarks about the referencing, with respect to the

selection of book and journal articles. These selections are based on a number of criteria and

personal observations:

(1) Obviously important and pertinent books.

(2) The need for an inevitably limited number of sources, chosen now from thousands of

possibilities, which are available via various search engines (Google, AOL, etc.).

(3) Recognition that there is an historical record, which is both informative and needed.

This must necessarily involve a relatively small, finite number of books and papers to

bemanageable and thereby readily useful.Manyof the references that I have used here

since 1942 (including those cited in later editions of Ref. [1]) are from the formative

period (1940–1970) in the development of SCI. These are still pertinent today.

(4) That any finite selection inevitably reflects the subjective choices of the author.

However, I feel that these choices deserve attention, although they are now ignored in

much of the current literature that appears to have a “corporate memory” of only a

decade and a half [15]. The “new” is not necessarily better.

(5) During the 70 years of my activity in statistical communication theory, as it

developed during World War II and subsequently (Fig. 1), I have encountered

much relevant material (cf. (4) above). From these I have chosen the references used

throughout. Undoubtedly, I have missed many others, for which I ask the readers’

indulgence.

In addition, there are also many important topics in SCT that of necessity I have had to

omit, in order to keep the sheer size of the presentation under some control. Clearly, a major

field of equal importance is information theory, essentially the theory of coding [2, 10], to be

applied to the canonical signals postulated here (Fig. 1). The purpose of such limits is (1) to

preserve an acceptable combination of probabilistic methods (Part 1), (2) to present not an

entirely trivial account of the relevant physics (Part 2), (3) to give the development of

threshold theory (Part 3), which extends the applicability of SCT to the important (andmore

difficult) cases involving non-Gaussian noise, in addition to the usual Gaussian treatment,

and (4) to illustrate (inPart 4) the scope ofSCT through its applicability to avariety of diverse

special topics.

Thus, Book 1 [1] may be regarded as a treatment of SCT involving temporal processes

only, whereas Book (2) here provides an extension of SCT to space–time fields. Both books

require the same level of capability; both are primarily researchmonographs, at the doctoral

level, and both require a measure of familiarity with mathematical physics, as well as
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theoretical engineering (cf. References below). Of course, suitably prepared graduate

students can also expect to find the book useful. In this connection, the role of the problems

included here in is the same: to provide useful and special results, in addition to the text itself.
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1
RECEPTION AS A STATISTICAL
DECISION PROBLEM

1.1 SIGNAL DETECTION AND ESTIMATION

As we have noted above, our aim in this chapter is to provide a concise review of Bayesian

decision methods that are specifically adapted to the basic problems of signal detection (D)

and estimation (E). From Fig. 1.1b we can express the reception situation concisely in a

variety of equivalent ways through the following operational relations:

A. Data Processing at the Receiver.

T̂D or T̂E

� �
X ¼ Y; or T̂DR̂ or T̂ER̂

� �
a ¼ Y ; ð1:1:1Þ

where X is the data input from the spatial processor R̂, that is, the receiving aperture

R̂ � T̂AR

� �
, to the temporal data processing elements T̂D; T̂E

� �
; Y represents the output

from these processors. In more detail from Fig. 1.1b we can also write the following.

B. Data Input to Processors.

X ¼ R̂a ¼ R̂T̂
ðNÞ
M T̂AT

� �
Sin; ð1:1:1aÞ

in which a is the propagating field in the medium, which contains ambient sources and

scattering elements embodied in the operator T̂
ðNÞ
M .

Non-Gaussian Statistical Communication Theory, David Middleton.
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C. Field in the Medium.

a ¼ T̂
ðNÞ
M T̂ATSin: ð1:1:1bÞ

The input or injected signal Sin and output “decisions” {v} are described operationally by

the following.

D. Input Signals and Decision Outputs.

Sin ¼ T̂modT̂e uf g; vf g ¼ T̂dY ¼ T̂d T̂D or T̂E

� �
X; ð1:1:1cÞ

where now {u} is a set of “messages” to be transmitted and the “decisions” {v} fall into

two (not necessarily disjoint) classes: (“yes”/“no”) for detection (D) and a set of numbers

representing measurements, namely estimates of received signal properties or para-

meters. Comparing Fig. 1.1a and bwe see that the “compact” channel operators T̂
ðNÞ
T , and

so on, in Eq. (1.1.1d) are

E. Components of the Compact Operators.

T
ðNÞ
T ¼ T̂ATT̂modT̂e; T̂

ðNÞ
M ¼ T̂

ðNÞ
M ; T̂

ðNÞ
R ¼ T̂dT̂D=ET̂AR: ð1:1:1dÞ

We emphasize here and subsequently (unless otherwise indicated) that when the signal

(if any) is present in X and therefore in the received data Y, Eq. (1.1.1), it is the received

signal SRecð¼ SÞ. The received signal is, or course, not the signal Sin originally injected
into themedium. This dichotomy occurs because the medium and canonical channel as a

•S=S1

S(2)≠0

S(1)≠S(2)
S(1)≠0

•S=0 •S=0

•
S=S2

•
S=S1

•
S2 ≠ 0

•
S1 ≠ 0

•S = 0

•
S ≠ S2

•
S=0

•
S=0•

S=0

S≠0

S(2)

S(1)

(a) Binary detection:
simple alternative

(d) Multiple detection:
nonoverlapping
hypothesis classes

(e) Multiple detection:
overlapping 
hypothesis classes

(f) Multiple detection:
overlapping 
hypothesis classes

(b) Binary detection:
one-sided alternative

(c) Multiple detection:
three simple hypotheses

H(i) = SεΩ(i)

Ω(1)

Ω(2)
Ω(2)

Ω(1)
Ω(1)

Ω(0) Ω(0) Ω(2)

Ω(1)

Ω(0)

Ω(1)
Ω(2)

Ω(1)

Ω(0)

Ω Ω Ω

Ω Ω Ω

Ω(0) Ω(0)

FIGURE 1.1 Signal and hypothesis classes in detection.
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whole modify and generally contaminate Sin, with additive and signal-dependent noise

(clutter and reverberation) as well as varieties of ambient noise and interference, in

addition to such inherent phenomena as absorption and dispersion. All this, of course, is

what makes achieving effective reception of the desired signals the challenging problem

that we seek to resolve in subsequent chapters. (We remark that SRec may be generated

either by the desired source, Sin, or by some undesired source, such as interference, or by a

combination of both.)

With this in mind we see that our goals in Chapters 1–7 are first to establish explicit

analytic connections between the received data X, the physical realities which affect them

(via T̂
ðNÞ
M ), and the successful extraction of the desired signal, initially as S ¼ SRecð Þ, and

eventually through attained knowledge of the medium (the inverse problem) to obtain

acceptable reproduction of the original signal Sin. This chapter introduces the formal

decision structure for achieving this, while Chapters 2–7 following provide the canonical

algorithms (operations on the input data) and performancemeasures to be used subsequently

for specific applications. We remark that the operations involving coding [ T̂d; T̂e

� �

in (1.1.1c), and shown in Figure 1.1] belong to the domain of Information Theory per

se [2], which is outside the scope of the present volume.1

1.2 SIGNAL DETECTION AND ESTIMATION

Webeginour decision—theoretic formulationwith a general descriptionof the twoprincipal

reception problems, namely detection and estimation (sometimes called extraction) of

signals in noise, expressed operationally above by Eq. (1.1.1). We first introduce some

terminology, taken partly from the field of statistics, partly from communication engineer-

ing, and review the problems in these terms.We shall also point out some considerations that

must be kept inmind concerning the givendata of these problems. Later, in Sections 1.3–1.4,

we generalize the reception problem, state it in mathematical language, and outline the

nature of its solutions.2

1.2.1 Detection

The problem of the detection of a (received)3 signal in noise is equivalent to one which, in

statistical terminology, is called the problem of testing hypotheses: here, the hypothesis that

noise alone is present is tobe tested, on thebasis of some receiveddata, against thehypothesis

(or hypotheses) that a signal (or one of several possible signals) is present.

Detection problems can be classified in a number of ways: by the number of possible

signals that need to be distinguished, by the nature of the hypotheses, by the nature of the data

and their processing, and by the characteristics of the signal and noise statistics. These will

now be described in greater detail.

1 However, through selected references we shall provide connections to these topics at appropriate points in this

book.
2 As an introduction to the methods of statistical inference, see, for example, the treatments of Kendall [3] and

Cram�er [4]; also Luce and Raiffa, [5].
3 Note the comment following Eq. (1.1.1d) above.
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1.2.1.1 The Number of Signal Classes to be Distinguished This is equal to the number

of hypotheses to be tested but does not depend on their nature. A binary detection system

can make but two decisions, corresponding to two hypotheses, while a multiple

alternative detection system [6, 7] makes more than two decisions. For the time

being, we deal only with the binary detection problem (the multiple alternative cases

are discussed in Chapter 4 ff.).

1.2.1.2 The Nature of the Hypotheses Here the received signal is a desired system input

during the interval available for observation of the mixture of signal and noise. Noise

(homogeneous—Hom-Stat stationary or nonstationary inhomogeneous — non-Hom-Stat)

is an undesired input, considered to enter the system independently4 of the signal and to

affect each observation according to an appropriate schemewhereby the two are combined.5

The class of all possible (desired) system inputs is called the signal class and is conveniently

represented as an abstract space (signal space) in which each point corresponds to an

individual received signal.

A hypothesis, which asserts the presence of a single signal at the input is termed a simple

hypothesis. A class (or composite) hypothesis, on the other hand, asserts the presence at

the input of an unspecified member of a specified subclass of signals; that is, it reads

“some member of subclass k (it does not matter which member) is present at the input.”

Such a subclass is called a hypothesis class. Hypothesis classes may or may not overlap

(cf. Fig. 1.1e and f).

Usually, one hypothesis in detection asserts the presence of noise alone (or the absence of

any signal) and is termed the null hypothesis. In binary detection, the other hypothesis is

called thealternative. If the alternative is a classhypothesis and the class includes all nonzero

signals involved in the problem, it is termed a one-sided alternative. It is a simple alternative

if there is but one nonzero signal in the entire signal space (which signal must therefore

contain nonrandom parameters only). Figure 1.1 illustrates some typical situations. In each

case, the class of all possible system inputs is represented by signal space W.

The hypothesis classes are enclosed by dashed lines and denoted as WðkÞ, where the

subscript refers to the hypothesis: that is, thekth hypothesis states that the signal is amember

of WðkÞ, or, symbolically, Hk : S«WðkÞ. In Fig. 1.1a and b are shown two binary cases

corresponding to the simple alternative (Wð1Þ contains one point) and the one-sided

alternative (Wð1Þ contains all nonzero system inputs). The latter would occur, for example,

if all signals in abinarydetectionproblemwere the sameexcept for a randomamplitude scale

factor, governed by, say, a Gaussian distribution. Figure 1.1c and d shows multiple

hypothesis situations where the hypothesis classes do not overlap, while Fig. 1.1e and f

represents situations where overlapping can occur, in (e) with single-point classes and in (f)

when the classes are one - sided or composite. Many different combinations can be

constructed, depending on the actual problems at hand. In the present treatment, we shall

confineour attention to the nonoverlapping cases, although the general approach is in noway

restricted by our so doing. [But see for example, Section 1.10.2 ff.]

4 In most applications, but, of course, scattered radiation is signal dependent (cf. Chapters 7 and 8 ff.).
5 There can be noiselike signals also, but these are not to be confused with the noise background. It is frequently

convenient to speak of “noise alone” at the input, and this is to be interpreted as “no signal of any kind” present. In

physical systems, which do not, of course, use ideal (i.e., noise-free) elements, noise may be introduced at various

points in the system, so that caremust be taken in accounting for themanner inwhich signal and noise are combined.
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1.2.1.3 The Nature of the Data and Their Processing The observations made on the

mixture of signal and noise during the observation period may consist of a discrete set of

values (discrete or digital sampling) or may include a continuum of values throughout the

interval (continuous, or analogue sampling) (cf. Fig. 1.2). Whether one procedure or the

other is used is a datum of the problem. In radar, for example, detection may (to a first

approximation) be based on a discrete set of successive observations, while, in certain

communication cases, a continuous-wave signal may be sampled continuously.

Similarly, it is a datum of the problem whether or not the observation interval, that is, the

interval overwhich the reception systemcan store the data for analysis, is fixedor variable. In

the latter case, one can consider sequential detection. A sequential test proceeds in steps,

deciding at each stage either to terminate the test or to postpone termination and repeat the

test with additional data. In applications of decision theory, it turns out that the analysis

divides conveniently at the choice between the sequential and nonsequential. The theory of

each type is complete in a certain sense, and additional restrictions on the tests may not be

imposedwithout compromising this completeness. It is, of course, true that since the class of

sequential tests includes nonsequential tests as a special subclass, a higher grade of

performance may be expected, on the average, under the wider assumption [8, 9].

1.2.1.4 The Signal and Noise Statistics The nature of these quantities is clearly of

central importance, as it is upon them that specific calculations of performance depend. In

general, individual sample values cannot be treated as statistically independent, and this

inherent correlation between the sample values over the observation period, in both the

continuous and discrete cases, is an essential feature of the problem.

We begin first with temporal waveforms, extending this signal class presently to space–

time signals, in Section 1.3.1 ff. Temporal signals may be described in quite general terms

involving both random and deterministic parameters. Thus, we write S tð Þ ¼ S t; «; a0; uð Þ.
Here, « is an epoch, or time interval, measured between some selected point in the “history”

of the signal S and, say, the beginning of the observation period t1; t1 þ Tð Þ, relating the

observer’s to the signal’s timescale, as indicated in Fig. 1.2; a20 is a scale factor, measuring

(relative) intensity of the signal with respect to the noise background; and u denotes all other
descriptive parameters, such as pulse duration, period, and so on, which may be needed to

specify the signal; S itself gives the “shape,” or functional form, here of the wave in time.

No restriction is placed on the received signal other than that it have finite energy in the

observation interval. It may be entirely random, partly random (e.g., a “square wave” with

random durations), or entirely causal or deterministic [e.g., a sinusoid, or a more complex

T
t

S(t)

S(tn)

ε

tn
t1 t1 T

Continuous
sampling
Discrete
sampling

tn

FIGURE 1.2 A temporal signal waveform, showing discrete and continuous time sampling, the

epoch «, and the observation period, T.
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structure that is nevertheless uniquely specified by SðtÞ]. Signals for which the epoch «
assumes a fixed value are said to be coherent (with respect to the observer), while if « is a
random variable, such signals are called incoherent. Coherent signals may have random

parameters and thus belong to subclasses ofW containing more than one member. Coherent

signals corresponding to subclasses containing but a single member will be called

completely coherent. From these remarks, it is clear that an incoherent signal cannot belong

to such anelementary class.Thedescriptionof thenoise is necessarily statistical, andherewe

distinguish between noise belonging to stationary and nonstationary processes [10, 11].

Generalizations of the noise structure to include partially deterministic waves offer no

conceptual difficulties.

1.2.2 Types of Extraction

We use the term extraction here to describe a reception process that calls for an estimate of

the received signal itself or one or more of its descriptive parameters.

Signal extraction, like detection, is a problem that in other areas has received

considerable attention from statisticians and has been known under the name of parameter

estimation. A certain terminology has become traditional in the field, which we shall

mention presently. We can classify extraction problems under three headings: the nature

of the estimate, the nature of the data processing, and the statistics of signal and noise.

Much of what can be said under these headings has already been mentioned above. A few

more comments may be helpful.

Information about the signal may be available in either of two forms: it may be given as

an elementary random process in time, defined by the usual hierarchy ofmultidimensional

distribution functions [12] or it may be a known function of time, containing one or more

random parameters with specified distributions. In the latter case, the random parameters

may be time independent, or, more generally, they may be themselves random processes

(e.g., a noise-modulated sine wave). Clearly there is, as in detection, a wide variety of

possible situations. They may be conveniently classified as follows:

1.2.2.1 The Nature of the Estimate A point estimate6 is a decision that the signal or one

ormore of its parameters have a definitevalue. An interval estimate6 is a decision that such a

value lies within a certain interval with a given probability. Among point estimates, it is

useful to make a further distinction between one-dimensional and multidimensional

estimates. An illustration of the former is the estimate of an amplitude scale factor

constant throughout the interval, while an estimate of the signal itself throughout the

observation period is an example of the latter.

1.2.2.2 The Nature of the Data Processing When the value of a time-varying quantity

XðtÞ, (1.1.1b) at a particular instant is being estimated, the relationship between the time tl
for which the estimate is valid and the times at which data are collected becomes important

(cf. Fig. 1.3). If tl coincides with one of the sampling instants, the estimation process is

termed simple estimation, or simple extraction. If, on the other hand, tl does not coincide

with any sampling instant, the process is called interpolation, or smoothing, when tl lies

within the observation interval t1; t1 þ Tð Þ and extrapolation, or prediction, when tl lies

outside t1; t1 þ Tð Þ. Systems of these types may estimate the value of the signal itself or

6 See Cram�er [4] op. cit., for a further discussion of conventional applications.
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alternatively that of a time-varying signal parameter or some functional of the signal, such as

its derivative or integral.

Frequently, a requirement of linearity may be imposed on the optimum system (which is

otherwise almost always nonlinear), so that its operations may be performed by a linear

network, or sometimes certain specific classes of nonlinearitymay be allowed.An important

question, then, is the extent to which performance is degraded by such constraints.

1.2.2.3 The Signal andNoise Statistics As indetection, thefinite sample uponwhich the

estimate is based may be discrete or continuous, correlated or uncorrelated, and the random

processes stationary or nonstationary, ergodic or nonergodic. In a similarway,wemay speak

of coherent and incoherent extraction according towhether the received signal’s epoch « is
known exactly or is a random variable. The signals themselves may be structurally

determinate, that is, the functions S have definite analytic forms; or they may be

structurally indeterminate, when the S are described only in terms of a probability

distribution. A sinusoid is a simple example of the former, while a purely random

function is typical of the latter. The case where the signal is known completely does not

arise in extraction.

1.2.3 Other Reception Problems

Reception itself may require a combination of detection and extraction operations. Extrac-

tion presupposes the presence of a signal at the input, and sometimes this cannot be assumed.

Wemay then performdetection and extraction simultaneously and judge the acceptability of

the estimate according to the outcome of the detection process. The problem here is that

estimation is performed under uncertainty as to the signal’s presence in the received data,

which in turn leads to biased estimates that must be suitably accounted for. The analytic

results for this new situation are developed and illustrated in detail in Chapters 5 and 6

following. The procedure is schematically illustrated in Figure 1.4, including possible

coupling between the detector and extractor.

In our reception problems here, the system designer usually has little control over the

received signal, since the medium, embodied in T̂
ðNÞ
T , is specified a priori. The present

definition of the problem states that each possible signal is prescribed, together with its

probability of occurrence, and the designer cannot change these data. However, a different

strategic situation confronts the designer of a system for transmittingmessages frompoint to

point through a noisy channel, since he is then permitted to control the way in which he

matches the signal to the channel. The encoding process ðT̂eÞ, Fig. 1.1 is accordingly

concernedwithfindingwhat class of signal ismost effective against channel noise ðT̂ðNÞ
M Þ and

T

ttλ tn= tλtλ≠ tn
tλt1 t1+ T

X(t)

(Extrapolation) (Simple
estimation) (Interpolation)

Prediction
(extrapolation)

tn

FIGURE 1.3 Simple estimation, interpolation (smoothing), and extrapolation (prediction).
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how best to represent messages by such signals (Sections 6.1, 6.5.5 [1]). It is not directly

a reception problem, except in the more general situation mentioned earlier (cf. also

Section 23.2 [1]), where simultaneous adjustment of the transmission and reception

operations T̂
ðNÞ
T ; T̂

ðNÞ
R is allowed. Decoding T̂d

� �
, of course, is a special form of reception

in which the nature of the signals and their distributions are intimately related to the noise

characteristics. Moreover, for the finite samples and finite delays available in practice, this

is always a nontrivial problem, since it is impossible in physical cases7 to extract messages

(in finite time) from a noisy channel without the possibility of error.

1.3 THE RECEPTION SITUATION IN GENERAL TERMS

Let us now consider the main elements of a general reception problem.We have pointed out

earlier that the reception problem can be formulated as a decision problem and that

consequently certain information must be available concerning the statistics of signal and

noise.We have also indicated that some assumptions are necessary concerning the nature of

the data and of the sampling interval and procedures. Finally,wemust prescribe a criterion of

excellence by which to select an optimum system and must specify the set of alternatives

among the decisions to be made.

In our present formulation, we shall make certain assumptions concerning these ele-

ments. For definiteness, these assumptions will not be the most general, but they will be

sufficiently unrestrictive to exhibit the generality of the approach. Later, in Section 1.4.3, we

shall discuss the reasoning by which some of these restrictions are removed.

1.3.1 Assumptions: Space–Time Sampling

Concerning the statistics of signal and noise, we shall assume for the present exposition that

both are known a priori and aswell as the discretely sampled received dataX. (In subsequent

chapters we shall consider various techniques for handling the problem of unknown or

unavailable priors.)

We further extend the sampling process here to space as well as time, since the array

operators T̂AR and T̂AT, cf. (1.1.1) et seq. sample the data field established in the medium by

the signal and noise sources. We further assume that the sampling intervals, or sample size,

in time are fixed and of finite duration T and similarly in space, that the array or aperture size

is likewise finite. Thus, in time n ¼ 1; . . . ;N data elements can be acquired, at each of

Detector

Extractor

H1 “yes”: (S and N)
or

H0 “no”: (N only)

Estimate of
S, a0, ε, θ  

Accept

Reject

X(t)

FIGURE 1.4 Reception involving joint signal detection and extraction.

7 Strictly speaking, there is always some noise, although in certain limiting situations thismaybe avery small effect

and hence to an excellent approximation ignorable vis-à-vis the signal.
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m ¼ 1; . . . ; M spatial points8. Accordingly, we obtain a total of J ¼ MN data components

in the received space–time sample.

We employ the following component designations: j ¼ mn ¼ ðspace� timeÞ, so

that j ¼ 11; 12; . . . ; 1N represents the N time samples at spatial point 1; j ¼ 21;
22; 23; . . . ; 2N similarly denotes the N time samples at spatial point 2, and so on. Thus,

j is a double indexnumeric, obeying the convention that thefirst index (m) refers to the spatial

point in question while the second (n) indicates the nth time sample point in T. Specifically,

we write Xj¼mn ¼ X rm; tnð Þ, Sj ¼ S rm; tnð Þ, Nj ¼ N rm; tnð Þ, respectively for the received

data X, the received signal S, and noise N, at point r ¼ rm in space and at time t ¼ tn
(see 1.1.1). Furthermore, it is sometimes convenient to introduce a single index numeric, k.

Thus, we write for j and k the following equivalent numbering systems:

j

k

� �¼
¼

1; 1
1

� �
;
;

1; 2
2

� �
; :::;
; :::;

ð1;NÞ
N

� �
;
;

2; 1
N þ 1

� �
;
;

2; 2
N þ 2

� �
; :::;
; :::;

2;N
2N

� �
; :::;
; :::;

M; 1
ðM � 1ÞN þ 1

� �
;
;

M; 2
ðM � 1ÞN þ 2

� �
; :::;
; :::;

M;N
MN

� �
: ð1:3:1Þ

The double index j is convenient when we need explicitly to distinguish the spatial from the

temporal portion of the received field, in processing. It is also useful when we impose the

constraint of space and time separability on operations at the receiver, such as array or

aperture design, independent of optimization of the temporal processing, a usual although

approximate procedure in practice. Of course, j may also be treated as a single index if we

order it according to the equivalent scheme (1.3.1), that is, let j ! k. This alternative form is

often requiredwhen quantitative, that is, numerical, results are desired. The formal structure

of the sampling process itself is described in detail at the beginning of Section 1.6.1,

cf. Eq. (1.6.2a).

At this point wemake no special assumption concerning the criterion of optimality, but

we do assume, for the sake of simplicity, that the decision to be made by the system is to

select among a finite number L of alternatives. Figure 1.5a and b illustrates the problem. A

set of decisions g are to be made about a received signal S, based on dataX, in accordance

FJ (X S)

X

Observation
space

Decision
rule

Decision
space

δ (γ  X)

σ (S)

λ(γ  X)

(a)

Γ ∆

Ω

Signal
space

Noise
space

(b)

WJ (N)

S X= S⊗
⊗

N

N

FIGURE1.5 The reception situation. (a) Observation and decision space; (b) signal space and noise

space. � indicates a combination, not necessarily additive, of received signal and noise.

8 The spatiotemporal structure of both discrete element arrays and continuous apertures are discussed in

“Chapter 8–9”. See [13, 14].
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with a decision rule d gjXð Þ, as shown at Fig. 1.5a. Here g ¼ g1; . . . ; gLð Þ, S ¼ Sj
� �

;

X ¼ Xj

� �
, and N ¼ Nj

� �
are vectors, and the subscripts on the components of S and X

are ordered in time so that Smn ¼ S rm; tnð Þ; Xmn ¼ X rm; tnð Þ, and so on, with

0 � t1 � t2 . . . � tn � . . . � TN � T : (Ordering the spatial indexes is arbitrary, essen-

tially a convenience suggested by the structure of the array T̂RT

� �
sampling the input field

a, cf. (1.1.1b) and Fig. 1.1.) Thus, the components of X form the a posteriori data of the

sample upon which some decision gl is to be made.

Each of the quantities received signal S, noise N, received data X, decisions g can be

represented by a point in an abstract space of the appropriate dimensionality. The occurrence

of particular values is governed in each instance by an appropriate probability density

function. These aremultidimensional density functions, which are to be considered discrete

or continuous depending on the discrete or continuous nature of the spaces and of

corresponding dimensionality.

Here, we introduce s Sð Þ,WJ Nð Þ; and FJ X Sj Þð , respectively, as the probability–density

functions for the received signal, for noise, and for the data X when S is given. (Note that

FJ X 0j Þ ¼ WJð (X, by definition.)) As mentioned earlier, the possible (received) signals S

maybe represented as points in a spaceWoverwhich theaprioridistributions Sð Þ is defined.
Information about the signal and its distribution may be available in either of two forms: it

may be given directly as an elementary random process, that is, the distribution s Sð Þ is
immediately available, as a datum of the problem (stationary, Gaussian, nonstationary, non-

Gaussian, etc.). Or, as is more common, the signal S is a known function of one or more

random parameters u ¼ u1; . . . ; uM̂
� �

, and it is the distribution9 s uð Þ of these parameters

which is given rather than s Sð Þ itself. In fact, the reception problem may require decisions

about the parameters instead of the signals.

We can also raise the question of what to do when s Sð Þ is not known beforehand (or

perhaps only partially known), contrary to our assumption here. Such situations are in fact

encountered in practice, where it is considered risky or otherwise unreasonable to assume

that complete knowledge of s Sð Þ is available. This question is a difficult one, and a

considerable portion of decision theory is devoted to providing a reasonable answer to it.

[It is taken up initially in Sections 1.4.3 and 1.4.4 as well as discussed further in Section 23.4

of Ref. [1], and it is shown that even in this case the above formulation of the reception

problem can be retained in its essentials.]

We can further compound the complexity of the reception problem and inquire intowhat

to do when not only s Sð Þ, but also WJðNÞ, the distribution of the noise, is partially or

completely unknown a priori. In such a case, specification of S is not enough to determine

FJ X Sj Þð . In statistical terminologyFJ X Sj Þð is then said to belong to a nonparametric family.

Error probabilities, associated with possible incorrect decisions, cannot then be computed

directly and the system can no longer be evaluated in such terms, so that the question of

optimization is reopened. Nonparametric inference from the general point of view of

decision theory has been discussed previously by several investigators [15–17]10 butwill not

be considered further here.

The discussion of possible generalizations, which has so far dealt with the decision space

and with the statistics of signal and noise, can also be extended to one other topic, that is, the

method of data acquisition. In the line of reasoning that led to the above formulation of the

9 See Cramér [4] op. cit.
10 See Gibson and Melsa [18] for more recent telecommunication applications.
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reception problem, we assumed for convenience that the data were sampled discretely and

that the sampling interval was fixed and finite. Actually, neither of these assumptions is

strictly necessary. The sampling process can be continuous. Cases of this type are discussed

in Chapters 19–23 of Ref. [1].

We observe also that the length of the sampling interval need not be kept fixed. In fact, the

idea of a variable sampling interval leads to the notion of sequential decisions. A reception

system that is based on sequential principles proceeds in steps, deciding, after each sample of

data has been processed, whether or not to come to a conclusion or whether to extend the

sampling interval and to take another reading. The class of sequential reception systems is

broad and contains the nonsequential type discussed so far as a subclass.11

1.3.2 The Decision Rule

We begin by observing that the decision rule is represented as a probability. This may seem

somewhat surprising. A reception system operating according to such a decision rulewould

not function like a conventional receiver,whichgenerates a certain anddefiniteoutputg from
a given set of inputs X. Rather, it would contain a battery of chance mechanisms of a well-

specifiedcharacter.Agivenset of inputswould actuate the correspondingmechanism,which

in turn would generate one of the L possible outputs g with a certain probability, each

mechanism in general with a different probability. Arrangements such as this will probably

appearquite artificial but theyare necessary concepts, at least in principle, for it canbe shown

that devices with chancemechanisms as their outputs can be superior in performance, under

certain circumstances, to the conventional ones.

Accordingly, d gjXð Þ is the conditional probability of deciding g when X is given. More

specifically, since the space D is here assumed to contain a finite number of decisions g, the
decision rule d gjXð Þ assigns a probability between (or equal to) 0 and 1 to each decision

gl ðl ¼ 1; . . . ; LÞ, the distribution depending on X. In most cases of practical interest, d is
either 0 or 1 for each X and g in this case and is called a nonrandomized decision rule. The

opposite case, a randomized decision rule, is not excluded from this general formulation,

although, as we shall see in subsequent applications, the decision rules reduce to the

nonrandom case for all the systems treated here.

We note now that the key feature of the decision situation is that d gjXð Þ is a rule for

making the decisions g from a posteriori data X alone, that is, without knowledge of,

or dependence upon, the particular S that results in the dataX. The a priori knowledge of the

signal class and signal distribution, of course, is built into the optimum-decision rule, but the

probability of decidingg, givenX, is independent of theparticularS; that is,g is algebraically
independent of S, although statistically dependent upon it. This may be expressed as

d gjXð Þ ¼ d gjX; Sð Þ; ð1:3:1Þ

which states that the probability (density) of deciding g, given X, is the same as the

probability density of g, given both X and S. Thus, the decision rule d gjXð Þ is the

mathematical embodiment of the physical system used to process the data and yield

decisions.

11 Earlierwork on sequential detection is represented byRef. [8] and [9] here, andmore fully byRefs. [2, 32, 33, 36,

38–40] of Chapter 20 of [1]. For a recent, comprehensive treatment, see Chapter 9 of Helstrom [14].
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Both fixed and sequential procedures are included in this formulation, and in both cases

we deal with terminal decisions. We remark also that theWald theory of sequential tests [8]

introduces a further degree of freedom over the fixed-sample cases through the adoption of a

secondcost function, the “cost of experimentation” [8, 9]. In thegeneral theory,weare free to

limit the class of decision rules, in advance, to either of the above types without compromis-

ing the completeness of the theory of either type.

1.3.3 The Decision Problem

In order to give definite structure to the decision process, we must prescribe a criterion of

excellence, in addition to a priori probabilities sðSÞ and WJðNÞ. By this we mean the

following: The decisions that are to be made by the reception systemmust be based on the

given data X, which, because of their contamination with noise, constitute only incom-

plete clues to the received signal S. And, of course, as we have already noted at the

beginning of the chapter, the received signal S itself is already modified by the medium

through which it has been propagated, so that Sin 6¼ S, cf. Eqs. (1.1.1a–1.1.1c). Therefore,
whatever the decision rule d g Xj Þð that is finally adopted, the decisions to which it leads

cannot always be correct (except possibly in the unrealizable limit T!1). Thus, it is

clear that whenever there is a nonzero probability of error some sort of value judgment is

implied; in fact, the former always implies (1) a decision process and (2) a numerical cost

assignment of some kind to the possible decisions. The units in which such a cost, or

value, is measured are essentially irrelevant, but the relative amounts associated with the

possible decisions are not.

In order to formulate the decision problem, a lossF ðS; gÞis assigned to each combination

of decisions g and signal S (the latter selecting a particular distribution function of X, in

accordance with some prior judgment of the relative importance of the various correct and

incorrect decisions. Each decision rule may then be rated by adopting an evaluation or risk

function EðFÞ (for example, the mathematical expectation of loss), which takes into

consideration both the probabilities of correct and incorrect decisions and the losses

associated with them. There are, of course, many ways of assigning loss, and hence many

different risk functions. One example, which has been very common in statistics and in

communication theory, is the squared-error loss. This type of loss is used in extraction

problems in which the decision to be rendered is an estimation of a signal after it has been

contaminated with noise. In this case, the loss is taken to be proportional to the square of the

error in this estimation. Other examples are discussed in chapters 3–7.

We may now state the reception problem in the following general terms:

Given the family of distribution functions FJ X Sj Þð , the a priori signal probability

distribution sðSÞ, the class of possible decisions, and the loss and evaluation functions

F and EðFÞ, the problem is to determine the best rule d g Xj Þð for using the data to make

decisions.

In arriving at this statement we have introduced a number of somewhat restrictive

assumptions. We now give a brief heuristic discussion of what can be done to remove them.

To beginwith, the statement of the reception problem in these terms is actuallymore general

than the argument that led up to it, a fact that requires some comment. A quick review of that

argument shows, on the one hand, that the restriction of the decisionsg to a finite numberLof

alternatives g ¼ g1; g2; . . . ; gLð Þ is irrelevant and that a denumerably infinite number may

equallywell be used. In fact, the extension to a continuumof possible alternatives is simply a

matter of reinterpretation. The decision rule d g Xj Þð that was introduced above as a discrete
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probability distribution must in this case be interpreted as a probability–density functional;

that is, d g Xj Þ dgð is the probability that g lies between g and gþ dg, givenX. To represent
a nonrandomized decision rule in this case, we interpret d g Xj Þð as a Dirac d-function
[see Eq. (1.4.14) ff., for example]. Usually, the family of distribution functions is not given

directly andmust be found fromagivennoise distributionWJðNÞ and themodeof combining

signal and noise.

1.3.4 The Generic Similarity of Detection and Extraction

Figure 1.5 emphasizes that decision rules are essentially transformations that map observa-

tion space into decision space. In detection, each point of observation space G (or X) is

mapped into the various points constituting the space D of terminal decisions. For example,

the simplest form of binary detection is the same as dividing G into two regions, one

corresponding to “no signal” and the other to “signal and noise,” and carrying out the

operation of decision in one step, since only a single alternative is involved. The binary

detection problem is then the problem of how best to make this division. The extension to

multiple alternative detection situations is made in analogous fashion: one has now three or

more alternative divisions of G, with a corresponding set of decisions leading to a final

decision [7]. Similarly, in extraction each point of G is mapped into a point of the space D
of terminal decisions, which in this instance has the same structure as the signal spaceW.

If the dimensionality of D is smaller than that of G (as is usually the case in estimating

signal parameters), the transformation is “irreversible”; that is, many points of G go into

a single point of D. In this way, extraction may also be thought of as a division of G into

regions, so that, basically, detection and extraction have this common and generic

feature and are thus not ultimately different operations. It is merely necessary to group

the points of D corresponding to S 6¼ 0 into a single class labeled “signal and noise” to

transform an extractor into a detector. Conversely, detection systems may be regarded as

extractors followed by a threshold device that separates, say, S ¼ 0 from S 6¼ 0.

However, a system optimized for the one function may not necessarily be optimized

for the other, and it is in this sense, that we consider detection and extraction as separate

problems for analysis.

1.4 SYSTEM EVALUATION

In this section,we shall apply the concepts discussed above to a description of the problemof

evaluating system performance, including that of both optimum and suboptimum types. It is

necessary first to establish some reasonable method of evaluation, after which a number of

criteria of excellence may be postulated, with respect to which optimization may then be

specifically defined.

1.4.1 Evaluation Functions

Asmentioned in Section 1.3.3,F ðS; gÞ is a generalized loss function, adopted in advance of
any optimization procedure, which assigns a loss, or cost, to every combination of system

input and decision (system output) in a way which may or may not depend on the system’s

operation. Actual evaluation of system performance is now made as mentioned earlier,

provided that we adopt an evaluation function EðFÞ that takes into account all possible

SYSTEM EVALUATION 27



modes of system behavior and their relative frequencies of occurrence and assigns an over-

all loss rating to each system or decision rule. One obvious choice ofE is themathematical

expectation E, or average value, of F, and it is on this reasonable but arbitrary choicewhich
the present theory is based for the most part.12

At this point, it is convenient to define twodifferent loss ratings for a system, one ofwhich

is used to rate performance when the signal input is fixed and the other to take account of a

priori signal probabilities. For a given S, we have first:

The Conditional Loss Rating.13 L S; dð Þ of d is defined as the conditional expectation

of loss:

L S; dð Þ ¼ EXjS
	
F
�
S; g Xð Þ�
 ¼

ð

G
dX

ð

D
dgF S; gð ÞFJ Xð jSÞd gð jXÞ: ð1:4:1Þ

By this notation we include discrete as well as continuous spaces D; for the former, the

integral over D is to be interpreted as a sum and d g Xj Þð as a probability, rather than as a

probability density. (See the remarks at the end of Section 1.3.3.)

Actually, as will be seen in Section 1.4.4, the conditional loss rating is most significant

when the a priori probability sðSÞ is unknown. However, when sðSÞ is known, we use this
information to rate the system by averaging the loss over both the sample and the signal

distributions:

The Average Loss Rating. L s; dð Þ of d is defined as the (unconditional) expectation of
loss when the signal distribution is sðSÞ :

L s; dð Þ ¼ EXjS
	
F S; gð Þ
 ¼

ð

W
dS

ð

G
dX

ð

D
dg F S; gð Þs Sð ÞFJ Xð jSÞd gð jXÞ: ð1:4:2Þ

Some remarks are appropriate concerning the loss functionF. In the statistical literature,
F is usually a function that assigns to each combination of signal and decision a certain loss,

or cost, which is independent of d:

F1 ¼ C S; gð Þ: ð1:4:3Þ

In the present analysis, we restrict our discussion chiefly to systems whose performance is

rated according to simple loss functions14 of this nature. There exists a substantial body of

theory for this case, and certainvery general statements can bemade about optimumsystems

derived under this restriction (cf. Wald’s complete class theorem, admissibility [25], and so

on; see Section 1.5 ff.

12 Other linear or nonlinear operations for E are possible and should not be overlooked in subsequent general-

izations (see the comments in Section 1.5.4).
13 This quantity is called the a priori risk in Wald’s terminology [25].
14 We shall use the term risk, henceforth, as synonymous with this simple cost, or loss.

28 RECEPTION AS A STATISTICAL DECISION PROBLEM



We point out, however, that a more general type of loss function can be constructed. In

fact, one such function is suggested by information theory. For, if we let

F2 ¼ �log p S gj Þ;ð ð1:4:4Þ

where p S gj Þð is the a posteriori probability of S giveng, the average loss rating [Eq. (1.4.2)]
becomes the well-known equivocation of information theory [2, 26] (Section 6.5.2 of

Ref. [1]). This loss function can be interpreted as a measure of the “uncertainty” (or

“surprisal”) about S when g is known [26], (Section 6.2.1 of Ref. [1]). It is an example of a

more general type than the simple cost function [Eq. (1.4.3)]. For, unlike C S gj Þð , which

depends on S and g alone, Eq (1.4.4) depends also on the decision rule in use and cannot be

preassigned independently ofd. Loss functions likeEq. (1.4.4) aremoredifficult todealwith,

and some of the general statements (Section 1.5) that can be derived for Eq. (1.4.3) clearly do

not hold true for Eq. (1.4.4). In Chapter 22 of Ref. [1], however, it is shown that close

connections may exist between results based on the two types of loss function.

The conditional and average loss ratings of d may now be written, from Eqs. (1.4.1)–

(1.4.4), as

I. Conditional Risk:

r S; dð Þ ¼
ð

G
dXFJ Xð jSÞ

ð

D
dgC Sð jgÞd gð jXÞ: ð1:4:5Þ

II. Average Risk:

R s; dð Þ ¼ E
	
r S; dð Þ
 ¼

ð

W
r S; dð Þs Sð ÞdS; ð1:4:6aÞ

or

R s; dð Þ ¼
ð

W
s Sð ÞdS

ð

G
dXFJ Xð jSÞ

ð

D
dgC Sð jgÞd gð jXÞ: ð1:4:6bÞ

III. Conditional Information Loss:

h S; dð Þ ¼ �
ð

G
dXFJ Xð jSÞ

ð

D
dg
�
log p Sð jgÞ�d gð jXÞ: ð1:4:7Þ

IV. Average Information Loss:

H s; dð Þ ¼ E
	
h S; dð Þ
 ¼

ð

W
h S; dð Þs Sð ÞdS; ð1:4:8aÞ

or

H s; dð Þ ¼ �
ð

W
s Sð ÞdS

ð

G
dXFJ Xð jSÞ

ð

D
dg log p Sð jgÞ½ �d gð jXÞ: ð1:4:8bÞ
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The last of these is the well-known “equivocation” of information theory15 (cf. Sections

6.5.2 and 6.5.3 of Ref. [1].

As we have alreadymentioned in Section 1.1, S, when deterministic, is a function of a set

of random parameters16 u, and frequently it is the parameters u about which decisions are to
be made, rather than about S itself (see, e.g., Section 1.4.2). Similar to Eqs. (1.4.5) and

(1.4.6), the conditional and average risks for this situation may be expressed as17

r u; dð Þ ¼
ð

G
dXFJ Xð jS uð ÞÞ

ð

D
dgC uð jgÞd gð jXÞ; ð1:4:9Þ

and

R s; dð Þu ¼
ð

Wu

r u; dð Þs uð Þdu: ð1:4:10Þ

Here, of course, r u; dð Þ andR s; dð Þu are not necessarily the sameas rðs; dÞ;Rðs; dÞabove, nor
is the form of g either. Notice that the cost function CðujgÞ is usually a different function of
u from C SðuÞ; g½ � also. Considerable freedom of choice as to the particular conditional and

average risks is thus frequently available to the system analyst, although the appropriate

choice is often dictated by the problem in question. Finally, observe that rðS; dÞ and Rðs; dÞ
for decisions about S ¼ SðuÞ are still given byEqs. (1.4.5), (1.4.6) wheresðSÞdS is replaced
by its equivalent sðuÞdu in Eqs. (1.4.6a) and (1.4.6b), with a corresponding change from

W-space (for S) to Wu-space (for u) according to the transformations implied by S ¼ S uð Þ.
Similar remarks apply for the conditional and average information losses, Eqs. (1.4.7)

and (1.4.8), as well.

1.4.2 System Comparisons and Error Probabilities

The expressions (1.4.1) and (1.4.2) for the loss ratings can be put into another and oftenmore

revealing form, which exhibits directly the rôle of the error probabilities associated with the

various possible decisions. Let pðg SÞj be the conditional probability18 that the system in

questionmakes decisionsgwhen the signal isS and a decision rule dðgjXÞ is adopted, so that

p gð jSÞ ¼
ð

G
FJðXjSÞd gð jXÞdX: ð1:4:11Þ

Comparison with the conditional risk (1.4.5) shows that the latter may be written

r S; dð Þ ¼
ð

D
dgp gð jSÞC S; gð Þ; ð1:4:12Þ

15 Note that when S can assume a continuum of values (as is usually the case), we must replace the probability

p S gj Þð in Eq. (1.4.4) by the corresponding probability density w S gj Þð and include in Eqs. (1.4.7) and (1.4.8) the

absolute entropy (cf. Section 6.4.1 of Ref. [1]).
16 For simplicity, these are assumed to be time-invariant here; the generalization to include timevariations u ¼ u tð Þ
is straightforward.
17 Here and henceforth, unless otherwise indicated, we adopt the notational convention that the principal argument

of a function distinguishes that function fromother functions: thus,s Sð Þ 6¼ s uð Þ, p Xð Þ 6¼ p uð Þ, and so on; however,
s S uð Þ½ � ¼ s Sð Þ and so on.
18 Or probability density, when g represents a continuum of decisions (as in extraction, cf. Chapter 5).
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which is simply the sum of the costs associated with all possible decisions for the given

S, weighted according to their probability of occurrence. In a similar way, we can obtain

the probability (density) of the decisions g by averaging Eq. (1.4.11) with respect to S,

for example,

p gð Þ ¼ p gð jSh ÞiS ¼
ð

W
s Sð ÞdS

ð

G
dXFj Xð jSÞd gð jXÞ: ð1:4:13Þ

Since we shall be concerned in what follows almost exclusively with nonrandomized

decision rules, particularly in applications, we see that d g Xj Þð may be expressed as

d g Xj Þ ¼ d g� gs Xð Þ½ �;ð ð1:4:14Þ

where the d of the right-hand member is now the Dirac d-function. Here it is essential to
distinguish between the decisions g and the functional operation gsðXÞ performed on the

data by the system. The subscript s reminds us that this operation depends in general on

signal statistics. With Eq. (1.4.14), the probability (density) of decisions g on condition S,

which may represent correct or incorrect decisions, can be written

p gð jSÞ ¼
ð

G
FJ Xð jSÞd g� gs Xð Þ½ �dX ¼

ð1

�1
� � �
ð
ei
~jg dj

ð2pÞL
ð

G
FJðXjSÞe�i~jgsðXÞdX;

ð1:4:15Þ

(cf. [1], Section 17.2.1). This reveals the explicit system operation. Equation (1.4.15) in

particular provides a direct way of calculating p g Sj Þð for any system once its system

structuregs Xð Þ is known.As for Eq. (1.4.13), we can also obtain the probability density ofg
itself by averaging pðg SÞj [Eq. (1.4.15)] over S.

Comparison of explicit decision systems now follows directly. For example, this may

be done by determiningwhich has the smallest average loss rating L s; dð Þ, which, in terms

of average risk Eq. (1.4.6a), involves the comparison of R s; d1ð Þ and R s; d2ð Þ for two
systems with system functions gs Xð Þ1 and gs Xð Þ2 [Eq. (1.4.14)]. In a similar fashion, one

can compare also H s; d1ð Þ and H s; d2ð Þ [Eq. (1.4.8)]. Note that not only optimum but

suboptimum systems may be so handled once gs Xð Þ is specified, so that now one has a

possible quantitative method of deciding in practical situations between “good,” “bad,”

“fair,” “best,” and so on, where the comparisons are consistently made within a common

criterion and where the available information can be incorporated in ways appropriate to

each system under study. We emphasize that this consistent framework for system

comparison is one of the most important practical features of the theory, along with its

ability to indicate the explicit structure of optimumand suboptimum systems, embodied in

the decision rule d g Xj Þð .

1.4.3 Optimization: Bayes Systems

In Section 1.4.1, we have seen how average and conditional loss ratings may be assigned to

any system, once the evaluation and cost functions have been selected. We now definewhat

we mean by an optimum decision system. We state a definition first for the case where
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complete knowledge of the a priori signal probabilities sðSÞ is assumed and in which, from

what has been said above, evaluation from the point of view of the average loss Rðs; dÞ is
most appropriate. Consider, then, that one system is “better” than another if its average loss

rating is smaller for the same application (and criterion), and that the “best,” or optimum,

system is the onewith the smallest average loss rating. (Thepreassigned costs, of course, are

the same.) We call this optimum system a Bayes system:

A Bayes system obeys a Bayes decision rule d*; where d* is
a decision rule whose average loss rating L is smallest for a

given a priori distribution s:

ð1:4:16Þ

For the risk and information criteria of Eqs. (1.4.6a) and (1.4.8a), this becomes

R* ¼ min
d

R s; dð Þ ¼ R s; d*
� �

: Bayes risk; ð1:4:16aÞ

and

H* ¼ min
d

H s; dð Þ ¼ H s; d*
� �

: Bayes equivocation: ð1:4:16bÞ

The formerminimizes the average risk (or cost), while the latterminimizes the equivocation.

Bayes decision rules (for thegivenF) formaBayes class, eachmember ofwhich corresponds

to a different a priori distribution19 sðSÞ.

1.4.4 Optimization: Minimax Systems

When the a priori signal probabilities are not known or are only incompletely given,

definition of the optimum system is still open. A possible criterion for optimization in such

cases is provided by the Minimax decision rule d*M , or Bayes rule associated with the

conditional risk rðS; dÞ. As indicated by our notation, there is one conditional risk figure

attached to each possible signal S. In general, these risks will be different for different

signals, and there will be a minimum among them, say rðS; dÞmax. The Minimax rule is,

roughly speaking, the decision rule that reduces this maximum as far as possible. More

precisely:

The Minimax decision rule d*M is the rule for which the

maximum conditional loss rating LðS;dÞmax; as the signal S ranges

over all possible values; is not greater than the maximum conditional

loss rating of any other decision rule d:

ð1:4:17Þ

Thus, in terms of conditional risk r, or conditional information loss h, we may write

max
S

rðS; d*MÞ ¼ max
S

min
d

rðS; dÞ � max
S

rðS; dÞ;
max

S

hðS; d*MÞ ¼ max
S

min
d

hðS; dÞ � max
S

hðS; dÞ: ð1:4:17bÞ

19 Of course, it is possible that different sðsÞ may lead to identical decision rules, but aside from this possible

ambiguitywe observe that a Bayes criterion is entirely appropriatewhensðsÞ is known, since it makes full use of all

available information.
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Wald has shown20 under certain rather broad conditions (see Sections 1.5.2 and 1.5.3 ff.) that

maxSmind rðS; dÞ ¼ mind maxS rðS; dÞ for the risk (i.e., simple cost) formulations, from

which the significance of the term “Minimax” becomes apparent. Whether or not a

corresponding result holds for the information-loss formulation remains to be established.

Wemay also express theMinimax decision process in terms of the resulting average risk.

From Section 1.5.3 ff., Theorems 1, 4, 5, 9, we have the equivalent Minimax formulation

R*
Mðs0; d

*
MÞ ¼ max

s

R*ðs; d*Þ ¼ max
s

min
d

Rðs; dÞ
¼ min

d

max
s

Rðs; dÞ
�

¼ Minimax average risk21

ð1:4:18Þ

this last from Eq. (1.4.16a) and Section 1.5.2 ff., definition 7a. Thus, the Minimax average

risk is the largest of all theBayes risks, consideredover the class ofapriori signal distribution

fsðSÞg. The distribution s0ð¼ s*
MÞ for which this occurs is called the least favorable

distribution. Accordingly, the Minimax decision rule d*M [obtained by adjusting the Bayes

rule d* as s is varied, cf. Eq. (1.4.18)] is one which gives us the least favorable, or “worst,”

of all Bayes — that is, “best” — systems. Geometrically, the Minimax situation of

s!s0; d! d*M; Rðs; dÞ!R*
Mðs0; d

*
MÞ is represented by a saddle point of the average-

risk surface over the ðs; dÞ plane, as Fig. 1.6 indicates. The existence of s0; d
*
M and this

saddle point follows from the appropriate theorems (cf. Section 1.5.3).

The Minimax decision rule has been the subject of much study and also of some adverse

criticism. It has been argued that it is often too conservative to be very useful. However, it is

also true that there are situations in which the Minimax rule is unquestionably an excellent

choice. Figure 1.7a illustrates these remarks.

Herewe have presented the casewhere themaximum conditional loss rating of all other

decision rules d1; d2; . . . exceeds that for d
*
M and where even most of the minimum loss

ratings are also noticeably larger than the corresponding minimum for d*M. Sometimes,

however, we may have the situation shown in Fig. 1.7b, where d*M leads to excessive loss

ratings, except for a comparatively narrow range of values of S. In the latter case, d*M is

perhaps too conservative, and a more acceptable decision rule might be sought.22 The

Minimax procedure does, at any rate, have the advantage of guarding against the worst

case, but also may be too cautious for the more probable states of the input to the system.

When the costs are preassigned and immutable, the possible conservatism of Minimax

20 The minimax theorem was first introduced and proved by Von Neumann, in an early paper on the theory of

games [27]. For a further account, see Von Neumann and Morgenstern [28], Section 17.6, p. 154; also Ref. [5].
21 This is the average risk associated with the Minimax decision rule.
22 These Minimax risk curves have a single distinct maximum. The least favorable a priori distribution s0 is this

case consequently concentrates all of its probability mass at the signal value corresponding to the maximum

conditional risk (a d-function distribution for continuous signal space), since by definition s0 must maximize

Bayes (average) risk. Existence of a least favorable distribution is here ensured by our assumptions A to D of

Section 1.5.3, which correspond toWald’s assumptions 3.1–3.7 [25]. Roughly speaking, the Minimax conditional

riskmust equal its maximumvalue for all signals towhich the least favorable distribution assigns a nonzero a priori

probability (seeWald’s theorems3.10 and 3.11). Thus, aMinimax conditional risk curvewith twodistinct and equal

maxima could have a corresponding s0 with probability concentrated at either of the two maxima or distributed

between them,while if onemaximumwere larger than the other, themasswould have to be concentrated only at the

larger, and so on. Or again, if s0 were nonzero over a finite interval, the corresponding Minimax conditional risk

would be constant over this range (but might take on other, smaller values outside).
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cannot be avoided without choosing another criterion.23 However, in many cases where

the actual values of the preassigned costs are left open to an a posteriori adjustment, it may

be possible by a more judicious cost assignment to modify d*M more along the lines of

Fig. 1.7a, where the “tails” of maxSrðS; d*MÞ are comparable to those of rðS; dÞ (all S), and
thus eliminate, at least in part, the conservative nature of the decision process.24

The Bayes decision rule makes the fullest use of a priori probabilities (when these are

known) and in a sense assumes the most favorable system outcome. The Minimax decision

rule, on the other hand,makes no use at all of these a priori probabilities (for the good reason

that they are not available to the observer) and in the same sense assumes the worst case [cf.

Eq. (1.4.18) and Fig. 1.7]. In practical cases, an important problem is to find d*M. No general
simple procedure is available, although d*M always exists in the risk formulation. From the

definitions of d* and d*M, however, it can be shown that a Bayes decision rule whose

r(S, δ )

max r (S, δ *
M) 

(δ *
M) 

(δ *
M) 

0

s

r(S, δ )

max r (S, δ *
M) 

s

(a)

SS' S'

δ 4 δδ 3 δ 2 δ 1

0

(b)

S

FIGURE 1.7 (a) An acceptable Minimax situation. (b) A Minimax situation that is possibly too

conservative.

R(σ, δ)

δ

(σ0,δ*
M)

0

σmax

σ δmin

R*
M

FIGURE 1.6 Average risk as a function of decision rule and a priori signal distribution, showing a

Minimax saddle point.

23 For example, the “Minimax regret” criterion or the Hurwicz criterion, and so on [29].
24 Hodges and Lehmann [30] have discussed some intermediate situations where sðsÞ is partially known on the

basis of previous experience. Also, see Section 1.5 ff.
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conditional loss rating L is the same for all signals is aMinimax rule (see Section 1.5.3 and

Theorem 7). Thus, if we can find a d* for which this is the case, we have also determined a

least favorable a priori distributions*
MðSÞ for this d* ¼ d*M

� �
, which follows from the above,

that is,

r S; d*
� �

or h S; d*
� �� � ¼ constant; all S: ð1:4:19Þ

Note that a non-Bayes rule whose conditional loss rating is constant for all S is not

necessarilyMinimax.When Eq. (1.4.19) holds, it furnishes a useful method for finding d*M
in each case.

1.5 A SUMMARY OF BASIC DEFINITIONS AND PRINCIPAL THEOREMS

We conclude this chapter now with a short summary of some of the principal results,

theorems, and so on which give decision theory its general scope and power in our present

application to communication problems. For proofs and further discussion, the reader is

referred to the appropriate sections of Wald [25] and other pertinent references.

1.5.1 Some General Properties of Optimum Decision Rules

The practical utility of an optimum procedure lies to a considerable extent in its uniqueness:

there is not a number of different reception systemswith the same optimal properties. For the

unique optimum, the problem of choosing the simplest (or least expensive) from the point of

view of design is automatically resolved. For this reason and for the central one of

optimization itself, it is important to know the properties of optimum decision rules and

when they may be expected to apply in physical systems. We state now two of the main

results on which subsequent applications are based:

1.5.1.1 Admissible Decision Rules We note, first, that the conditional loss rating of a

decision rule depends, of course, on the particular signal present at the input. One decision

rulemay have a smaller rating than another for some signals and a larger one for others. If the

conditional loss rating of d1 never exceeds that of d2 for any value of S, and is actually less
than that of d2 for at least one S, then d1 is said to be uniformly better than d2. This leads,
accordingly, to the notion of admissibility:

A decision rule is admissible if no uniformly better one exists: ð1:5:1Þ

Observe that with this definition an admissible rule is not necessarily uniformly better than

any other; other rules can have smaller ratings at particular S (Fig. 1.7a). However, they

cannot be better for all S.

It follows, then, that, if a Bayes orMinimax rule is unique, it is admissible. The converse

is not true, since an admissible rule is not necessarily Bayes or Minimax. Accordingly, no

system that does not minimize the average risk (loss rating) can be uniformly better than a

Bayes system [for the same sðSÞ], and no system that does not minimize the maximum

conditional risk (loss rating) can be uniformly better than a Minimax system. Admissi-

bility is an important additional optimum property of unique Bayes andMinimax decision

systems.
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1.5.1.2 The Complete Class Theorem This is Wald’s fundamental theorem ([25],

Theorem (3.20)) concerning complete classes of decision rules. We say first that a class D

of decision rules is complete if, for any d not in D, we can find a d* in D such that d* is
uniformly better than d. If D contains no subclass which is complete, D is a minimal

complete class. Wald has shown that for the simple loss functions [Eqs. (1.4.3), (1.4.5),

(1.4.6)] the class of all admissible Bayes decision rules is a minimal complete class, under

a set of conditions that are certainly satisfied for most if not all physical situations

(cf. Sections 1.5.2 and 1.5.3 ff.). For the same set of conditions, anyMinimax decision rule

can be shown to be a Bayes rule with respect to a certain least favorable a priori

distribution s*
MðSÞ, and the existence of s*

MðSÞ, as well as of the Bayes andMinimax rules

themselves, is assured. The complete class theorem thus establishes an optimum property

of the Bayes class as a whole. To the author’s knowledge no complete class theorem has as

yet been demonstrated for the information loss ratings of Eqs. (1.4.7) and (1.4.8), nor have

the general conditions for the existence of Bayes and Minimax rules for such measures

been established. However, some results on the characterization of Bayes tests with this

measure, for detection, are given in Ref. [1], Chapter 22.

1.5.2 Definitions25

It is assumed that decisions g are to bemade about a signalS, based on observationsXwhose

occurrence is governed by the conditional distribution–density function FjðX SÞj . The

decision rule d g Xj Þð is the probability (density) that gwill be decided when the observation
is X, regardless of S.

Risk theory is based on the following definitions:

(1) It is assumed that a cost CðS; gÞ is preassigned to every possible combination of

signal S and decision gl ; l ¼ 1; . . . ; L; in the problem.

(2) The conditional risk r S; dð Þ of using a decision rule d is the expected value of the

cost when the signal is S:

r S; dð Þ ¼
ð

G

ð

D
C S; gð Þd g Xj ÞFJ X Sj ÞdX dg:ðð ð1:5:2Þ

(3) The average risk R s; dð Þ of using d is the expected value of r S; dð Þ in view of the a

priori probability (density) s Sð Þ:

R s; dð Þ ¼
ð

W
r S; dð Þs Sð ÞdS: ð1:5:3Þ

(4) AMinimax decision rule d*M is one whose maximum conditional risk is not greater

than the maximum conditional risk of any other d:

max
s

r S; d*M
� � � max

s
r S; dð Þ; for all d: ð1:5:4Þ

25 Wald’s book [25] is referred to in the following as SDF.Wald’s paper [25a] is recommended as an introduction to

the subject.
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(5) A Bayes decision rule d* is one whose average risk is smallest for a given a priori

distribution s Sð Þ:

R s; d*
� � ¼ min

d
R s; dð Þ; for all d: ð1:5:5Þ

(6) A decision rule d1 is uniformly better than a decision rule d2 if the conditional risk
of d1 does not exceed that of d2 for any value of S and is actually less than that of d2
for some particular S.

(7) A decision rule is admissible if no uniformly better one exists.

a. An admissible rule is not necessarily uniformly better than any other; that is, other

rules can have smaller risks at a particular value of S. The point is that they cannot

be better at all values of S.

b. An admissible rule need not beMinimax. Clearly, d*M could have a larger risk than

d at some values of S and still have a smaller maximum risk.

(8) A class D of decision rules is complete if for any d not inDwe can find a d0* in D such

that d0* is uniformly better than d. If D contains no subclass which is complete, it is a

minimal complete class.

1.5.3 Principal Theorems

We assume that the following conditions are fulfilled:

A. FJ X Sj Þð is continuous in S.

B. C S; gð Þ is bounded in S and g.

C. The class of decision rules considered is restricted to either (1) nonsequential rules or

(2) sequential rules.

D. S and g are restricted to finite closed domains.

These conditions are more restrictive in some cases than those imposed by Wald but are

sufficient for our purposes. Specifically, Wald’s assumptions [25]: (3.1), (3.2), (3.3) are

covered by conditions A and B, (3.5) and (3.6) by condition C, and (3.4) and (3.7) by

condition D.

Under these assumptions the following theorems exist:

(1) The decision problem viewed as a zero-sum two-person game is strictly deter-

mined:

max
s

min
d

Rðs; dÞ ¼ min
d

max
s

Rðs; dÞ; ðSDF Theorem 3:4Þ ð1:5:6Þ

(2) For any a priori sðSÞ, there exists a Bayes decision rule d* relative to sðSÞ (SDF
Theorem 3.5).

(3) A Minimax decision rule exists (SDF Theorem 3.7).

(4) A least favorable a priori distribution s0ðSÞ exists:

min
d

Rðs0; dÞ ¼ max
s

min
d

Rðs; dÞ; ðSDF Theorem 3:14Þ ð1:5:7Þ
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(5) AnyMinimax decision rule is Bayes relative to a least favorable a priori distribution

(SDF Theorem 3.9).

(6) The class of all Bayes decision rules is complete relative to the class of all decision

rules for which the conditional risk is a bounded function of S (SDF Theorem 3.20).

(Kiefer [31] shows that the restriction of the set of decision rules to those for which

the conditional risk is a bounded function of S is unnecessary. He also shows that the

class of all admissible decision functions is minimal complete. See in addition

Wald’s remarks following Theorem 3.20 in SDF.)

The facts below follow from the definitions of Section 1.5.2:

(7) A Bayes decision rule d*M whose conditional risk is constant is a Minimax

decision rule. [This follows from definitions 4, 5, and 7. For suppose d*M were not

Minimax. Then there would exist a d0 with smaller maximum risk and smaller

average risk with respect to s0ðSÞ ¼ s*
MðSÞ. This contradicts the definition

of dM.]

(8) If a Bayes decision rule is unique, it is admissible. [For suppose d* were Bayes with

respect to sðSÞ and not admissible. Then a uniformly better d0 would exist; that is,

r
�
S; d0

� � r
�
S; d*

�
for all S, with equality for some S. But this implies that the

average risk of d0with respect tosðSÞ is less than that of d*with respect tosðSÞ. This
contradicts the definition of d*.]

(9) A Minimax decision rule has a smaller maximum average risk than any other.

[This follows from the fact that the average risk cannot exceed the maximum

conditional risk. Of course, for some particularsðSÞ another test might have smaller

average risk than the Minimax with the same sðSÞ.]

Finally, it is of considerable importance practically to be able to avoid randomized

decision rules.We have quoted one theorem due to Hodges and Lehmann [15] on this point.

Others may be found in some work of Dvoretzky et al. [32].

1.5.4 Remarks: Prior Probabilities, Cost Assignments, and System Invariants

From our discussion, it is clear that a priori probabilities play an essential part in the

formulation and application of decision theory. In a general waywemay say that Bayesian

methods of statistical analysis offer two main approaches to providing prior probabilities.

One approach, the “subjective” approach, treats probability as the measure of confidence,

or plausibility, which we are willing to assign to a proposition or event. The other

approach, the so-called “objective” approach, is based on the classic “frequency of

occurrence” or prior history of the event in question. Both are, and have been, open to

criticism: the subjective viewpoint, of course, introduces the observer’s judgment, albeit

quantitatively as a probability assignment. On the other hand, the “objective” alternative is

limited by its dependence on a “history,” or frequency of occurrence, whichmay not exist.

If the event has no history up to the present but can be conceived as a physical possibility,

one possible way out is to create an ensemble of virtual event outcomes, and hence

generate a resulting “prior” probability measure of this physically possible event. An

important pragmatic justification of the subjective viewpoint is that it couples the

observer’s probabilistic models and decision making to the real world. And this is
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accomplished by providing the “plausible” priors, which the Bayesian formulation

requires26.

Both viewpoints offer the needed coupling of the observer’s models to real-world

applications, although the subjective approach appears to be the one more favored by

scientists and engineers. In either case, statistical decision theory (SDT) can be used with

various methods (Minimax among them) to provide the needed distributions. For these

reasons, the quantification of a priori distributions is usually one of the chief problems to be

faced in practical situations. In any case, the rôle of a priori information cannot be shrugged

off or avoided [33–35].

The problem of cost assignment also must be carefully examined, since it provides

another important link to the actual situation and its significance in the larger world of

events. In this way, the connection between, say, the design of an optimum or near-

optimum system and the operational aspects of the original problem is made with a

theory of values, which seeks some over-all raison d’être for cost assignments in the

particular case. Similar remarks apply for other loss functions. Thus, an ongoing task is

to seek out other meaningful criteria (besides F1 and F2) and establish (if this be possible)

similar optimal properties, such as admissibility and the complete class theorem for

them also.

Another problem of general importance is to discover the “invariants” of various

classes of detection and extraction systems. Perhaps the most important example here is

threshold or weak-signal reception, and in particular, reception in non-Gaussian noise.

This is because predicting the level of acceptable weak-signal reception provides limiting

lower bounds on performance, expressed for instance in terms of “minimum detectable

signal,” or minimum acceptable estimation error. A canonical theory of threshold

reception is not only generally possible, under benign constraints, but has been evolving

for general noise and signals over the last four decades27 in the Bayesian statistical

decision theory (BSDT) formulation. This approach provides optimal processing algo-

rithms, probability measures of performance, and permits evaluation and comparisons

with suboptimum procedures.

Finally, it is evident that typesof optimizationother thanBayes andMinimaxarepossible:

one can take as a criterionminimumaverage riskwith constraints, say, onhighermoments of

the risk function for example, or other evaluation functions like F2 [Eq. (1.4.4)]. However,

an analytical theory for uniqueness, admissibility, and so on, comparable to Wald’s for the

simple cost function remains to be developed in such instances.

We turn now to the further development of Sections 1.1–1.5. Having presented the

underlying theory above, let us reserve the detailed treatment of estimation to Chapter 6

and proceed to the detection problem and some of its more explicit consequences in

Sections 1.6–1.10. Examples on estimation are presented in Chapter 5. Extensions are given

26 Closely related to, and supported by, the Bayesian idea of probability measures of the plausibility assigned to an

event or hypothesis, is the very old principle ofOckham’s razor, which for our scientific purposes may be stated in

contemporary terms as “choose, or favor, the simplest hypothesis over more complicated competing alternatives,”

which in Bayesian terms means selecting the simpler hypothesis as being more likely (i.e., having a larger

probability) of being correct. These ideas are discussed more fully, with physical examples, in Refs. [33–35]; see

also the Introduction here.
27 Earlier attempts at a canonical treatment are given by the author in Ref. [19], Sections 19.4 and 21.2.5 (1960).

Along similar lines we also note Section 2.7 of Ref. [36].
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in Chapters 3 and 4. Newmaterial in Chapters 6 and 7 considers the related problem of joint

detection and estimation.

1.6 PRELIMINARIES: BINARY BAYES DETECTION [19, 21, 36–38]

In this chapter so far we have described the main elements of space–time signal processing,

namely, detection, estimation, and related applications, from a general Bayesian viewpoint.

This includes employing statistical decision theoretic methods and parametric statistical

models. Here we shall focus in more detail on general formulations of optimal and

suboptimal detection. Specifically, in the context of the generic structures presented in

Sections 1.1–1.5 above, we shall outline a general theory of single-alternative detection

systems T
ðNÞ
R ¼ ðT ðNÞ

R Þdet; for the common and important cases where the data acquisition

period (or, as we shall somewhat more loosely call it, the observation period) is fixed at the

outset.28 Since the decisions treated here have only two possible outcomes, we call them

binary decisions, and the corresponding detection process, binary detection, in order to

distinguish them from the multiple-alternative situations examined later in Chapter 4.

There are two types of binary detection processes, depending on whether the hypothesis

classes refer to a decision between one or two possible signals. Thus, from Section 1.2

previously, we write symbolically

I: H1 : S� N versusH0 : N ð1:6:1aÞ

for the situation where we are asked to decide between H1: received signal of class S with

noise, versus H0: noise alone. For the second situation we write

II: H2 : S2 � N versusH1 : S1 � N ð1:6:1bÞ

in which the decision is between the choice of a received signal of class S2 versus one from

class S1, where both signals are accompanied [�] by noise, not necessarily additive. In both

instances the decision is to be made from the received dataX. We can further anatomize the

structure representedby I and II above, according to theirgeneral application, as summarized

in Table 1.1.

In the radar and sonar cases the received signal (S) represents a target. In a telecommu-

nications environment S is the desired, received communication waveform and the ambient

noise NA embodies the (usually) similar signals or “interference,” while NREC is receiver

noise. Here NAþREC ¼ NA þ NREC. In nonadditive situations such as envelope detection,

signal and noise are combined ðS� NÞ nonlinearly, including the receiver noise as well as
any ambient noise and interference (i.e. unwanted signals). Here and subsequently unless

otherwise indicated, the term “signal” shall refer to the received (desired) signal at the output

of the receiving aperture or array, R̂0. (see, the Introduction.)

We begin our discussion with a Bayesian formulation of the one-signal or “on–off”

cases (I), Sections 1.6–1.8, including performance measures and a structure of system

28 Variable observation periods are referred to in Section 1.8.5.
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comparisons (Section 1.9). This is followed by the formal extension of the theory to the two-

signal cases (II), Section 1.10. (A summary is given in Chapter 2 of some illustrative exact

results.) We observe, moreover, that exact results are the exception rather than the rule in

practical applications, so that approximate methods must be employed if we are to achieve

useful analytical and numerical results.

1.6.1 Formulation I: Binary On–Off Signal Detection

Binary detection problems in communication systems have been studied probabilistically in

terms of tests of hypotheses since the 1940s. The original formulation in terms of statistical

decision theory stems from the 1950s ([1], Chapter 18 [19]).29 The principal objectives of

the following sections here are to obtain (1) a formulation of the binary detection problem

itself and (2) by so doing, to indicate how these different viewpoints can not only be

reëstablished by the decision theoretical approach but extended to include situations of

general practical significance. Specifically, we first derive a general class of Bayes systems

and the rather well-known result that several other detection systems considered previously

are special cases of this.

Before we begin to develop the elements of statistical communication theory (SCT)

outlined in Sections 1.1–1.5, let us establish the effects of sampling of the input fields at the

receiver. We have considered principal modes of sampling the continuous input field: (1) a

continuous procedure, which essentially reproduces the original field and (2) a discrete

sampling procedure that produces a series of sampled values, at the space–time points

rm; tnð Þ, where both are obtained during a finite (or infinite) interval D (or D¼1). These

operations are respectively represented by

TS a r; tð Þð ÞC ¼ X r; tð Þ; and TS a r; tð Þð ÞD ¼ X rm; tnð Þ ¼ Xj; on D ¼ jR0jT � 1;

ð1:6:2aÞ

where explicitly

TSð ÞC �
ðD=2

�D=2

d
�
r0 � r

�
d
�
t0 � t

�ð Þdr0dt0; TSð ÞD ¼
ðD=2

�D=2

d
�
r0 � rm

�
d
�
t0 � tn

�� �
dr0dt0

ð1:6:2bÞ

and dr0 ¼ dx0dy0dz0 ¼ drx0dry0drz0 or a lesser dimensionality, depending on the sampling

process employed. The effects of these two sampling procedures on the input field, as we

shall see later in Sections 2.3.1 and 2.3.2, are quite different when applied to ordered data

streams in the discrete and continuous cases, for example, in the formation of apertures,

arrays and beam patterns (Section 2.5).

29 For the earlier studies, based for the most part on a second-moment theory (e.g., signal-to-noise ratios, etc.), see

the references at the end of Chapters 19 andReference Supplements, pp. 1103–1109 (1960); pp. 1111–1120 (1996),

of Ref. [1]. Somewhat later studies, also included therein, employing a more complete statistical approach and,

leading up to and in some instances coinciding with certain aspects of the present theory, are described more fully

here and in Ref. [1], Part 4 and Ref. [19]. Formore recent work see the references at the end of this chapter [21, 37].
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1.6.2 The Average Risk

First we use F1 [Eq. (1.4.3)] as our loss function and determine optimum systems of

the Bayes class, which, as we have seen [Eq. (1.4.6b)], are defined by minimizing the

average risk

R s; dð Þ ¼
ð

W
dss Sð Þ

ð

G
FJ XjSð ÞdX

ð

D
dgC S; gð Þd gjXð Þ ð1:6:3Þ

We recall that in binary detectionwe test the hypothesisH0 that noise alone is present against

the alternative H1 of a signal and noise, so that there are but two points g ¼ g0;g1ð Þ,
respectively, in decision space D. For the moment, allowing the possibility that the decision

rule dmay be randomized, we let d g0 Xj Þð and d g1 Xj Þð be the probabilities thatg1 and g0 are

decided,30 givenX. Since definite, terminal decisions are postulated here, some decision is

always made and therefore

d g0jXð Þ þ d g1jXð Þ ¼ 1: ð1:6:3aÞ

Denoting by S the input signal that may occur during the observation interval, we may

express the two hypotheses concisely asH0 : S«W0 andH1 : S«W1, whereW0 andW1 are the

appropriate nonoverlapping hypothesis classes, as discussed in Section 1.2.1.2. In binary

detection, the null classW0 usually contains only one member, corresponding to no signal.

The signal class W1 may consist of one or more nonzero signals. It is now convenient to

describe the occurrence of signals within the nonoverlapping classes W0, W1 by density

functions w0ðSÞ; w1ðSÞ, normalized over the corresponding spaces, for example,

ð

W0

w0ðSÞds ¼ 1

ð

W1

w1ðSÞds ¼ 1: ð1:6:4Þ

If q and p ð¼ 1� qÞ are respectively the a priori probabilities that some one signal fromW0

and W1 will occur, the a priori probability distribution sðSÞ over the total signal space

W ¼ W0 þW1 becomes

sðSÞ ¼ qw0ðSÞ þ pw1ðSÞ ¼ qdðS� 0Þ þ pw1ðSÞ; ð1:6:5Þ

this last when there is but one (zero) signal in classW0. Equation (1.6.5) represents the one-

sided alternativementioned in Section 1.2.1.2, while if there is only a single signal in class

W1 aswell, Eq. (1.6.5) becomess Sð Þ ¼ qd S� 0ð Þ þ pd S� S1ð Þ; S1 6¼ 0ð Þ, andwe have an
example of the simple alternative situation. In both cases,

Ð
sðSÞds ¼ 1, by definition of

p, q, and w.

1.6.3 Cost Assignments

The next step in our application of risk theory is to assign a set of costs to each possible

combination of signal input and decision. For this we chose F1 ¼ CðS; gÞ, Eq. (1.4.3), as our
cost function. We illustrate the discussion with the assumption of one-sided alternatives,

30 Since the number of alternatives is finite and discrete, the decision rule is represented by a probability (cf. the

remarks following the statement of the general reception problem in Section 1.3.3).
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noted above, and uniform costs, although themethod is not restricted by such choices. Thus,

for the binary on–off cases considered here there are four cost assignments: two for possible

correct decisions and two for possible incorrect decisions. It is convenient to represent these

by a ð2� 2Þ cost matrix CðS; gÞ:

CðS; gÞ ¼ C1�a Ca

Cb C1�b

h i
� C

ð0Þ
0

C
ð0Þ
1

C
ð1Þ
0

C
ð1Þ
1

� 
; ð1:6:6Þ

where the rows represent costs associatedwith the hypothesis statesH0;H1, and the columns

costs assigned to the various decisions g0; g1. Thus, we write

“failure”

Ca � C
ð0Þ
1 ; cost of deciding ðincorrectlyÞ that a signal is present;

when actually only noise occurs; the decisionH1 is false:

Cb � C
ð1Þ
0 ; cost of deciding ðincorrectlyÞ that a signal is not present;

when it actually is; the decisionH0 is false:

8
>>><

>>>:

“success”

C1�a � C
ð0Þ
0 ; cost of deciding ðcorrectlyÞ that there is no signal;

only noise; that is; the decisionH0 is true:

C1�b � C
ð1Þ
1 ; cost of deciding ðcorrectlyÞ that a signal is present;

the decisionH1 is true:

8
>><

>>:

Consistentwith themeaningof “correct” and “incorrect”, that is, equivalently, “success” and

“failure,” with respect to the possible decisions, we require that

C1�a < Ca;C1�b < Cb : “failure”costs more than “success”;
;detC ¼ C1�aC1�b � CaCb < 0:

ð1:6:6aÞ

Here observe that the costs are assigned vis-à-vis the possible signal classes (hypothesis

states) and not with respect to any one signal in a signal class, which in the case of composite

hypotheses, contains more than one member, (Section 1.2.1.2). Similarly, H0 here refers to

noise only, representing a specified class of noise processeswhere,without loss of generality,

we can also postulate thatC1�a ¼ 0; C1�b ¼ 0; that is, there is no net gain or “profit” from a

correct decision.31Thebestwecan expect in this situation, ifweare forced to adjust the costs,

in that success may cost us nothing: C1�a ¼ C1�b ¼ 0.

We specify next that FJðXjSÞ is continuous in S, that fixed-sample tests only are

considered, and that the assumptions needed for the validity of risk theory (Section 1.5.3)

are applicable to the receiveddataX and signalsS in the following, and that these are random

or deterministic quantities. Thus, the average cost or riskmay nowbe found from (1.4.6b) by

integrating over the two points ðg1; g2Þ in the decision space D. The result is

R s; dð Þ ¼ ÐG qC1�aFJ Xj0ð Þ þ pCb FJ XjSð Þh iS
� �

d g0jXð Þ	

þ qCaFJ Xj0ð Þ þ pC1�b FJ XjSð Þh iS
� �

d g1jXð ÞgdX; ð1:6:7Þ

31 This is achieved by setting Ca !Ca0 ¼ Ca � C1�a;Cb !Cb0 ¼ Cb � C1�b:

44 RECEPTION AS A STATISTICAL DECISION PROBLEM



and

p FjðXjSÞ
� �

S
¼
ð

W1

sðSÞFJðXjSÞds ¼ p

ð

S

w1ðSÞFJðXjSÞds; ð1:6:7aÞ

from (1.6.5).When the signal processes owe their statistical natures solely to a set of random

parameters u, that is, when the signals are deterministic (a usual case is practice), then

(1.6.7a) has the equivalent form

p
�
FJðXjSðuÞÞ

�
h
¼ p

ð

q
w1ðuÞFJðX SðuÞÞdu:j ð1:6:7bÞ

In detail, we have accordingly from [(1.6.7a) and (1.6.7b)] the defining relations

FJ XjSð Þh iS ¼
ð

S

w1 Sð ÞFJ XSð ÞÞds; FJ XjSðuÞð Þh iu ¼
ð

u

w1 uð ÞFJ X SðuÞj Þduð ð1:6:7cÞ

where the dimensionality of w1 is wJ or wL.

1.6.4 Error Probabilities

The average cost (1.6.7) can be more compactly expressed in terms of the conditional error

probabilities and conditional probabilities of correct decisions. To see this, let us begin by

introducing the conditional and total error probabilities:

a � a g1jH0ð Þ ¼ conditional probability of incorrectly deciding that a signal is

present when only noise occurs: This is known in statistics as a

Type I error probability: Here in SCT it is called the false alarm

probability; for example; a ¼ aF � pF
b � b g0jH1ð Þ ¼ conditional probability of incorrectly deciding that only noise

occurs; when a signal ðin class H1Þ is actually present:
Analogously to the above; this is often called a Type II error

probability; or in SCT; the false rejection probability of the signal:

8
>>>>>>>>>><

>>>>>>>>>>:

ð1:6:8Þ

The corresponding total error probabilities are qa and pb, where a and b are now specified

in detail by

a ¼
ð

G
FJ Xð j0Þd g1ð jXÞdX and b ¼

ð

G
FJ Xð jSh ÞiSd g0ð jXÞdX: ð1:6:8aÞ

Alternatively, the conditional and total probabilities of correct decisions are

1� a ¼
ð

G
FJ Xð j0Þd g0ð jXÞdX � 1� pF; 1� b ¼

ð

G
FJ Xð jSh ÞiS d g1ð jXÞdX � pD;

ð1:6:9Þ

where we have used (1.6.3). The quantity 1� b, (1.6.9), is then the conditional probability
of (correct) signal detection pD or in statistical terminology, the power of the test, while

a ¼ pFð Þ, (1.6.8a), is called the significance level, or test size.
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Applying (1.6.5) to (1.6.9) for the total probability of a decision g ¼ g0 ¼ H0: no signal,

or g ¼ g0 ¼ H1: a signal in noise, we find respectively that

p g0ð Þ ¼ q 1� að Þ þ pb ¼
ð

G
qFJ X 0j Þ þ p FJ X Sj Þð iS

� �
d g0 Xj ÞdX;ð�� ð1:6:10aÞ

p g1ð Þ ¼ qaþ p 1� bð Þ ¼
ð

G
q FJ X 0j Þð i þ p FJ X Sj Þð iS

� �
d g1 Xj ÞdX;ð�� ð1:6:10bÞ

from which we note that

p g0ð Þ þ pðg1Þ ¼ 1; ðp 6¼ q ¼ 1Þ; ð1:6:10cÞ

as expected. Using (1.6.8)–(1.6.10), we readily obtain a more compact form for the average

risk (1.6.7), namely,

R s; dð Þ ¼ qC1�a þ pCb

	 
� q Ca � C1�af gaþ p Cb � C1�b

	 

b ð1:6:11Þ

in terms of the Types 1 and 2 error probabilities, cf. Eqs. (1.6.8 and 1.6.9). In terms of the

probabilities of correct decisions this becomes

R s; dð Þ ¼ qCa þ pCb

	 
� q Ca � C1�af g � p Cb � C1�b

	 

1� bð Þ ð1:6:11aÞ

¼ R0 � q Ca � C1�að Þ 1� pFð Þ � p Cb � C1�b

� �
pD ð1:6:11bÞ

cf. (1.6.8 and 1.6.9) above. The quantity

R0 � qC1�a þ pC1�bð� 0Þ; ð1:6:12Þ
is called the irreducible risk, here a quantity that is prefixed once the costs and a priori

probabilities p1 ¼ 1� qð Þ are established. Thus, the corresponding average risk Rðs; dÞ
here deals with all signals in H1, as well as the noise ðH0Þ.

From Eq. (1.4.5), the conditional risk becomes similarly

r Sð Þ ¼ 1� a0ð ÞC1�a þ a0Ca; S ¼ 0; 1� b0 Sð Þ½ �C1�b þ b0 Sð ÞCb; S 6¼ 0; ð1:6:13Þ
where now the simple conditional error probabilities a0 and b0 are distinguished from the

class conditional error probabilities a and b, Eq. (1.6.8a) above, according to

a0 �
ð

G
FJ Xð j0Þd g1ð jXÞdX ¼ að Þ; b0 Sð Þ ¼

ð

G
FJ Xð jSÞd g0ð jXÞdX 6¼ b: ð1:6:13aÞ

Finally, note that all of the above go over directly into analogous expressions in the case of

random signal parameters.

1.7 OPTIMUM DETECTION: ON–OFF OPTIMUM PROCESSING

ALGORITHMS

The criterion of optimization here (and subsequently) is chosen to be the minimization of

average risk (1.6.11). Thus, by suitable choice of decision rule d0 [or d1, since d0 and d1 are
related by Eq. (1.6.3) in these binary cases], the average risk Rðs; dÞ, Eq. (1.6.7) or (1.6.11),
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is minimized by making the error probabilities as small as possible, consistent with

Eq. (1.6.3) and the constraints (1.6.6) et seq. on the preassigned costs.32 We assume here,

for the moment, that the cost function CðS; gÞ is chosen so that overlapping hypothesis (or
signal) classes are not included.33Here and in Sections 1.8 and 1.9wefirst derive theoptimal

processing or detection algorithms in their various generic binary forms. In Section 1.9, we

shall then consider the evaluation of performance, as measured by the Bayes risk, or its

equivalent probabilities of error and correct signal detection.

Eliminating dðg1 XÞj with the help of Eq. (1.6.3a), we may express Eq. (1.6.9) as

R s; dð Þ ¼ R0 þ p Cb � C1�b

� �ð

G
d g0 Xj Þ L Xð Þ � K½ �FJ X 0j ÞdXðð ð1:7:1Þ

where

L Xð Þ � p

q

FJ XjSð Þh i
FJ X 0j Þð ð1:7:2Þ

is a generalized likelihood ratio GLR34 and K is a threshold:

K � Ca � C1�a

Cb � C1�b
ð> 0Þ; ð1:7:3Þ

with R0 ¼ qC
ð0Þ
0 þ pC

ð1Þ
1 the irreducible risk(1.6.12). Since d0, FðX 0Þj , Cb � C1�b, and so

on, are all positive (or zero), we see directly that R can be minimized by choosing

dðg0 XÞ! d*ðg0 XÞjj to be unity when L< 0 and zero when L � K. Thus, we decide

g0 : H0 if L Xð Þ < K
namely, we set d*ðg0 XÞ ¼ 1j for any X that yields this inequality. From

Eq. (1.6.3) this means also that

d*ðg1 XÞ ¼ 0:j ð1:7:4aÞ
The acceptance region ofX for which d*0 ¼ 1; d*1 ¼ 0 isG0, that is,G0 contains

all X satisfying the inequality L Xð Þ < K:

g1 : H1 if LJ Xð Þ � K;
that is, we choose d*ðg1 XÞ ¼ 1j for all X satisfying this inequality (and

equality) and consequently require that

d*ðg0 XÞ ¼ 0:j ð1:7:4bÞ
Here G1 denotes the acceptance region of G for which

d*0 ¼ 0; d*1 ¼ 1:

32 Equivalently, Rðs; dÞ is minimized by maximizing the probabilities of correct decisions; cf. Eq. (1.6.11a).
33 For the generalization to include overlapping classes, including stochastic as well as deterministic signals, see

Section 1.10 ff.
34 We note that L is more general than the classical likelihood ratio FJ X Sj Þ=FJ X 0j Þðð , that is, the ratio of the

conditional probability densities ofXwith and without S fixed. The generalized likelihood ratio (1.7.2) reduces to

this formwhen the a priori probabilities p and q are equal and the signal space contains but one point, corresponding

to the very special case of a completely deterministic signal.
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We remark that d*1;0 are nonrandomized decision rules directly deduced from the

minimization process itself. From Eq. (1.6.8) for these optimum rules we may write the

Bayes or minimum average risk specifically as

R* s; d*
� � ¼ R0 þ p Cb � C1�b

� � K

m
a* þ b*

� 
; m � p=q: ð1:7:5Þ

The procedures described above in (1.7.4a and 1.7.4b) present a form of generalized

likelihood-ratio test (GLRT). This general Bayesian definition must be distinguished from

GLRT alternatives when the a priori probability distributions of the signal or signal

parameters are replaced by their conditional maximum likelihood estimates. [As optimal

likelihood-ratios, albeit constrained, these conditional GLRTs are a special subset of the

general Bayes class of likelihood-ratio detectors minimizing average risk.]

1.7.1 The Logarithmic GLRT

In actual applications it is usuallymuchmore convenient to replace the likelihood-ratioL by

its logarithm, as we shall see presently.35 This in no way changes the optimum character of

the test, since any monotonic function of L may serve as test function. Thus, the optimum

decision process [Eqs. (1.7.4a and 1.7.4b)] is simply reëxpressed as

Decide

g0 : H0 if logLðXÞ < log K with or g1 : H1 if logL Xð Þ � logK with

d*ðg0 XÞ ¼ 1 d*ðg0 XÞ ¼ 0jj
d*ðg1 XÞ ¼ 0; d*ðg1 XÞ ¼ 1:jj ð1:7:6Þ

The likelihood ratio, and equivalently here its logarithm, embody the actual receiver

structure T
ðNÞ
R ; namely, the operation the detector must perform on the received data X in

order to reach an optimal decision as to the presence or absence of a signal (of class S) in

noise. The optimum detection situation is schematically illustrated in Fig. 1.8.

Thus, choosing d0 ! d*0; d1 ! d*1(1.7.4a and 1.7.4b) or (1.7.6), may be stated

alternatively: Make the decision for which the a posteriori risk (or cost) is least. It

is important to observe that this is clearly a direct extension of the original Theorem of

Bayes, or Bayes’ Rule, namely, “chose that hypothesis with the greatest a posteriori

probability, given the (data) X,” to include now the various costs associated with the

decision process.

1.7.2 Remarks on the Bayes Optimality of the GLR

The complete class theorem (see Section 1.2.1) for the risk formulation assures us that we

have an optimum test and that all such tests based on the likelihood ratio [Eq. (1.7.2)] are

35 In fact, any monotonic function of the likelihood ratio (1.7.2) is potentially suitable as an optimal (Bayes) test

statistic, since (1.7.2), and Fmono Lð Þ, are sufficient statistics because L, and Fmono Lð Þ, contain all the relevant

information for deciding H1 versus H0. [See Section 1.9.1.1. for a more detailed discussion of sufficiency.]

48 RECEPTION AS A STATISTICAL DECISION PROBLEM



Bayes tests (see Section 1.5.1). The Bayes risk R*(1.7.5) and the average risk R

[Eqs. (1.6.11)] for general (not necessarily optimum) systems become, respectively,

R* ¼ R0 þ p Cb � C1�b

� � K

m
a* þ b*

� �
; m � p

q
; ð1:7:7aÞ

R ¼ R0 þ p Cb � C1�b

� � K 0

m
aþ b

� �
ð1:7:7bÞ

withKgivenbyEq. (1.7.3),whileR0 ¼ qC1�a þ pC1�b in either instance [Eq. (1.6.12)].The

threshold K0 for the nonideal cases36 may or may not be equal to K.

Note, incidentally, from Eq. (1.7.7a) that if we differentiate Rð*Þ � R0

� �
=p Cb � C1�b

� �

with respect to a* or a we have at once

db*=da* ¼ �K=m; db=da ¼ �K 0=m; ð1:7:8aÞ

relations that are of use in describing a receiver’s performance characteristics. In fact, since

1� b* ¼ p*D, (1.6.9), (1.6.11a), and since a* ¼ p*F, the (conditional) probability of “false

alarm,” use have

dp*D
dp*F

¼ K=m; and
d pp*D
� �

d qp*Fð Þ ¼ dP*
D

dP*
F

¼ K; ð1:7:8bÞ

where P*
D and P*

F are respectively the unconditional probabilities of correct detection and

false alarm. In terms of the conditional probability, K=m is the slope of the curve

p*D ¼ F* p*F . . .j Þ�
, for example, dp*D=dp

*
F ¼ K=m when one plots b*

D ¼ 1� b* versus

p*F ¼ a*
F. This latter case is generally called the receiver operating characteristic (ROC)

of theBayes systemhere. Similarly,with 1� b ¼ pD;a ¼ pF for suboptimumsystems,with

slope dpD=dpF ¼ K=m; pD versus pF is the corresponding (suboptimum) ROC curve.

Γ = Γ0 ÷ Γ1

Γ1; γ1 : H1

Γ1; γ0 : H0

log K

δ∗
0 = 1

δ∗
1 = 0

δ∗
0 = 0

δ∗
1 = 1

FIGURE 1.8 Optimum binary on–off detection.

36 One always has a definite (nonzero) threshold when a definite decision is made.
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Variants of the relations between p
ð*Þ
D and p

ð*Þ
F are noted in practice, with analogous relations

involving p*D; P
*
F or PD and PF. [See Section 1.9 and Eq. (1.9.10a) et seq.]

1.8 SPECIAL ON–OFF OPTIMUM BINARY SYSTEMS

Avariety of important special cases of the optimum general (fixed-sample) binary detection

procedures discussed in Section 2.2 now requires our attention. These are all characterized

by one or more constraints on the error probabilities in minimizing the average risk. We

begin with the well known Neyman–Pearson detector.

1.8.1 Neyman–Pearson Detection37 Theory

Here the constraint is on the false alarm probability aF ¼ pFð Þ. We require it to remain fixed,

hence the alternative designation of constant false alarm (CFA) detector or constant false

alarm rate detector (CFAR), for sequences of decisions. Moreover, from the viewpoint of

decision theory, we require the total Type I error probability qaF to remain fixed, while

minimizing the total Type II error probability pb. This is expressed as

R*
NP � min

d
pbþ lqað Þ ¼ pb*

NR þ lqa; ð1:8:1Þ

where l is an as yet undetermined multiplier. Minimization is with respect to the decision

rule, in the usual way cf. (1.7.4a and 1.7.4b), (1.7.6) and subject to the fact of a definite

decision. From Eq. (1.6.8a), we write explicitly

R*
NP ¼ min

d
p

ð

G
FJ Xð jSh ÞiG d g0ð jXÞdXþ lq

ð

G
FJ Xð j0Þd g1ð jXÞdX

� 

¼ min
d

ð

G
dXd g0ð jXÞ�p FJ Xð jSh ÞiS � lqFJ Xð j0Þ

� �
þ lq: ð1:8:2Þ

For this to be a minimum it is clear that we must choose the d’s such that when

p Fn X Sj Þð iS � lqFn X 0j Þ; we set d*ðg1 XÞ ¼ 1; d*ðg0 XÞ ¼ 0jjð�

and decide signal and noise;

or when ð1:8:3Þ

p Fn X Sj Þð iS < lqFn X 0j Þ; we set d*ðg0 XÞ ¼ 1; d*ðg1 XÞ ¼ 0jjð�

and decide noise alone,

cf. (1.7.4a and 1.7.4b). Thus, we have the GLRT

TðNÞ X½ �NP ¼ DNP ¼ p Fn XjSð Þh iS
qFn Xj0ð Þ

� l decide g1; or
< l decide g0;

�
ð1:8:4Þ

which establishes the likelihood nature of the detection system [cf. Eq. (1.7.2)].

37 See Section 19.2.1 and Ref. [26] therein of Ref. [1] for additional remarks regarding the classical Neyman–

Pearson hypothesis test.
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Comparison with Eq. (1.7.2) et seq. shows that the undetermined multiplier l here plays
the role of thresholdK, andR*

NP is (except for a scale factor) the correspondingBayes risk for

this threshold l � KNP. (The decision regionsG1;G0 forX are pictured in Fig. 1.8, for logL.
However, l is not arbitrary but is determined by the constraint of a preassigned value of the

conditional Type I error probability a, for example,

aNP ¼
ð

G
FJ X 0j Þd* g1 Xj ÞdX ¼ aNP l ¼ KNPð Þð� ð1:8:5Þ

from Eq. (1.6.8a) and the nature of the optimum decision rule [Eq. (1.8.4)].

We can also write Eq. (1.8.4) in the more classical form, either by an obvious modifica-

tion, or from a computation of min dðbþ laÞ by precisely the same sort of argument given

above, namely,

LNP � Fn XjSð Þh iS
Fn Xj0ð Þ ¼ l

m
¼ K 0

NP; ð1:8:6Þ

with m � p=q (1.7.7a), and where now K 0
NP is a new threshold or significance level, into

which have been absorbed the a priori probabilities (p, q) and the cost ratio l. Thus, in the
subclass of Neyman–Pearson tests the significance level K 0

NP is set by choosing aNP, or,

equivalentlyaNP is specified for a predetermined levelK 0
NP. In either instance, it is clear from

the preceding remarks that such a formulation implies a specific set of a priori probabilities

(p, q¼ 1�p) and a cost ratio KNP if we are to apply this optimum detection procedure to

physical situations. In practice, as has been noted in Section 1.7.1 above, the logarithmic

form of the GLRT (1.8.4), with l! log l now, is the usually preferred form. CFAR (i.e.,

Neyman–Pearson) detectors are commonly used in radar and sonar applications, where the

practical constraint is keeping the false alarm rate (for sequences of decisions) suitably low,

for operational reasons.

1.8.2 The Ideal Observer Detection System

Anotherway of designing a fixed-sample one-sided alternative test is to require that the total

probability of error qaþ pb be minimized, instead of just pb as above. An observer who

makes a decision in this way is called an Ideal Observer [40]. As in the Neyman–Pearson

case, this may be set up as a variational problem and shown to yield a likelihood-ratio test

with K ¼ KI ¼ 1. Specifically, we want

R*
I ¼ min

d
qaþ pbð Þ ¼ qa*

I þ pb*
I ð1:8:7aÞ

where now a and b are jointly minimized in the sum by proper choice of the decision rule.

Using Eqs. (1.7.7a and 1.7.7b) again, we can write Eq. (1.8.7a) as

R*
I ¼ min

d

ð

G
d g0 Xj Þ p FJ X Sj Þð iS � qFJ X 0j Þð �dX� 
þ q:

���
ð1:8:7bÞ

From this it follows at once that the decision procedure for the Ideal Observer is
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Decide signal andnoisewhenL � 1, that is, set Decide noise alonewhenL < 1, that is, set

d*ðg1 XÞ ¼ 1 d*ðg0 XÞ ¼ 1jj
or

d*ðg0 XÞ ¼ 0; d*ðg1 XÞ ¼ 0:jj ð1:8:8Þ

Accordingly, the Ideal Observer system TðNÞ X½ �I is a Bayes detector with threshold KI

of unity. The fact that both the Neyman–Pearson and Ideal Observer systems yield

likelihood-ratio tests of the type (1.7.2) follows from the optimum performance they

require. Since they are likelihood-ratio tests, they belong to the Bayes risk class and

accordingly share the general optimum properties possessed by that class, including

uniqueness and admissibility (cf. Section 1.5.1). Unlike the Neyman–Pearson detec-

tors (1.8.1), which are particularly appropriate to radar, sonar, and similar hypothesis

situations where the decision costs are unsymmetrical, that is, K 6¼ 1; > 0, (1.8.2), the

Ideal Observer is the usual choice in many telecommunication applications (e.g.,

telephone, wireless telephony, etc.) where the costs associated with each class of decision

are equal, so that now K ¼ 1, cf. (1.8.8). Note, finally, that both these special classes of

optimum detection system employ nonrandomized decision rules.

1.8.3 Minimax Detectors

There is yet another possible solution to the detection problem that, like the two just

discussed, is optimum in a certain sense andwhich leads to a likelihood-ratio test. This is the

Minimax detection rule.

When theapriori signal probabilitiessðSÞare unknown, theMinimax criteriondiscussed

in Section 1.4.4 provides one possible definition of optimum system performance. As we

have seen, a Minimax system for binary detection (and the disjoint hypothesis classes of

the present chapter) can be regarded as a likelihood-ratio system for some least favorable

distribution s ¼ s0 ¼ s*
M. Once this distribution is found, the Bayes system is completely

determined. Now, in order to find it, wemay take advantage of the fact that a likelihood-ratio

system with the same conditional risks for all signals is Minimax in consequence of the

definitions of Bayes and Minimax systems (Section 1.4.4). The procedure is briefly

described below.

First, we require the conditional probabilities a0;b0 a0 ¼ b0 Sð Þj [cf. Eq. (1.6.13a)] to be

the result of a Bayes decision rule, which here means a likelihood-ratio test, with s as yet

unspecified. Then, as different s are tried, different a0;b0 result (for the same threshold K,

which depends only on the preassigned costs). The conditional risks [Eq. (1.6.13)] for S ¼ 0

and for S 6¼ 0 (all S) will vary. As one increases, the other must decrease, in consequence of

the admissibility and uniqueness of the particular Bayes rule corresponding to our choice of

s. If, then, there exists a s for which the conditional risks [Eq. (1.6.13)] are equal38 for all S,

we have the requiredMinimax rule d*M and associated least favorable prior distribution s*
M.

We remember, moreover, that, if the equation between conditional risks has no solution, this

does not mean that a Minimax rule or least favorable distribution does not exist, only that

other methods must be discovered for determining it.

38 There can be no system for which both conditional risks together can be less than this, since this is a Bayes test.
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As an example, suppose we have the simple alternative detection problem, when p

and q are unknown, and w1ðSÞ ¼ dðS� SIÞ here. From Eq. (1.7.2), we have for the

Bayes test

L ¼ pFJ XjSIð Þ
qFJ Xj0ð Þ �< K ð1:8:9Þ

where a0ð¼ aÞ; b0ð¼ bÞ are the corresponding error probabilities [cf. Eq. (1.6.8a)]. The
a;b are functions of p and q since the decision rule d ¼ d*M depends on p and q throughL.
Thus, as p and q are varied,a;b also are changed, as the boundary between the critical and

acceptance region varies. Equating the conditional risks [Eq. (1.6.7)] in order to deter-

mine the least favorable p ¼ p*M; q ¼ q*M ¼ 1� p*M
� �

, we have

1� a p*M; q
*
M

� �� �
C1�a þ a p*M; q

*
M

� �
Ca ¼ 1� b p*M; q

*
M

� �� �
C1�b þ b p*M; q

*
M

� �
Cb;

ð1:8:10Þ

provided that a solution exists.

Alternatively, the least favorable a priori distribution s*
M, and therefore the Minimax

decision rule, may be found in principle from the basic definitions (see Section 1.5.3,

Theorems 1–5). That is, s0 ¼ s*
M is the a priori distribution that maximizes the Bayes risk

(cf. Fig. 1.6). Since every Bayes decision rule is associated with a specific a priori

distribution, however, the Bayes rule changes as this distribution is varied for maximum

risk. As a result, this method of finding the extremum may be technically difficult to

implement. It is applicable, however, when the previous method (based on uniform

conditional risk) fails.

In the case of the one-sided alternativewherew1ðSÞ is knownbut againp and q are not, the
same procedure may be tried when now Eq. (1.7.2) is used in place of Eq. (1.8.9). Finally, if

w1ðSÞ is unspecified, or if neither p, q, nor w1ðSÞ is given [i.e., if sðSÞ is completely

unavailable to the observer], Eq. (1.8.10)with Eq. (1.7.2) still applieswhen a solution exists,

although the task of finding s*
M may be excessively formidable. In any case, an explicit

evaluationof ða0Þ*M and b0ð Þ*M fromEq. (1.6.13a)whend ¼ d*M therein,maybecarriedout by

methods outlined in Section 1.8.1 and illustrated in succeeding sections.

We observe that the Minimax error probabilities ðaÞ*M; bð Þ*M are fixed quantities,

independent of the actual a priori probabilities p; q; w1 Sð Þ chosen by nature. The average
Minimax risk R*

M is given formally by writing R*
M for R* in Eq. (1.7.7a) and replacing p, q,

and so on, and a*; b* by p*M; q
*
M; . . . and a

*
M; b

*
M therein. The difference R*

M � R* � 0
� �

between the Bayes (s known) and Minimax average risk (s unknown) is thus one useful

measure of the price we must pay for our ignorance of nature’s strategy (i.e., here nature’s

choice of p, q, etc.). For further discussion, see Section 20.4.8 of Ref. [1].

1.8.4 Maximum Aposteriori (MAP) Detectors from a Bayesian Viewpoint

Another approach to treating unknown, or unavailable a priori pdfs that are exceedingly

difficult to evaluate in the likelihood-ratio L (1.7.2) (usually of random signal parameters u
or waveform S), is to employ a suitably optimized estimate of u, or S. “Suitably optimized”

means here that an appropriate likelihood ratio results and hence belongs in the family of

Bayes tests, that is, one which yields a minimum average risk, R*
MAP consistent with the

available prior information and the constraints imposed by the receiver’s ignorance and/or
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simplifications. For the latter reason, of course, R*
MAP � R* � 0 : R*

MAP is larger than (or at

best equal to) theBayes orminimumaverage riskwith all prior information used, for reasons

similar to the Minimax cases discussed above.

To see how such Bayes tests are obtained, we begin by considering the situation where

the a priori pdf wL uð Þ, of the L signal parameters u ¼ u1; . . . ; umð Þ, is available but is

difficult to treat inL, (1.7.2). Using Bayes’s theoremwemaywrite for the integrand of the

numerator of L,

wL uð ÞFJ X S uð Þj Þ ¼ wL u Xj ÞWJ Xð Þ � WJ�L X; uð Þð Þ;ðð ð1:8:11Þ

withWJ Xð Þ ¼
ð

u

wL uð ÞWJ X uj Þdu:ð ð1:8:11aÞ

Consequently, we have the conditional pdf of u given X, namely the a posteriori pdf of u
represented by

wL u Xj Þ ¼ wL uð ÞFJ X S uð Þj Þ=WJ Xð Þ:ðð ð1:8:11bÞ

Next, we use (1.8.11b) in (1.6.9) for the (conditional) Bayes average probability of correct

signal detection, namely,

1� b* ¼
ð

G
dX d g1jXð Þ

ð

u

wL u Xj ÞWJ Xð Þdu;ð ð1:8:12Þ

which we now maximize by choosing that estimate û* which in turn maximizes the

integrand (in u). Thus, we seek that estimate û* which maximizes the average value of

correct signal detection, for example, 1� b̂*. The estimate û is found from the u 2 W0 for

which the a posteriori probability wL u Xj Þð is maximum, namely, from

wL û
*
Xj Þ � wL u Xj Þ;ð

�
ð1:8:13aÞ

or equivalently from ð1:8:11bÞ : wL û
*

� �
FJ X S û

*
� ����

�
� wL uð ÞFJ X S uð Þj Þ; all u 2 W0;ð

�

ð1:8:13bÞ

HereWJ Xð Þ is dropped as irrelevant to the estimation process because it does not contain u.
Accordingly, it is customary to call û

* ¼ û Xð Þ* here a MAP, or maximum a posteriori

probability estimate, which depends, of course, on the received data X. [Note that the a

posteriori probability wL u Xj Þð depends explicitly on the prior probability wL uð Þ, as a
consequence of (1.8.11b) in (1.8.12a and 1.8.12b).]

Our next step in obtaining the desiredMAP detector LMAP is to replace the pdf wL uð Þ in
the GLR (1.7.2) by the new pdf39

ŵL uð Þ* � d u� û
*
Xð Þ

� �
; ð1:8:14Þ

39 For a Bayes formulation of estimation and associated Bayes risk, see chapter 5.
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which corresponds to the maximizing operation (1.8.13a and 1.8.13b) for the integrand of

the GLR (1.7.2). The result is directly the classical MAP test

Classical MAP Test : LMAPjclassical ¼ mFJ X S û
*

� ����
�
=FJ Xj0ð Þ �

<
K

: decide S� N

: decide N

� �
:

�

ð1:8:15Þ

Several important points need to be emphasized regarding the maximizing condition

(1.8.13a and 1.8.13b) for û
*
. First, as we shall see in Chapter 5 ff., (1.8.13a) defines an

unconditionalmaximum likelihood estimate (UMLE), because of the presence of the apriori

pdf wL uð Þ. The conditional pdf wL u Xj Þð must be determined from (1.8.11b), which in turn

depends explicitly on wL uð Þ. Accordingly, MAP detectors cannot avoid the requirements of

an explicit knowledge of wL uð Þ, which limits their use when wL uð Þ, or s uð Þ(1.6.5), is not
available. A second and more serious difficulty with the classical result (1.8.15) above, and

onewhich appears to be universally unacknowledged, is with the estimation process itself, as

embodied in (1.8.13aand1.8.13b).Thepointhere is thatp ¼ p H1ð Þð Þ is less thanunity: there is
a detection procedure indicated. The data X do not always contain the desired signal S uð Þ:
100q% of the time the data sample X contains no signal, only noise. As such the result of

employing (1.8.13a and 1.8.13b) which assumes p ¼ 1, yields a biased-estimate u* ¼ û
*

p¼1,

with an averagepositivebias in themagnitude of the estimates, cf.Chapter 6.However, as the

analysis there shows, this situation can be remedied by using the unbiased estimate

û
*

p<1 ¼ pû
*

p¼1, appropriate to the UMLE process when p < 1 (and for p ¼ 1). (It is shown

in Chapters 5 and 6 that in the context of the Bayes risk formulation for detection and

estimation, the UMLEs are derived byminimization of so called “simple cost” functions [cf.

Sections 21.2.2 and 21.2.3 [1] andChapter 5. ff.]40). Accordingly, the classical result (1.8.15)

needs to be replaced by the correct result:

MAP Test ð p < 1Þ : LMAPjp<1 ¼ mFJ X S pû
*
Xð Þp¼1

� ����
�
=FJ Xj0ð Þ �

<
K

: decide S� N

: decideN

� �
:

�

ð1:8:16Þ

As we shall see in Chapter 5 even û
*
Xð Þp¼1, is itself not always easily obtained.

Finally, there is a variant of the MAPjp<1 detector that can be used when the a priori pdf

wL uð Þ is essentially uniform or is at least slowly varying over the range of values of u in

FJ X S uð Þj Þð where FJ is significant. Thus our maximization of the (conditional) average

probability of correct signal detection is accomplished by maximizing u according to the

condition

F X S û
� ����

�
� F X S uð Þ ;j Þ all u 2 Wu:ð

�
ð1:8:17Þ

Although û is now apparently a conditional estimate (no a priori pdf wL uð Þ), from the

unconditional Bayes viewpoint (1.8.17) implies that wL uð Þ is uniform, consistent with

our requirement (1.8.17) represents the only significant variation of the integrand with u.

40 For these maximum likelihood cases, including (1.8.18) below, the effective part of the maximizing estimation

procedure is simply p. The relation (1.8.13a and 1.8.13b) is used when p � 1. See the analysis for Eqs. (6.3.24)–

(6.3.30).
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Thus, wL uð Þ ¼_ woL, a constant, and now the integrand of L, (1.7.2), from (1.8.17),

can be written

ð

u

woL uð ÞF X S û Xð Þ
� ����

�
du ¼ F X S û Xð Þ

� ����
�
;

��
ð1:8:18Þ

since
Ð
u wL uð Þð¼ w0LÞdu ¼ 1.Of course, the conditions onwL uð Þ leading to (1.8.17)must be

obeyed for the results to be acceptably accurate. The resulting MAP Test, p < 1, here must

also take into account the proper estimator for p < 1. Again, this is pûp¼1 Xð Þ, where
ûp¼1 ¼ û

*

p¼1juniform;which is the equivalent UMLE nowwith a uniform a priori pdf u 2 Wu.

The MAP test here becomes from (1.8.15) and the above

MAP Testjuniform : LMAPjp<1; uniform ¼ mFJ X S pû
*

p¼1; uniform

� ����
�
=FJ Xj0ð Þ �

<
K

� �
: decide S� N

: decide N:

�

ð1:8:19Þ

Once more, this procedure maximizes the average probability of correct signal detection,

now without detailed knowledge of a parametric a priori pdf wL uð Þ, except again that it be
effectively uniform over values of u where F is significant and with recognition of the fact

that p< 1.

The associated Bayes risk for these MAP detectors has the form of (1.7.7a), namely,

R*
MAP ¼ R0 þ pðCb � C1�bÞ K

m
a*
MAP þ b*

MAP

� �
: ð1:8:20Þ

We remark once more that R*
MAP � R*, the minimum average risk for the fully known prior

pdf’s, including p ð¼ 1� qÞ. For quantitative results we must of course evaluate the

conditional error probabilities a*
MAP;b

*
MAP, and for comparison, a*; b*, as well. General

expansions for a*; b*;a*
MAP, and so on are derived in Section 1.9 ff., from which, in turn,

explicit results can be obtained either exactly or approximately by a variety of analytical

methods. In any case, the relation R*
MAP � R* is basically attributable to the fact that R*

MAP

employs only partial information regarding the prior pdfs of (here) the parameters u, in the
form of estimates, whereas the Bayes risk R* uses the true and entire pdfs for u.

Similar arguments for MAP detection of received signal waveforms S give at once the

desired counterparts to (1.8.16) and (1.8.19):

MAP Test ðp < 1Þ: LMAPjp<1 ¼ mFJ X
���pŜ

*
Xð Þp¼1

� �
=FJ Xj0ð Þ

MAP Testjuniform : LMAPjp<1; uniform ¼
mFJ X

���pŜ
*
Xð Þp¼1juniform

� �

FJ Xj0ð Þ

�
<
K
: decide S� N

: decide N

� �
;

ð1:8:21Þ

where (1.8.13a and 1.8.13b) and (1.8.18), with u replaced by S, now provide the maximiz-

ing condition for Ŝ
*ðXÞp¼1 in (1.8.21).

Finally, an alternative way of handling the MAP estimators in detection is discussed

in Chapter 6. Here the biased nature of the estimator is handled by a strongly coupled
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estimator — a detector system that does not require explicit a priori knowledge of

p ¼ p H1ð Þð Þwhen p< 1. This is accomplished by the application of appropriate thresholds

on the estimators and detector, along with feedback of the detector’s decision H1 orH0ð Þ
regarding acceptance or rejection of theseMAP estimators as well as presence or absence of

the signal. Nevertheless, it should be remembered that in the Bayesian formulation prior

probabilities (among them p or q¼ 1� p), are always at least implied. An extensive

discussion of the pros and cons of these methods is given in Section 23.4 of Ref. [1].

1.8.5 Bayesian Sequential Detectors

Other variations in the form of the likelihood detector are also possible. In all of the above,

sample size (J) is fixed andminimization of the average risk, generally, involvesminimizing

the appropriate error probabilities. In sequential detection, however, the false alarm and

Type II error probabilities are preset and the aim is to reach a decision ðS� N or NÞ in the
shortest time, that is, for the smallest sample size, on the average. Thus, sample size J is now

the random variable (as well as the data X). Minimization of the average risk is now

minimization of the “average cost of experimentation,” defined as being proportional to

sample size. This Bayes risk can be expressed as

R*
seq ¼ qaCa þ pbCb þ pCo min

d! d*
J X S; dj Þ*
� E

X
; j! J* terminationð Þ

D
ð1:8:22Þ

where Co is the cost per unit trial (per unit of j¼ 11, 12, . . ., J). In many (but not all) cases,

d! d*seq yields a likelihood detector for the optimum structure. If ys � logLJ�seq

� �
is this

likelihood detector, then the best procedure involves a double threshold, instead of the single

threshold (log K) characteristic of the fixed-sample tests described above. The detection

process is described by

Sequential ðBinaryÞ Test : If B ¼ b= 1� að Þð Þ < ys < A ¼ 1� bð Þ=að Þ : continue test j! j þ 1

If ys � A : test terminates j! JðX S; dseqÞ* decideH1 : S� N
��

If ys < B : test terminates j! JðX S; dseqÞ* decideH0 : N:
�� ð1:8:23Þ

The theory of sequential tests is due primarily to Wald [8], with its application to signal

detection subsequently initiated by Bussgang and Middleton [9], with further development

by Blasbalg [22] and others; see also Basseville and Nikiforov [23]. Chapter 9 of

Helstrom [14] provides a comprehensive account of the subject with additional references.

Further discussion here is outside the scope of this book.

1.9 OPTIMUM DETECTION: ON–OFF PERFORMANCE MEASURES

AND SYSTEM COMPARISONS

A second and equally significant task of Bayes SCT, along with the determination

and practical interpretation of the optimal data processing algorithms L Xð Þ;ð
logL Xð Þ; LMAP Xð Þ; etc:Þ; is the evaluation of optimum system performances and perfor-

mance comparisons with suboptimum receivers G(X). The latter is particularly important

because practical systems are themselves never strictly optimum: optimality is an ideal,
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to be approached under the inevitable constraints of usually limited knowledge of the

environment and bounded economic resources. Nevertheless, optimality and its explicit

formulations provide a guide to the key elements of (1) effective practical system design,

(2) limiting measures of performance against which the practical system can be compared

and often improved, and (3) insights regarding the critical channel structures that inhibit

performance. Accordingly, modeling the communication environment, that is, translating

the physics of the channel T̂
ðNÞ� �

into relevant mathematical relationships becomes a third

major task. This will be treated in detail in Chapters 8 and 9, but it needs to be borne in mind

here, because of its ultimate influence on the actual probability measures that constitute the

elements of the (Bayes) risks by which performance is evaluated.

Useful measures of performance all depend in some way on the conditional error

probabilities a*;b*;a;b; . . . ; and so on, cf. Sections 1.6.2 and 1.7 above. Since the

error probabilities are also functions of the received signal and of the parameters of

the accompanying noise, comparisons of systems performance can also be made in terms

of such quantities as well, under a variety of conditions, involving both optimality and

suboptimality.

1.9.1 Error Probabilities: Optimum Systems

Our first problem is to provide some way of determining the error probabilities

að*Þ; bð*Þ ; aMAP; bMAP; and so on, which occur for Bayes and non-Bayes (suboptimum)

systems.

We begin with the Bayes class, namely, those described in Sections 1.7 and 1.8 above,

where the decision rules d*ðg0 XÞ; d*ðg1 XÞj�� are determined according to (1.7.4a

and 1.7.4b). With the help of the transformation x ¼ logLðXÞ, cf. (1.7.7a and 1.7.7b), we
can write the following expressions for the conditional class probabilities of the Types I and

II errors in the Bayesian cases

a* ¼
ð1

log K

dx

ð

G
FJ Xj0ð Þd x� logL Xð Þ½ �dX ¼

ð1

log K

Q1 xð Þdx ð1:9:1aÞ

and

b* ¼
ðlog K

�1
dx

ð

G
FJ XjS uð Þð Þh iS or ud x� logL Xð Þ½ �dX ¼

ðlog K

�1
P1 xð Þdx; ð1:9:1bÞ

Here Q1 and P1 are respectively given by

Q1 xð Þ ¼
ð

G
FJ Xj0ð Þd x� logL Xð Þ½ �dX; P1 xð Þ ¼

ð

G
FJ X S uð Þj Þð iS or ud x� logL Xð Þ½ �dX:�

ð1:9:2Þ

From the fact that FJ X 0j Þð and FJ X S uð Þj Þð ih are themselves probability densities and that

x� logLðXÞ is also a random variable when considered over the ensemble of possible

values ofX, it follows that theQ1,P1 of (1.9.1a) and (1.9.1b) are the probability densities of

x with respect to the distributions associated with the hypothesis states H0 and H1,

respectively. We shall elaborate on this further below, cf. Eq. (1.9.4a) et. seq.
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1.9.1.1 Sufficient Statistics andMonotonicMapping Themapping forX- tox-space by

means of the transformation x� logL Xð Þ is mathematically quite arbitrary; (see

Section 1.7.1). Any monotone function x ¼ FðLÞ can be used without altering the

values of the error probabilities. This is to be expected, since FðLÞ, like L here, remains

a sufficient statistic.41 The analytic consequences of monotonicity in turn are readily

demonstrated by the relations

a* �
ð1

K

q1 yð Þ*dy ¼
ð1

K

Q1 F yð Þð ÞF0 yð Þdy ¼
ð1

Knew¼FðKÞ
Q1 xð Þdx; x ¼ F yð Þ: ð1:9:3Þ

Since y ¼ L and x ¼ FðyÞ ¼ FðLÞ ¼ logL here, F0ðyÞdy ¼ dx ¼ dL=L with F Kð Þ ¼
log K, so that (1.9.1a) results. A similar procedure gives b*(1.9.1b). In fact, for any

monotonic relation z ¼ GðXÞ, where x ¼ FðGÞ ¼ FðzÞ it follows that the general (not

necessarily optimum) conditional error probabilities a and b can be represented by

a � Ð1
K

q1 zð Þdz ¼ Ð1
K

Q̂1 Fð Þ dF

dz

0

@

1

Adz ¼ Ð1
Knew¼FðKÞ Q1 xð Þdx;

etc: for b � Ð K�1 p̂1 zð Þdz ¼ Ð Knew¼FðKÞ
�1 P̂1 xð Þdx:

ð1:9:3aÞ

Although a new threshold Knew ¼ F Kð Þ is established by the transformation F, the key

result is that the error probabilities a *ð Þ;b *ð Þ remain unchanged under any monotonic

mapping. Moreover, a*
F;b

* ! 0 and P*
D ! 1 as the signal S!1 vis-à-vis the accompa-

nying noise, and likewise a*
F;b

*
� �! 1 when S! 0. In the optimum cases this also means

that Knew ¼ Knew Sð Þ½ � depends on the signal in such a way that these limiting results are

achieved. The resulting decision process is consistent as S!1. For suboptimum systems

similar results will occur, depending on our choice of test statistic z¼G(X): however, not all

choices lead to consistency.

Similarly, if several successivemonotonicmappings are carriedout, that isx ¼ G1 yð Þand
z ¼ G2 xð Þ ¼ G21 yð Þ, then (1.9.3a) becomes generally

a ¼
ð1

K

q1 yð Þdy ¼
ð1

K1¼G1 Kð Þ
Q1 xð Þdx ¼

ð

K2¼G2 K1ð Þ¼G21 Kð Þ
Q2 zð Þdz; etc:; ð1:9:3bÞ

and for the optimum cases a!a*; y ¼ L, and so on. As noted above, monotonicity

guarantees that a *ð Þ and b *ð Þ remain unchanged in value, although their analytic forms are

now different from the original expressions. The practical importance of this is that it very

often allowsus to evaluateperformanceanalytically,without recourse tonumericalmethods,

by suitable simplifying choices of monotonic transformations (e.g., x¼ log L instead of L
itself).We shall see several examples employing these general results in Sections 3.2–2, 3, 5

subsequently.

41 We recall thatL(X) is a sufficient statistic if specifyingX in addition tox¼L(X) does not in anyway increase our
knowledge of the signal S (which is implicit in L, cf. FJ X Sj Þð ih (1.7.2)). Analytically, [Section 22.1.1 of Ref. [1]

and, p. 1010] the n.þ s. condition that L is a sufficient statistic is the requirement that the pdf

wJ S Lj Þ ¼ Fmono f Sð Þg Lð Þ½ �ð , that is, that wJ is a monotonic function of the factors f, g here.
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In any case, we see that the d-functions in (1.9.1a) and (1.9.2) pick out the regionG* inX-

space for which d*ðg1 XÞ ¼ 1j in the case of a*, with a similar interpretation for b* when

d*ðg0 XÞ ¼ 1:j Figure 1.9 shows the two regions in x-space when x ¼ logLðXÞ, with the

dotted line at x ¼ log K separating the decision regions for H0 and H1.

1.9.1.2 Error Probabilities and Contour Integration [24] Returning to Eqs. (1.9.1a

and 1.9.1b) and (1.9.2) and using the integral exponential form for the d-functions therein,
we can write at once the characteristic functions (c.f.s) associated with the pdfs Q1, P1

F1 ijð ÞQ ¼ EH0
eijlog L Xð Þ
n o

¼
ð

G
eijlog L Xð ÞFJ X 0j ÞdXð ð1:9:4aÞ

F1 ijð ÞP ¼ EH1
eijlog L Xð Þ
n o

¼
ð

G
eijlog L Xð Þ FJ X S uð Þj Þð idX;h ð1:9:4bÞ

for which the corresponding pdfs are, from (1.9.2)

Q1 xð Þ ¼ F�1 F1 ijð ÞQ
n o

¼
ð1

�1
e�ijx dj

2p

ð

G
eijlog L Xð ÞFJ X 0j ÞdXð ð1:9:5aÞ

P1 xð Þ ¼ F�1 F1 ijð ÞP
	 
 ¼

ð1

�1
e�ijx dj

2p

ð

G
eijlog L Xð Þ FJ X S uð Þj Þð idX:h ð1:9:5bÞ

As noted earlier [[1], Eq. (19.32a) and Problem 17.8] there is a simple formal relation

between P1 and Q1, which follows from the identity

ð

G
e�ijxFJ Xj0ð ÞdX � m

ð

G
e ij�1ð Þx FJ XjSð Þh idX; x ¼ logL ¼ m FJ XjSð Þh iu

FJ X 0j Þð ð1:9:6Þ

(which is readily established on using x ¼ logL explicitly in (1.9.6)). Thus, from (1.9.4a

and1.9.4b) it is seen at once thatF1ðizÞQ ¼ me�xF1ðijÞP, so that using this relation in (1.9.5a
and 1.9.5b) gives the desired relation

Q1ðXÞ ¼ me�xP1ðxÞ ð1:9:7Þ

H0 : Q(X) H1 : P(X)

α*

β*

Γ' in X

–x x = log Λ

log K Γ'' in X

FIGURE 1.9 Probability densities and decision regions for x ¼ logL; Eq. (1.7.6).
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which is sometimes useful in the explicit evaluation of error probabilities, particularly when

the (sometimes) easier to evaluate Q1ðxÞ can be found.

Potentially useful alternative relations for the error probabilities, now in terms of the

characteristic functions (1.9.4a and 1.9.4b), can be obtained as follows. Applying (1.9.4a

and 1.9.4b) to (1.9.5a and 1.9.5b), and then in (1.9.1a and 1.9.1b), we first extend the

domain of j by analytic continuation to appropriate regions of the complex j-plane, in order
to ensure convergence of the integrals

Ð1
log K

e�ijxdx;
Ð log K

1 e�ijxdx in the reversal of the

orders of integration which we employed in the above. The results are then the inverse

Fourier transforms

a* ¼
ð1�ic

�1�ic

e�ijlog K

2pij
F1 ijð ÞQdj ¼

ð

Cð�Þ

e�ijlog K

2pij
F1 ijð ÞQdj; ð1:9:8aÞ

and

b* ¼
ð1þic

�1þic

e�ijlog K

�2pij
F1 ijð ÞPdj ¼

ð

CðþÞ

e�ijlog K

�2pij
F1 ijð ÞPdj; ð1:9:8bÞ

whereCð�Þ;CðþÞ are respectively contours extending from�1 toþ1 along the real axis,

indented downward and upward about any singularities on this axis, usually at j ¼ 0, as

shown in Fig. 1.10. (We note the equivalence of the contours ð�1 	 icÞ; ð1 	 icÞ½ � and
Cð�Þ;CðþÞ, since the contributions of the paths A0A

0; A1A
00
; B

00
;B1;B

0B0 vanish at 	1:.)
Simple poles on the j-axis or within the rectangular paths Cð�Þ þ B0B

0 þ A0A0 and

CðþÞ þ B1B
00 þ A

00
A1 are handled in the usual way with the help of Cauchy’s theorem,42

extended to include any branch points by appropriate modification of the contours.

For example, Fig. 1.11 shows some equivalent contours when the integrands (1.9.8a

and 1.9.8b) contain a branch insert at ð¼ 0Þ.43 Equivalent contours are also obtained by

– ∞ – ic

– ∞ + ic

ic
C(+) 0

C(–)

– ic

A'' B''

A' B'

A1 B1

A0 B0

∞ + ic

∞ – ic

∞

FIGURE 1.10 Equivalent contours of integration for the error probabilities a*;b*
� �

, (1.9.8a and

1.9.8b).

42 We cannot use circular arcs j ¼ peifj since r!1 and �p � fj � 0 or 0 � fj � p generally, and have their

contributions vanish, leavingCð	Þ. This depends on F1=j ¼ F ¼ exp �j2=2
� �

; A1 > 0, is a case in point. We can,

however, eliminate A1A
00
by letting 0 ! þ1, etc., withCðþÞ indented upward by «, about any singularities on the

Re z-axis, and so on.
43 A rather extensive discussion of Fourier and Laplace transforms is available in Sections 2.2.4 and 2.2.3 of

Ref. [1], including extensive references, along with applications to filters (Chapter 2), rectification, modulation

(Chapters 5, 12, 13, 15), andBayes detection results (Chapters 19, 20, 23), also in Ref. [1]. SeeRefs. [24] and [41] as

well, along with [42, 43] for related analytical tools.
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setting j ¼ s=i in the above. The result is a rotation by �i ¼ e�pi=2 of the j-plane
contours.42

Finally, it is useful for subsequent applications to provide explicit results for determining

the (class) error probabilities a*;b*
� �

for thevarious types of binaryBayes, that is, optimum

detectors discussed in Chapter 3, along with general expressions of their associated risks

or costs. For this we shall formally employ the c.f.s (1.9.4a and 1.9.4b) to be used in (1.9.8a

and 1.9.8b) directly:

a* ¼
ð

Cð�Þ

e�ijlog K

2pij
F1 ijð ÞQdj b* ¼

ð

CðþÞ

e�ijlog K

�2pij
F1 ijð ÞPdj; ð1:9:9Þ

with the general Bayes case:

(1) General On–Off Bayes.

Section 1:7½ � F1 ijð ÞQ ¼
ð

G
eijlog LFJ Xj0ð Þdx;L Xð Þ ¼ m FJ XjS uð Þð Þh iu

FJ Xj0ð Þ ; ð1:7:2Þ; ð1:7:6Þ;

ð1:9:9aÞ

F1 ijð ÞP ¼
ð

G
eijlog L FJ X S uð Þj Þð iudx;

� ð1:9:9bÞ

R* s; d*
� � ¼ R0 þ p Cb � C1�b

� � K

m
a* þ b*

� �
; ð1:7:1Þ; ð1:7:5Þ; ð1:9:9cÞ

with a*;b* given by (1.9.1a), via (1.9.4a and 1.9.4b) in (1.9.5a and 1.9.5b).

(2) Neyman–Pearson.

Section 1:8:1½ � a* ¼ aF ¼
ð

Cð�Þ

e�ijlogKNP

2pij
F1 ijð ÞQdj;

F1Q ¼ ðEq:1:9:9aÞ;K ¼ KNP aFð Þ
ð1:9:10aÞ

0

ξ = |x|e
π i

ξ = 0 ξ = 0

ξ = 0
ξ = 0

ξ = |x|e
–π i

ξ = |x|e
–2π i

ξ = |x|

+π

–2π

–π
(= –2π + π)

–π

–π

–π
Γ

Γ

Branch line

0 C

0 0 C

FIGURE 1.11 Some equivalent contours of integration when F1ðijÞ=j contains a branch point at

j ¼ 0; [24, 41].
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b*
NP ¼

ð

CðþÞ

e�ijlogKNP aFð Þ

�2pij
F1 ijð ÞPdj; F1P ¼ Eq:ð1:9:9bÞ; ð1:9:10bÞ

R*
NP s; d*NP
� � ¼ C0 pb*

NP þ KNP aFð ÞqaF

� �
; Eqs:ð1:7:7a and 1:7:7bÞ; ð1:8:5Þ:

ð1:9:10cÞ

(3) Ideal-Observer.

Section 1:8:2½ � a*
I ¼

ð

Cð�Þ
F1 ijð ÞQ

dj

2pij
; ð1:9:9aÞ for F1 ijð ÞQ; K ¼ 1ð Þ; ð1:9:11aÞ

b*
I ¼

ð

CðþÞ
F1 ijð ÞP

dj

�2pij
; ð1:9:9bÞ for F1 ijð ÞP; ð1:9:11bÞ

R*
I s; d*I
� � ¼ C0 qa*

I þ pb*
I

� �
; Eqs: ð1:8:7a and 1:8:7bÞ: ð1:9:11cÞ

(4) Minimax.

Section 1:8:3½ � F1 ijð ÞQM
¼
ð

G
eijlogLMFJ Xj0ð Þdx; L ¼ LM ¼ mM FJ XjS uMð Þð Þh iuM

FJ X 0j Þð
ð1:9:12aÞ

F1 ijð ÞPM
¼
ð

G
eijlogLM FJ XjS uMð Þð Þh iuMdx; cf: ð1:9:9a and 1:9:9bÞ ð1:9:12bÞ

R* s*
M; d

*
� � ¼ R0 þ p Cb � C1�b

� � K

m
a*
M þ b*

M

� �
; ð1:9:12cÞ

a* !a*
M; b* !b*

M fixed and determined from (1.9.12a and 1.9.12b) in (1.9.9a

and 1.9.9b).

(5) MAP Detectors, MAP1,2.

½Section 1:8:4� F1 ijð ÞQ�MAP1
¼
ð

G
eijlogLMAP1FJ Xj0ð Þdx;

L Xð ÞMAP1
¼

mFJ XjS pû
*

p¼1

� �� �

FJ Xj0ð Þ ; cf:Eq: ð1:8:16Þ
ð1:9:13aÞ

F1 ijð ÞP�MAP1
¼
ð

G
eijlogLMAP1 FJ X S uð Þj Þð iudx

� ð1:9:13bÞ

[Here the actual or “true” pdf wL uð Þ is known, in order to obtain û* in the maximization

process, cf. (1.8.13a) et. seq. Hence h iu involves wL uð Þ in FJh iu(1.9.13b): pû
*
Xð Þp¼1 is

the required unbiased estimate of S.]
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We observe that a*
MAP1

; b*
MAP1

, follow from (1.9.13a and 1.9.13b) in (1.9.8), cf. (1.9.9c).

Also, that

R*
MAP1

¼ R* s; d*MAP1

� �
¼ R0 þ p Cb � C1�b

� � K

m
a*
MAP1

þ b*
MAP1

� �
; cf: ð1:8:7Þ and ð1:9:13cÞ;

MAP2.

F1 ijð ÞQ�MAP2
¼
ð

G
eijlogLMAP2FJ Xj0ð Þdx; L Xð ÞMAP2

¼
m FJ XjS pû

*

p¼1juniform
� �� �D E

FJ Xj0ð Þ
cf: ð1:8:19Þ : here wL uð Þ � uniform u 2 Wu

;

8
>><

>>:

ð1:9:14aÞ

F1 ijð ÞP�MAP2
¼
ð

G
eijlogLMAP2 FJ X S uð Þj Þð iu: uniformdX;

� ð1:9:14bÞ

ða*;b*Þp�MAP2
follow from (1.9.5a and 1.9.5b) in (1.9.8).

R*
ðuniform;d*MAP2

Þ ¼ R0 þ pðCb � C1�bÞðK
m
a* þ b*ÞMAP2

ð1:9:14cÞ

(6) Sequential Detection. Here a;b are preset: the test statistic is

Section 1:8:5½ �L ¼ L XjJð Þ ¼ m
FJ XjS uð Þð Þih u

FJ Xj0ð Þ ð1:9:15aÞ

b

1� a
< L Xj jð Þ < 1� b

a
: continue test; j! J þ 1;

L XjJ*ð Þ � 1� b

a
: decideH1; L XjJ*� �

<
b

1� a
: decideH0

j! J* : terminating sample size:

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð1:9:15bÞ

R*
seq s; d*seq

� �
¼ qaCa þ pbCb þ pC0 min

d! d*seq

J X S; Jj Þ*
� E*

X
:

�
ð1:9:15cÞ

In all of the above (except (6)) we observe that the various error probabilities a*;b*
� �

are

also functions of the prior probabilities (p, q), as well as the parameters u of the signal and of
the noise, through logLð Þ of the various optimal detectors above. When it is the signal

waveform S with which we are directly concerned, rather than its parameters u, we simply

replace S(u), and so on, with S, or pŜ
*
and so on, cf. (5) for the MAP detectors. All of the

detectors are optimal within the general Bayesian framework here. However, since they all

provide likelihood-ratio tests representativeof the level of optimumperformancewhich they

demand, they differ in their average costs of decision (Bayes risk). This occurs primarily

because of the various constraints imposed upon the signal parameters and their distribu-

tions: themore constrained and themore approximative of the actual distributions, the larger

the Bayes risk. Thus, ignorance of the true distribution imposes an average risk penalty,

64 RECEPTION AS A STATISTICAL DECISION PROBLEM



cf. remarks in Section 1.8.3, which can be determined by comparing R*, (1.9.9c), with the

other average risks, (1.9.10c), (1.9.11c), and so on.

1.9.2 Error Probabilities: Suboptimum Systems

TheapproachofSection1.9.1 is in noway restricted to optimumsystems. For example, in the

case of an actual preselected detection system, with a threshold K 0 (implying at least a cost

ratio), and a structure represented by GðXÞ [ 6¼ LðXÞ usually] the conditional probabilities
of the Type I and Type II errors are now described by analogues of (1.9.1a,b), namely,

a ¼
ð1

logK0
dz

ð

G
FJ Xj0ð Þd z� logG Xð Þ½ �dX ¼

ð1

logK0
q1 zð Þdz ð1:9:16aÞ

b ¼
ðlogK 0

�1
dz

ð

G
FJ XjS uð Þð Þh iu or Sd z� logG Xð Þ½ �dX ¼

ðlogK 0

�1
p1 zð Þdz: ð1:9:16bÞ

The conditional error probabilities a0;b0, Eq. (1.6.13a), are again obtained on omitting the

average h iu or S over parameters or waveform. The distributions (pdfs) of y ¼ logGðXÞ are
respectively given by (1.9.2), with LðXÞ replaced byGðXÞ underH0,H1. The c.f.s of q1, p1
are likewise described by

F1 ijð Þq1 ¼ EH0
eilog G Xð Þ
n o

¼
ð

G
eijlog G Xð ÞFJ X 0j ÞdXð ð1:9:17aÞ

F1 ijð Þp1 ¼ EH1
eilog G Xð Þ
n o

¼
ð

G
eijlog G Xð Þ FJ X S uð Þj Þð iu or SdX;

� ð1:9:17bÞ

cf. (1.9.4a and 1.9.4b). [Figure 1.9 applies here also, provided that we replace K by K 0, a*

by a0, Q1 by q1, etc.]

The same procedure used to obtaina* andb*, (1.9.8a and 1.9.8b) et. seq., applies directly

here for a and b. We have directly

a ¼
ð1�ic0

�1�ic0

e�ijlogK 0

2pij
F1ðijÞq1dj ¼

ð

Cð�Þ0

e�ijlogK 0

2pij
F1ðijÞq1dj ð1:9:18aÞ

b ¼
ð1þic0

�1þic0

e�ijlogK0

�2pij
F1ðijÞp1dj ¼

ð

CðþÞ0

e�ijlogK 0

�2pij
F1ðijÞp1dj; ð1:9:18bÞ

where c0;Cð
Þ0 are similar to c;Cð
Þ in (1.9.8a and 1.9.8b) and in Fig. 1.10. Note, however,
that the relation (1.9.7) connecting the pdfsQ1 andP1 ofx ¼ logLðXÞunderH0 andH1 does

not hold for q1 and p1, cf. (1.9.16a and 1.9.16b). On the other hand, it is still true if

u ¼ FðzÞ; z ¼ GðXÞ; that for anymonotonic functionFðzÞ;a andb remainunchanged: here

F ¼ log z ¼ logGðXÞ specifically, (1.9.3a) above.
Accordingly, with (1.9.16a and 1.9.16b) or (1.9.18a and 1.9.18b), we are able, at least

in principle, to determine the average risk Rðs; dÞ

½ð1:6:11Þ� : R s; dð Þ ¼ R0 þ q Ca � C1�að Þaþ p Cb � C1�b

� �
b ð1:9:19Þ
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cf. (1.6.11a and 1.6.11b), and then compare the performance of the suboptimum system

GðXÞ, or logG, with that of the corresponding Bayes detectors (Sections 1.8 and 1.9.1), as
outlined below.

1.9.3 Decision Curves and System Comparisons

The relations (1.9.1a and 1.9.1b) with the Bayes riskR*, (1.7.7), and with the average riskR,

enable us to compare the performance of actual and optimum systems for the same purpose

and of course for the same input signals and noise statistics.

We note first that the error probabilities a*;b* and a;b, which appear in R* and in R,

are functions of a0, the input signal-to-noise [(rms) amplitude] ratio44, defined according to

a0 ¼ S2
� �

= N2
� �� �1=2

. Curves of average risk as a function of a0 (or of any other pertinent

signal parameters such as sample size J, and other structure parameters) are called decision

curves. It is in terms of these that specific system comparisons may be made. Figure 1.12

illustrates a typical situation, involving an ideal and an actual detection system for the same

purpose.44 Thus, if we choose the same threshold (K¼K0) and assign the same costs

[Eq. (1.6.6)] to each possible decision, then the average risk R for all a0 will exceed the

corresponding Bayes risk R*, as indicated.

One definition ofminimum detectable signal45is that input signal-to-noise ratio a0ð Þmin

that yields an average risk R0 that is some specified fraction of the maximum average risk,

that is, the a0 for which R0 ¼ hRmax 0 < h < 1ð Þ. (Rmax, in physical situations at least,

occurs for a0 ¼ 0.) System comparison can now be carried out in a variety of ways,

of which the following are some examples (Fig. 1.12):

(1) a0ð Þ*minh, versus a0ð Þminh (in general, R0 6¼ R*
0 for the same h);

(2) a0ð Þ*minh1
, versus a0ð Þminh1

(for R*
0 ¼ R

00
0, which determines h1;h2);

(3) R*
0 versus R

0 [for the same a0ð Þ*minh].

Another definition of the minimum detectable signal, a20
� �*

min
6¼ a20
� �2

minh

� �
which is

explicitly related to detector structure and performance and easier to calculate, is obtained

Average cost

0

R
Rmax

R*
max

R*
0(R'' )

(a0
*)min –η

(=a0
*)min –η1

(a0
  )min –η2

a0
  

(a0
  )min –η

R'
R0

R*(Bayes)

FIGURE 1.12 Typical situations of comparison, showing average and Bayes risks and minimum

detectable signals.

44 Frequently,a0 is randomover the signal class, so that the appropriate ratio is �a0, or a20 , and so on, depending on the

system. See the examples in Section 3.2 ff.
45 See Sections 19.3.3, 20.3.1, 20.4 of Ref. [1] and Refs. [1, 2] of Chapter 19, Ref. [1] for more details.
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from the detection parameter. This quantity, in turn, explicitly determines the performance

probabilities P
ð*Þ
D , or P

ð*Þ
D and P

ð*Þ
F in the optimum and suboptimum cases. It is defined and

discussed in detail in Section 3.1.2 and is employed throughout this book.46

1.9.3.1 Betting Curves Another decision curve, also useful for comparison, is the

betting curve, introduced originally by Siegert [40], which relates the probability

W1 a0; Jð Þ of a correct decision (Section 19.3.3 [1]) to the input signal-to-noise ratio a0.

This is defined by

W1 a0; Jð Þ ¼ 1� aqþ bpð Þ ¼ 1� PF þ PDð Þ: ð1:9:20Þ

For optimum systems Eq. (1.9.20) thus becomes

W1 a0; Jð Þ ¼ 1� a*qþ b*p
� � ¼ 1� P*

D þ P*
F

� �
: ð1:9:20aÞ

For the Neyman–Pearson and Ideal Observer we may replace a and b by the appropriate a*

and b* [Eqs. (19.4.1a and 19.4.1b) in [1]], since these systems were shown in Sections 1.8.1

and 1.8.2 to be Bayes with suitable assumptions on the cost ratio (Fig. 1.13).

It is often convenient to use normalized betting curves, defined by ((20.135a and

20.135b) of Ref. [1]), which for the Neyman–Pearson and Ideal Observer become

specifically here

W1 a0; Jð ÞNP ¼ W1jNP � qa*
F

� �
= 1� qa*

F

� �
; ð1:9:21aÞ

W1 a0; Jð ÞI ¼ W1�I � p or qð Þ½ �= 1� p or qð Þ½ �; ð1:9:21bÞ

where (p or q)means that the larger of the two is to be used, andW1 is given by (1.9.20). The

Bayes risks (1.8.2) and (1.8.7a) can be expressed more compactly in terms of the betting

curve (1.9.20a) by

R*
NP ¼ C0 1�W1�NP þ aNPq KNP � 1ð Þf g; ð1:9:22aÞ

R*
I ¼ C0 1� W1�Ið Þf g; ð1:9:22bÞ

46 Examples of a20
� �

min
are also noted in Sections 20.3 and 20.4 of Ref. [1].

Probability of correct decisions

(Bayes)
1.0

0.5

0
0

(v)

a0
(a0

*)min – v

(a0
  )min – v

FIGURE 1.13 Betting curves and associated minimum detectable signals.
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with more involved forms when theW1s are replaced by their normalized representation.

The conditional probabilities may be calculated as before [cf. Eqs. (1.9.1a and 1.9.1b)

and (1.9.16a and 1.9.16b)] and may be used in a similar way for system comparison, with

the minimum detectable signal defined now in terms of an input which leads to a given

percentage n of successful decisions at the output (cf. Fig. 1.9). Each point on the betting
curve, considered as a function ofa andb, corresponds to a point on the risk curve,which is
also a function of these a; b. Thus, comparisons in terms of “success” are equivalent to

those on a risk basis (except for the scale that sets the absolute cost).

1.9.3.2 Performance versus Sample Size An additional description and comparison of

systemperformance, often of considerable interest, is given by the behavior of theminimum

detectable signal as a function of the acquisition, or integration time T (�J, the sample size).

This relationship is found from the set of average risk curves [Eq. (1.6.11)] (cf. Fig. 1.12)

or the betting curves [Eqs. (1.9.20 and 1.9.20a)], as J assumes all allowed values. The

examples considered in Section 20.4, [1] provide some further illustrations.

1.9.3.3 Other Performance Measures Still another variant of the general average risk

curve is given by the probability of successfully deciding that a signal is present (i.e., the

alternative hypothesis H1), as a function of input signal-to-noise ratio or other significant

system parameters, for example, the decision or “deflection” parameter. Thus, one may use

the conditional probability P*
D ¼ 1� b*, or the total probability P*

D ¼ pp*D ¼ p 1� b*
� �

,

versus a0, T (or J), and so on, for optimum systems. Here, usually,a ¼ a*
F

� �
is fixed, so that a

Neyman–Pearson system is essentially employed. For suboptimum systems, one has

similarly PD ¼ ppD ¼ p 1� bð Þ, versus a0, and so on, for the desired performance curve

and system comparisons.

It is also sometimes convenient to use a normalized decision curve for definingminimum

detectable signals and making system comparisons. However, since normalization is an

arbitrary procedure, there is no unique or compelling general reason for doing it. In any case,

for system comparison care must be taken that common criteria be used under identical

conditions. This usually means that comparisons should be made on the basis of the

unnormalized or absolute risk curves instead, since normalization may sometimes disguise

or diminish significant differences.

We remark, finally, that in the construction, operation, and evaluation of these binary

detection processes we have assumed that the signal parameters, or their average values, if

they are originally random, are known or preset beforehand from a decision curve and that

they are then inserted intoL [Eq. (1.7.2)] so that the scale ofL can be fixed and an actual test

[Eq. (1.7.4a)] carried out with the same parameter values. However, it may be that these

“true” parameters, that is, the values actually occurring when a signal is present or average

values appropriate to the signal class in question, are not given beforehand, inwhich case the

test ofEq. (1.7.4) can still be carriedout, butweare unable to specify the error probabilitiesa,
b uniquely and so cannot determine the Bayes or average risk uniquely. We note some

examples of this in the case of the Bayes sequential detectors referred to in Section 1.8.5.

For themost part, however, it is not unrealistic to assume at least a knowledge of the required

moments of the signal parameters or by some such process as Minimax, to define a class of

Bayes receivers for the problem at hand which guards against least favorable situations in

some operationally meaningful sense. Unless otherwise indicated, we shall assume hence-

forth that the appropriate statistics of the signals (and noise) parameters are specified

and used.
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1.10 BINARY TWO-SIGNAL DETECTION: DISJOINT AND

OVERLAPPING HYPOTHESIS CLASSES

The previous on–off analysis here in this chapter is readily extended to the binary two-signal

detection cases, where the hypothesis situation is now H1 : S1 � N versusH2 : S2 � N. The

two-signal cases are important in many telecommunications applications (Chapter 3 ff.) and

when S1 or S2ð Þmay represent an interfering or otherwise unwanted signal in radar and sonar

environments. It is therefore both useful and instructive to generalize the on–off formalism to

include thepresenceofa signalofclassS2 (innoise)vis-à-visa signalofClassS1 (also innoise).

Unlike the on–off cases of the preceding sections, where the hypothesis classes are required

always to be disjoint [cf. Fig. 1.1b and remarks after Eq. (1.6.3)], there is the additional

possibility that the two-signal classes may overlap and thus be nondisjoint. For this latter

situation, however, a more sophisticated viewpoint is required [44], as will be seen below.

1.10.1 Disjoint Signal Classes

We consider first the simpler case of disjoint signal classes, where now W ¼ W1 þW2 and

W1 \W2 is empty. In place of (1.6.5), we have

s Sð Þ ¼ p1w1 S1ð Þ þ p2w2 S2ð Þ; and
ð

W
s Sð ÞdS ¼ 1; ð1:10:1Þ

this last as before (cf. remarks after Eq. (1.6.5)), since p1 þ p2 ¼ 1, with p1 and p2,

respectively, the a priori probabilities of a signal of Class 1 (or 2) occurring in the data

sample X. Equation (1.6.4) becomes

ð

W1

w1 S1ð ÞdS1 ¼
ð

W2

w2 S2ð ÞdS2 ¼ 1; ð1:10:2Þ

withw1; w2 the pdfs of S1 and S2, or their respective randomparameters u1; u2 in S1;2 u1;2
� �

.

Equation (1.6.3) and cost matrix (1.6.6) are modified in an obvious way to

d g1jXð Þ þ d g2jXð Þ ¼ 1; C S; gð Þ ¼ C
ð1Þ
1 C

ð1Þ
2

C
ð2Þ
1 C

ð2Þ
2

" #

; g ¼ g1; g2½ �: ð1:10:3Þ

now with C
ð1Þ
1 < C

ð1Þ
2 ; C

ð2Þ
2 < C

ð2Þ
1 to ensure again that “failure” is more expensive than

“success” cf. (1.6.6a), andwhere the upper index as before designates the true state of affairs

and the lower the associated decision. The average risk (1.6.7) is accordingly modified to

R s; dð Þ ¼ ÐG p1C
ð1Þ
1 FJ XjS1ð Þh i1 þ p2C

ð2Þ
1 FJ X S2j Þð i2
� �

d g1jXð Þ
hn

þ p2C
ð1Þ
2 FJ XjS1ð Þh i1 þ p2C

ð2Þ
2 FJ XjS2ð Þh i2

h i
d g2jXð ÞgdX ð1:10:4Þ

in which

pi FJ XjSið Þh ii ¼
Ð
G s Sið ÞFJ XjSið ÞdSi ¼ pi

Ð
Si or ui

wi Si or uið ÞFJ X Sij ÞdSi or duið Þ; i ¼ 1; 2;ð
ð1:10:4aÞ

for averages over signal waveform Si, or parameters ui in Si uið Þ.
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The error probabilities are similarly modified:

a!b
ð1Þ
2 � b

ð1Þ
2 g2jH1ð Þ ¼ conditional probability of incorrectly deciding that a Class 2

signal is present; when actually a Class 1 signal occurs;

)

b!b
ð2Þ
1 � b

ð2Þ
1 g1 H2j Þ ¼ the reverse of the above:ð

ð1:10:5aÞ

Similarly, the respective conditional probabilities of correct decisions are

b
ð2Þ
2 ¼ b

ð2Þ
2 g2 H2j Þ; b

ð1Þ
1 ¼ b

ð1Þ
1 g1 H1j Þ;ð

�
ð1:10:5bÞ

with p2b
ð2Þ
2 ; p1b

ð1Þ
1 ; p2b

ð2Þ
1 ; p1b

ð1Þ
2 the corresponding total probabilities of correct and

incorrect decisions.

The average risk takes the compact forms:

R s; dð Þ ¼ p1C
ð1Þ
1 þ p2C

ð2Þ
2

� �
þ p2 C

ð1Þ
2 � C

ð2Þ
1

� �
b
ð1Þ
2 þ p2 C

ð2Þ
1 � C

ð2Þ
2

� �
b
ð2Þ
1 ; or

ð1:10:6aÞ

R s; dð Þ ¼ p1C
ð1Þ
2 þ p2C

ð2Þ
1

� �
� p1 C

ð1Þ
2 � C

ð1Þ
1

� �
b
ð1Þ
1 � p2 C

ð2Þ
1 � C

ð2Þ
2

� �
b
ð2Þ
2 ; ð1:10:6bÞ

the former in terms of the error probabilities, the latter in terms of the probabilities of

correct decision.

1.10.2 Overlapping Hypothesis Classes (F. C. Ogg Jr. [44])

When the signal classes S1; S2 are not disjoint but overlap (i.e., S1 [ S2 6¼ 0), the usual

definitions of correct and incorrect decisions are no longer valid, since it is no longer certain

whether or not an error has been made. Let us suppose, for example, that signal class S1
consists of deterministic signals of the type S u1ð Þ and signal class S2 of the type S u2ð Þ, where
the waveforms (S) of the two classes are the same and each has the same type of random

parameter(s); for example, u1; u2 ¼ u in both instances represent a common set of random

parameters, butwith different distribution densities,w1 uð Þ 6¼ w2 uð Þ. Anygiven signalSmay

belong to either signal class, but S will usually belong to one class with greater probability

than to the other. It is reasonable to assign to the more probable decision a lesser cost. Thus,

if u ¼ a represents a random amplitude, for instance, and if the amplitude a of a particular S

lies close to the mean value of w1 að Þ but well out on the “tail” of w2 að Þ, a larger value is
assigned to the loss functionF S; g2ð Þ than to the loss functionF S; g1ð Þ for themore probably

correct decision.

Accordingly, it is clear that the cost assignment shouldbe related to theprobability that the

signal belongs to each of the classes. This can be accomplished in a variety of ways, but the

simplest is to require specifically that (1) F S; gð Þ be continuous in the prior probabilities

p1; p2;w1;w2ð Þ and (2) thatF S; gð Þ reduce to the usual cost assignmentswhenever the signal

belongs to a disjoint signal class S1 \ S2 ¼ 0ð Þ. For the systems considered here, based on

constant preset costs, an extension of the “constant” cost functionF1, Eq. (1.4.3), satisfying
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these conditions is [44]

C S; gið Þ ¼ C
ðiÞ
1 p1w1 uð Þ þ C

ðiÞ
2 p2w2 uð Þ

h i
=s uð Þ i ¼ 1; 2 ð1:10:7Þ

where s uð Þ ¼ p1w1 uð Þ þ p2w2 uð Þ is the prior of u for deterministic signals S uð Þ. In general,
we have for signal waveforms

C S; gið Þ ¼ C
ðiÞ
1 p1w1 Sð Þ þ C

ðiÞ
2 p2w2 Sð Þ

h i
=s Sð Þ ð1:10:8Þ

with s Sð Þ given by Eq. (1.10.1). Thus, by a similar argument Eq. (1.10.8) applies for the

case of completely stochastic signals S, where now w1 Sð Þ 6¼ w2 Sð Þ. With Eq. (1.10.7)

and (1.10.8) the average risk R s; dð Þ reduces to the original expression (1.10.4) for disjoint
classes. Overlapping classes that involve the null signal (S¼ noise alone) are handled in

the same way, now with

C S; gið Þ ¼ C
ðiÞ
0 qw0 Sð Þ þ C

ðiÞ
1 pw1 Sð Þ

h i
=s Sð Þ i ¼ 0; 1; ð1:10:9Þ

where s Sð Þ is given by (1.6.5) and R s; dð Þ by (1.6.7), and so on. In this way we unite the

treatment of overlapping and nonoverlapping signal classes, employing the formalismof the

latter as before but now including all the signal types of practical interest.

Let us next calculate the average risk, based on (1.6.7), and determine the minimum

average (i.e., Bayes) risk.We observe first that the average risk (1.6.7) must first contain the

component exhibited in (1.6.7), here for the two original cases obeying (1.10.7), namely,

R s; dð Þ ¼ ÐG p1C
ð1Þ
1 FJ X Sð1Þ

��
�� E

þ ð Þ
D o

þ p2C
ð2Þ
2 FJ X Sð2Þ

��
�� E

þ ð Þ
D on i

d g1jXð ÞdX
nh

þ p1C
ð1Þ
2 FJ X Sð1Þ

��
�� E

þ ð Þ
D o

þ p2C
ð2Þ
2 FJ X Sð2Þ

��
�� E

þ ð Þ
D on i

d g2 Xj ÞdX;ð
nh

ð1:10:10aÞ

where the components of the disjoint (i.e., nonoverlapping) component are explicitly given.

The quantities
�
FJ

�
X SðiÞ

�� ¼ ÐWwi

�
u
�
FJ

�
X SðiÞ

�
u
��
du; i ¼ 1; 2

���� , here. The overlap con-

tributions are seen to be from (1.10.7):

coefficient of d
�
g1jX

�
: C

ð1Þ
2 p2 FJ

�
X
��Sð2Þ

�D E
; C

ð1Þ
2 p1 FJ

�
X
��Sð1Þ

�D E)

:
coefficient of d

�
g2jX

�
: C

ð2Þ
1 p2 FJ

�
X
��Sð2Þ

�D E
; C

ð2Þ
1 p1 FJ

�
X
��Sð1Þ

�D E
ð1:10:10bÞ

Using the relation d
�
g1 X

� ¼ 1� d
�
g2 X

�
:

���� a decision is always made, and dividing

(and multiplying) each term in (1.10.10a) by qF
�
X 0
��� , we obtain

R
�
s; d

�¼
ð

G
qFJ

�
X
��0
��
C
ð1Þ
1 Lð1Þ þ C

ð1Þ
2 Lð2Þ þ C

ð2Þ
1 Lð2Þ þ C

ð1Þ
2 Lð1Þ �dX

þ
ð

G
qFJ

�
X
��0
���

C
ð1Þ
2 Lð1Þ þ C

ð2Þ
1 Lð2Þ þ C

ð2Þ
2 Lð2Þ þ C

ð2Þ
1 Lð1Þ�

��Cð1Þ
1 Lð1Þ þ C

ð1Þ
2 Lð2Þ þ C

ð2Þ
1 Lð2Þ þ C

ð1Þ
2 Lð1Þ�� � d�g2 X

�
dX;

�� ð1:10:11aÞ
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where Lð1Þ ¼ p1
Ð
W FJ

�
X Sð1Þ

�
w1

�
u
�
du; Lð2Þ ¼ p2

Ð
W FJ

�
X Sð2Þ

�
w2

�
u
�
du:

���� The first term

of (1.10.11a) reduces to the irreducible risk

R02 � p1C
ð1Þ
1 þ p2C

ð1Þ
2 þ p2C

ð2Þ
1 þ p1C

ð1Þ
2 ¼ p1

�
C
ð1Þ
1 þ C

ð1Þ
2

�þ p2
�
C
ð1Þ
2 þ C

ð2Þ
1

�
> 0;

ð1:10:11bÞ
Since FJ

�
X 0
� � 0

�� , the second term is clearly minimized when d
�
g2 X

� ¼ 1
�� , that is a

(nonrandom) decision is made that signal Sð2Þ is present, where the expression in [ ] is set

equal to zero. This latter gives us the result (collecting Lð2Þs and Lð1Þs)

Lð2Þ�Cð2Þ
1 þ C

ð2Þ
2

�þ Lð1Þ�Cð1Þ
2 þ C

ð2Þ
1

� � Lð1Þ�Cð1Þ
1 þ C

ð1Þ
2

�þ Lð2Þ�Cð1Þ
2 þ C

ð2Þ
1

�
;

;Lð2Þ�Cð2Þ
2 � C

ð1Þ
2

� � Lð1Þ�Cð1Þ
1 � C

ð2Þ
1

�
;

and since “failure” is more expensive than “success;” that is; C
ð1Þ
2 � C

ð2Þ
2 ; C

ð2Þ
1 � C

ð1Þ
1 > 0; we

have finally

d
�
g2jX

� ¼ 1; ;d
�
g1jX

� ¼ 0; if Lð2Þ >

 
C
ð2Þ
1 � C

ð1Þ
1

C
ð1Þ
2 � C

ð2Þ
2

!

Lð1ÞorLð2Þ � K12Lð1Þ; K12 > 0

ð1:10:12Þ
For the decisions d

�
g1 X

� ¼ 1;
�� we have d

�
g2 0

� ¼ 0
�� and Lð2Þ � K12Lð1Þ. It is to be noted

that the effects of overlap Eq. (1.10.10b) leave the decision process unchanged: they are the

same as for the nonoverlapping cases. This is a direct consequence of the choice of cost

function (1.10.7), which now unites the treatment of both types of signal class (overlapping

and nonoverlapping), as stated above. We observe, however, that the irreducible risk R02

(1.10.11b) contains four terms rather than two
�
p1C

ð1Þ
1 þ p2C

ð2Þ
1

�
. Figure 1.14 shows the

decision regions for (1.10.12), in logarithm forms, that is, logL2 versus logL1 þ logK12.

The case of overlapping classes involving the null signal (1.10.9) follows at once. Setting

2 equal to 1, and 1 equal to 0 in the above gives the result

decide d
�
g1jX

� ¼ 1 : Lð1Þ � �C
ð1Þ
0 � C

ð0Þ
0

C
ð0Þ
1 � C

ð1Þ
1

�
; orLð2Þ � K01;K01 > 0

�
and d

�
g0jX

� ¼ 0
�

decide d
�
g0jX

� ¼ 1 : Lð1Þ < K01�
and d

�
g1jX

� ¼ 0
�

9
>>>>=

>>>>;

: ð1:10:13Þ

0

logΛ2

logΛ1

Λ1 > Λ2

Λ 2 
> Λ 2

log K12 > 0

FIGURE 1.14 Decision regions for L1 and L2, for K12 > 1; for 0 < K12 � 1 the boundary lies

below the dotted line.
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The irreducible risk, however, remains unchanged, namely, (1.10.11b). For stochastic

signals (S), S replaces the deterministic S(u) in (1.10.10a)–(1.10.13). Finally, we observe

fromSection 4.2 following that these results are extendable to the (Kþ1)-ary orK-ary signal

classes: the decision process remains the disjoint result, but the irreducible risks and Bayes

risks are themselves different.

The error probabilities, average, and Bayes risks, are obtained here from (1.6.8) and

Section 1.6.2 generally. The results are

bð1Þ ¼
ð

G
F
�
X Sð1Þ

���
E
d
�
g2jX

�
dX; bð2Þ ¼

ð

G
F
�
X Sð2Þ

���
E
d
�
g1 X

�
dX

��
D�

ð1:10:14Þ

R
�
s; d

� ¼ p1
�
C
ð1Þ
1 þ C

ð1Þ
2

��
1� bð1Þ�þ p2

�
C
ð1Þ
2 þ C

ð2Þ
1

�
bð2Þ

þ p1
�
C
ð1Þ
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ð2Þ
1

�
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ð2Þ
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��
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�
C
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ð2Þ
2

�
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and47 for optimality, we have

R
�
s; d

�* ¼ p1
�
C
ð2Þ
1 � C

ð1Þ
1

�
bð1*Þ þ p2

�
C
ð1Þ
2 � C

ð2Þ
2

�
bð2*Þ þ R02: ð1:10:15bÞ

The evaluation of bð1*Þ; bð2*Þ associated with the Bayes risk, and in the suboptimum cases,

is formally accomplished in Section 1.9. In the case of the null signal, we have

R
�
s; d

�* ¼ p0
�
C
ð1Þ
0 � C

ð0Þ
0

�
a* þ p1

�
C
ð0Þ
1 � C

ð1Þ
1

�
b* þ R01 ð1:10:16Þ

with
�
a*;b*

�! �
a;b

�
in the average (nonoptimal) risk.

1.11 CONCLUDING REMARKS

In this first chapter we have obtained some of the principal concepts and techniques used in

SCT,based on the fundamental viewpoint of aBayesian statistical decision theorydeveloped

mainly in the mid-twentieth century. A concise topical description of the major elements of

both may be gleaned from Sections 1.1–1.10 above, which in turn contain the guiding

principles and definitions as well as generic examples. Their implementation is one of the

principal aims of the present book, along with the extension to random space-time fields.

Another is the general use of discrete sampling methods, in conjunction with the physical

world of four-dimension, namely space and time, as distinct from earlier analyses devoted to

stochastic time processes alone. Thus, to summarize briefly, we employ Sections 1.1–1.5 to

provide the formal structure of SDT, basically, a concise description of the fundamental

concepts involved. Sections 1.6–1.8 are an illustrative introduction to binary detection and a

variety of optimization procedures, with the extension in Section 1.10 to a two-signal binary

formulation, in which disjoint and overlapping signal classes are treated.

Optimality, and its approximation, is another goal of the analysis, in conjunction with the

Bayesian philosophy used here, with possible constraints imposed by system demands and

always subject to the specifics of the physical environment. As will be seen (in Chapters 8, 9

47 Here we require “failure” always to be more expensive than “success,” so that C
ð2Þ
1 > C

ð1Þ
1 ;C

ð1Þ
2 > C

ð2Þ
2 :
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particularly), the propagation physics needs to be specifically introduced, as it is in many

ways a major controlling factor in successful operation. Thus, the physics of the channel in

pertinent detail is required. The convenient “black box” approach of additive Gaussian and

(often) deterministic interference, with ad hoc statistics, loosely based on a postulated

randomprocess, inmanycasesdoesnot represent a full or realisticmodel of the environment.

In Chapter 9, we shall quantitatively describe non-Gaussain noise (fields and processes)

based on the underlying noise mechanisms, with attention to their spatial as well as their

temporal properties. Here our aim is to provide probability distributions (or densities), not

just the lower order moments.

In Chapter 2 following, we shall begin this journey from generality to statistical detail by

considering first the space–time covariance of a noise field and various conditions that

determine its properties. Other relations then follow, in particular the four-dimensional

Wiener–Khintchin (W–Kh) theorem.
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2
SPACE–TIME COVARIANCES AND
WAVE NUMBER FREQUENCY
SPECTRA: I. NOISE AND SIGNALS
WITH CONTINUOUS AND DISCRETE
SAMPLING

The purpose of Chapter 2 is to introduce directly and in more detail the various statistical

elements of the generic communication process. This is principally a channel phenomenon,

determined by the physical properties of the medium through which propagation of signals

and noise is effected. In dealing with both noise and signal, we must account for their

statistical elements in signals with random parameters, for interference and noise fields,

which are principally random. For our initial discussion, we shall assume that the noise

process and noise fields are purely random (i.e., have no deterministic component). More

complex environments can then be readily introduced, with “memory,” as we shall see in

Chapters 8–9.

Webeginwith the random space–timefield and specificallywith its fundamental statistic,

the space–timecovariance,which includes itswavenumber frequency (WNF) transform, the

intensity spectrum. This dual relationship is well known as theWiener–Khintchine (W–Kh)

theorem (Section 3.2 [1a] of Ref. [1]) in its familiar temporal frequency form for random

processes. Sincewearedealingwithfields throughout,wemust complywith its extensions to

four dimensions, for example, space–time and its transmission to wave number frequency.

(Yaglom [2] gives an extended rigorous mathematical treatments in small doses; we shall

consider the discrete four-dimensional case (Sections 2.1 and 2.2).)

In Section 2.1, inhomogeneous and nonstationary covariances are specifically consid-

ered. In Section 2.2, we provide an analysis of the intensity spectrum and its associated

Non-Gaussian Statistical Communication Theory, David Middleton.
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covariance function for inhomogeneous, nonstationary (i.e., non-Hom-Stat) random fields,

as well as for the more commonly assumed Hom-Stat and isotropic Hom-Stat cases. In

particular, this includes the Wiener–Khintchine relations and their extensions to the

more general non-Hom-Stat situations ([1] Section 3.2.3,[3], [4]), which are important for

detection and estimation involving both Gaussian and non-Gaussian noise. We conclude in

Section 2.5 with an introductory discussion of apertures and arrays, followed by a brief

summary of the main results of the chapter in Section 2.6.

We remind the reader that the space–time formulation presented here (and throughout)

involves for the most part discrete sampling, with sample numbers as described in

Section 1.3.1.

2.1 INHOMOGENEOUS AND NONSTATIONARY SIGNAL AND NOISE
FIELDS I: WAVEFORMS, BEAM THEORY, COVARIANCES, AND

INTENSITY SPECTRA

Beforewe can obtain explicit results, namely, optimum detection and extraction algorithms

and their associated performance, we must construct relevant models of the received noise

fields involved, structures that necessarily embody their physical content. For example,

signals can be deterministic or random, broadband or narrowband. Noise fields are usually

nonstationary and inhomogeneous, signal fields the same. Both have space–time structures,

although in reception the spatial characteristics are often implicitly designated simply by an

index (m), designating a point in the received field. In general, of course, many noise fields

are non-Gaussian as are most of the often accompanying signal fields. For the present

discussion, we consider scalar fields X(R,t) only, unless otherwise indicated.

In addition, considerable space here is devoted to the covariance, and subsequently in

Section 2.2 to its associated intensity spectrum, because of its importance in detection and

estimation. Not only is this the case for many systems where Gaussian noise is present but

also for the often more important situations where non-Gaussian noise is the dominant

interference, particularly in critical threshold signal regimes. For the most part, we shall

consider the received (and transmitted) fields, and their statistics, consisting of discretely

sampled quantities, as a consequence of the space–time sampling procedure described in the

beginning of Section 1.3.1.

We begin accordingly (cf. Section 1.3.1, Eq. (1.3.1), and Section 1.6.1) by treating the

(real) scalar fields in question as values at specific discrete “sample points” X rm; tnð Þ ¼ Xj .

Thus, for the resulting space–time samples, we use the double index j¼mn to

designate these sample points: here m¼ 1, 2, . . ., M and n¼ 1, 2, . . ., N are respectively

space and time index numbers. Accordingly, J¼MN represents the totality of these

(nonoverlapping) points in a physical continuum, that is, an acoustic field, or a component,

usually the dominant one, of an electromagnetic field, for example; X ¼ Xj

� �
denotes a

sample data vector of such a received field.1 Similarly, X~X ¼ XjXj0
� � ¼ Xj0Xj

� �
is a (real)

symmetric (square) matrix of such sampled field data, and X~X
� � ¼ KX Rm; tn;Rm0 ; tn0ð Þ½ �

with Xh i ¼ 0, is the covariance (matrix) of this field.. When the (sampled) field is

homogeneous and stationary — in more complete terminology, wide sense homogeneous

1 This is the spatially sampledoutput from the receiving (point) sensor atP Rm; tnð Þ, namely,X ¼ R̂a, wherea(R, t)

is the external field in which the receiver is embedded. For more detail, see (1.6.2a)–(1.6.2b).
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and wide sense stationary (WS-HS), applicable only to this covariance or second moment

state generally — KX depends only on the difference of the coordinates, that is, Rm0 � Rm

and tn0 � tn, so that we can accordingly write

XjXj0
� � ¼ KX Rm; tn;Rm0 ; tn0ð Þ ¼ KX Rm0 � Rm; tn0 � tnð Þ ¼ KX DR; tð Þ; Xj

� � ¼ 0;

ð2:1:1Þ

where DR ¼ Rm0 � Rm and t ¼ tn0 � tn, with the added properties

KX DR; tð Þ ¼ KX �DR;�tð Þ; butKX �DR;�tð Þ 6¼ KX DR; tð Þð Þ; ð2:1:1aÞ

as a consequence of its WS-HS nature. It is also easily shown that KX 0; 0ð Þ � KX DR; tð Þj j.
For an isotropic randomfieldX, a stricter condition on the coordinates applies, expressing

the fact that now the (statistical) properties of the randomfield are independent of spatial and

temporal directions. The covariance here becomes

KX

��DR
��; t
���� � ¼ KX Rm0 � Rm

��; t2 � t1
���� �
:

���� ð2:1:1bÞ

Not any function of the type (2.1.1, 2.1.1b) can be a covariance function, except thoseKX that

have a unique Fourier transform that is everywhere positive and vanishes sufficiently rapidly

at infinity, with further special conditions including the reality of KX (from the assumed

reality of X). (For further details, see the beginning pages of Sections 21 and 22 of

Yaglom [2], which also includes the general theory of multidimensional scalar and vector

field covariances and their associated spectra, that is, generalizations of the Wiener–

Khintchine theorem in one dimension (see Section 3.2.2 of Ref. [1], especially Ref. [1a].)

2.1.1 Signal Normalization

Let us consider a real signal fielda R; tð ÞS, sampled at various (point) sensors of the receiving

array, located at Rm;Rm0 ; m;m0 ¼ 1; :::;M (Fig. 2.1) and at time tn in the interval

t0 � tn � t0 þ Tð Þ; n ¼ 1; :::; N. Thus, S ¼ Sj¼mn

� �
is the received space–time signal

vector after sampling. Accordingly, the received signal is canonically represented by

S ¼ R̂a R; tnð ÞS ¼ R̂ma R; tnð ÞS
� � ¼ Sj¼mn

� � � AðmÞ
mn s

ðmÞ
n =

ffiffiffi
2

ph i
; ð2:1:2Þ

where in more detail

Scale : A
ðmÞ
0n ¼ A

ðmÞ
0 tn � «; uðmÞ
	 


; waveform : sðmÞ
n ¼ sðmÞ tn � «; uðmÞ

	 

; sðmÞ2
D E

¼ 1:

ð2:1:2aÞ

The uðmÞ are possible (random) parameters associated with the sensors’ outputs; « is an

epoch, relating the received data interval (T) to some point in time on the input signal

(Fig. 2.1). Here, s
ðmÞ
n is constrained by the ensemble average condition hsðmÞ2i � 1,

where now we define s
ðmÞ
n by sðmÞ � âðmÞ

n f ðmÞ tnð Þ, on tn in t0 � tn � T þ t0. Thus, the

scale âðmÞ
n of f ðmÞ tnð Þ is determined by the constraining condition hsðmÞ2

n i, namely,
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âðmÞ
n ¼ f ðmÞ tnð Þ2

D E	 
�1=2

, all m;nð Þ. In this way, the element of “scale” is s
ðmÞ
n trans-

ferred to A
ðmÞ
n . Moreover, A

ðmÞ
0n and s

ðmÞ
n may be statistically connected, for example,

A
ðmÞ
0n s

ðmÞ
n

D E
6¼ A

ðmÞ
n

D E
s
ðmÞ
n

D E
, although we can usually safely require that A

ðmÞ
n and s

ðmÞ
n be

statistically independent.

Equation (2.1.2) is readily extended to narrowband signals by writing

sj jnb ¼ sðmÞ
n jnb ¼

ffiffiffi
2

p
cos v0 tn � «ð Þ � fðmÞ

n

h i
; ð2:1:3aÞ

and the full signal waveform is accordingly

Sjnb ¼ a
ðmÞ
0n sðmÞ

n

ffiffiffiffiffi
cj

qh i
¼

A
ðmÞ
0 tn � «; uðmÞ
	 


ffiffiffi
2

p �
ffiffiffi
2

p
cos v0 tn � «ð Þ � fðmÞ

n

h i
2

4

3

5: ð2:1:3bÞ

When the signal field is homogeneous and the sensor gains are equal, then

A
ðmÞ
0n ¼ A0n; f

ðmÞ
n ¼ fn.

2.1.2 Inhomogeneous Nonstationary (Non-WS-HS) Noise Covariances

We consider next the case where the (real) noise field is both nonstationary and inhomoge-

neous (non-WS-HS). We have from the definition of the (now) space–time covariance the

(iOR
· Rm)

iOR

VR

x

y

φm

αs(R, t)

φm

θm

Rm

Om

Rm+1

Wavefront

ˆ

ˆ

FIGURE 2.1 Received signal wave front sampled at points P Rm; tnð Þ in space–time by an (point)

array in VR.
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following J 	 Jð Þ matrix for the outputs of the m;m0 sensors at times tn; tn0 :

KX � Xj � Xj

� �� �
Xj0 � Xj0

� �� �� �� � ¼ YjYj0
� �� �

; Yj; j0 ¼ Xj � Xj

� �
and so on; ð2:1:4Þ

with the variances

s2
Xj
¼ Xj � �Xj

� �2
; s2

Xj0
¼ Xj0 � �Xj0
� �2

; or s2
Yj; j0

¼ YjYj0 : ð2:1:4aÞ

Here, X ¼ Xj

� � ¼ X rm; tnð Þ½ � represents the sensor outputs at time tn and position n, the

result of sampling the input field a(r, t). The scale-normalized form of KX is given by

kx ¼ xjxj0 � �xj�xj0
� � ¼

"

Xj � Xj

� �� �
Xj0 � Xj0

� �� �� �.
sXj

sXj0

#

: ð2:1:5Þ

When xj ¼ xj0 ¼ 0, the more frequent situation in most applications, particularly for

narrowband systems (refer to Sections 2.1.3 and 2.1.4), Eq. (2.1.5) reduces to

kx ¼ xjxj0
� � ¼ XjXj0

. ffiffiffiffiffiffiffiffiffiffi
cjcj0

qh i
; xj ¼ xj0 ¼ 0 with xj ¼ Xj

. ffiffiffiffiffi
cj

q
and so on:

ð2:1:6Þ

Even when the covariance kx is scale normalized, it is not necessarily homogeneous and

stationary, that is, kx rm; tn; rm0 ; tn0ð Þ½ � 6¼ kx rm0 � rm; tn0 � tnð Þ½ �, although all main diagonal

terms are unity because of the normalization (2.1.6). We also observe that

KX rm; tn; rm0 ; tn0ð Þ
X2
mnX

2
m0n0

	 
 ¼ kx rm; tn; rm0 ; tn0ð Þ and ) k rm; tn; r
0
m; t

0
nð Þ ¼ 1: ð2:1:6aÞ

If KX is Hom-Stat, it should also be noted that KX

��� � KX 0; 0ð Þ ¼ s2
X s2

Xj
djj0

h i��� , and in

particular, kx

��� � kx 0; 0ð Þ ¼ s2
xj
djj0

h i
¼ 1 � djj0
� ���� with djj0 ¼ dnn0 � dmm0 , the familiar Kro-

necker delta.

If inhomogeneity and nonstationarity (non-WS-HS) are due to scale alone and the

normalized sensor outputs are otherwise at least locally homogeneous and stationary,

then (2.1.4) reduces to the equivalent form �Xj ¼ �xj ¼ 0 and so on
� �

2

KX ¼ YJ k̂x DRm0m;Dtn0nð Þ ¼ YJ ĥjĥj0

	 
1=2
kx DR;Dtð Þjj0

� �
;

DRmm � rm0 � rm; Dtn0n � tn0 � tn; ð2:1:7Þ

where cJ and ĥj are scaling factors:

cJ � J�1
X

j
cj and cj ¼ cj=cJ

� �
cJ ¼ ĥjcJ ) ĥj � cj=cJ ; ð2:1:8aÞ

2 We shall use R and r equivalently and interchangeably throughout, unless there is a distinction to be made in

particular applications.
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and kx (2.1.6) is now kx DR;Dtð Þjj0. Inmany cases, stationarity (but not homogeneity) is well

approximated, so that cj ¼ cm and cJ is modified to

cJ !cM ¼ 1

M

X
m
cm; with ĥj6ĥmcm=cM: ð2:1:8bÞ

A practical approximation here to the ensemble averages cj (and therefore to cJ ;cM)

employs a time average of each sensor’s output noise intensity under the Hom-Stat

conditions assumed here, namely:

cj6
ð

T

cjdt=T ¼ �c
t

j ¼ �cð Þm; now with cj6�c
t

m � c0
m; ð2:1:9Þ

so that (approximately) cJ ĥjĥj0

	 
1=2
6cj6c0

m and

) kx ¼ xjxj0
� �

6 XjXj0
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0
mc

0
m0

q� �
; ð2:1:10Þ

which preserves the WS-HS property of the scale-normalized data ð
 fxjgÞ.
In the general case of temporal nonstationarity as well, the normalization procedure

of (2.1.6) is indicated, the practical problembeing the lack of the ensemble averages required

for cj ¼ cm;n

� �
. However, if several local channel interrogations are empirically available,

often assisted by an average, that is, deterministic propagation model, sample ensemble

values of cj can be estimated. This can be done with suitable small-sample statistical tests

(e.g., Kolmogrov–Smirnov [5]) to assess the stability of the medium in time and space and,

therefore, the local WS-HS of the data from which each cj ¼ cmnð Þ is estimated. Figure 2.2

illustrates the normalization process involved. Note once more, however, that this scale-

normalized sampled field may still not be WS-HS (refer to remarks following Eq. (2.1.6)).

Also, we remark that “time” here is proportional to range, that is, t ¼ R
��=c0

�� , in such

applications as radar and sonar.

In practice, some sensors m0ð Þ may be inoperative. For such cases, cm00;n ¼ 0, all n.

10log10(  )dB
1 ψj′ = −( )dB

1 ψj = +( )dB

( )   }xj′xj ==
xj′

xj

t0 t0 + T t →tn tn′

xj, j′

(= xj, j′ + ∆)dB

(= xj, j′ − ∆)dB xm′, n xm′, n

xm, n′xm, n

ψj′ ψj′∆′

∆

Scale normalized

FIGURE 2.2 Normalizing (intensities)
ffiffiffiffiffi
cj

p
;
ffiffiffiffiffiffi
cj0

p
for sensor outputs of a sampled noise field

(refer to Eqs. (2.1.6–2.1.8a).
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Consequently, the number of effective sensors inM ism00, to be used in constructing the
scale-normalizing factors cJ ;cM;cm. In addition, we may expect distortion in the resulting

beam pattern designed forM sensor outputs.3 Although the original input fieldmay beHom-

Stat, beam forming by various combinations of the sensor outputs renders the field

apparently inhomogeneous, as does any variation in sensor output levels. The latter effect,

of course, can be largely removed in practice by the scale renormalizationc0
j 6cj

� �
applied

to (2.1.6), as illustrated schematically in Fig. 2.2. In essence, beam forming produces a

concentrated, nonuniform wave number spectrum, which modifies the energy distribution

of the received field.

2.1.3 Narrowband Fields

In many common applications, we must deal with narrowband noise and signal transmis-

sions and reception, particularly in the frequency domain and often inwave number space as

well. It is well known that such narrowband waves can be expressed as a linear combination

of slowly varying components about some high-frequency “carrier” reference frequency.

Here, we briefly exploit the structure of such narrowband phenomena to gain additional

insight into how such narrowband representations are constructed.

2.1.3.1 Narrowband Conditions We begin with the Fourier representation of the real

space–time field a R; tð Þ in the neighborhood VR of a receiving array or aperture:

a r; tð Þ ¼
ð1

�1 n½ �

d3n! dð3Þn e�2pin � r
ð1

�1
S n; fð Þaeivtdf ; v ¼ 2pf : ð2:1:11Þ

The real nature of X(r, t) requires that

S n; fð Þa ¼ S �n;�fð Þ*a; ð2:1:12Þ

where (*) as usual denotes the complex conjugate. (As can be easily seen, substituting the

right-hand side of (2.1.12) in (2.1.11) leaves X(r, t) unchanged, as expected.)

Rewriting (2.1.11) and using (2.1.12), we obtain

a r; tð Þ ¼
ð1

�1 n½ �

e�2pin � rd3n
ð0

�1
S �n;�fð Þ*aeivtdf þ

ð1

0

S n; fð Þaeivtdf
2

4

3

5: ð2:1:13Þ

Letting
R1

0

Sae
ivtdf � b n; tð Þ, we see that the first term of (2.1.13) becomes b �n; tð Þ*, so

that (2.1.13) reduces to

a r; tð Þ ¼
ð1

�1 nð Þ

e�2pin � r b �n; tð Þ* þ b n; tð Þ
n o

d3n: ð2:1:14Þ

3 See Sections 3.2.1.4 and 3.2.2 ff.

INHOMOGENEOUS AND NONSTATIONARY SIGNAL AND NOISE FIELDS I 83



Setting n ¼ �n0, we find that the first term of (2.1.14) becomes

ð1

�1
e2pin

0 � rb n0; tð Þ*d3n ¼
ð1

�1 nð Þ

e�2pin0 � rb n0; tð Þd3n0
0

B@

1

CA

*

� B r; tð Þ*; ð2:1:15Þ

so that now the space–time field can be expressed as

a r; tð Þ ¼ B r; tð Þ* þ B r; tð Þ ¼ 2 Re B r; tð Þ

¼ 2Re

ð1

�1 nð Þ

e�2pin � rb n; tð Þd3n ¼ 2Re

ð1

�1 nð Þ

e�2pin � rd3n
ð1

�1
S n; fð Þaeivtdf

)

;

ð2:1:16Þ

which is an exact relation.

Next, we observe that since the energy
�
jS n; fð Þaj2

�
is concentrated here in the volume

DV about n0; f0ð Þ (Fig. 2.3), jSaj2 exceeds zero significantly only when n0j j � Dn
< n0j j < n0j j þ Dn and f0 � Df < f0 < f0 þ Df . This dual condition also clearly holds

for Saj j > 0 only when nj j 
 n0j j > 0ð Þ; f 
 f0 > 0ð Þ in these same intervals. We now let

f � f0 þ f 0 n � n0 þ n0 in (2.6.16) to get

a r; tð Þ ¼ 2Re eiv0t�2pin0 � r �
ð1

�n0½ �

e�2pin0 � rd3n0 �
ð1

�f0

S n0 þ n0; f0 þ f 0ð Þaeiv
0tdf 0

8
><

>:

9
>=

>;
;

ð2:1:17Þ

which is still exact, where n0 > �n0 and f
0 > �f0. But the narrowband condition postulates

that nminj j ’ Dn � �n0 and fmin ’ Df � �f0, so that to an excellent approximationwe can

S(ν, f )α

(  ν0  , f0)

∆V

∆f∆f

∆ν ∆ν

ν

2

FIGURE 2.3 Intensity spectrum of a space–time “narrowband” noise or signal field.
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replace � n0j j and �f0 by �1 in (2.1.16), since SXj j > 0 only for DV about
Ð

n0; f0ð Þ. The
(now approximate) desired result is from (2.1.17):

a r; tð Þ6Re e�iv0t�2pin0 � r
ð1

�1
e�2pin0 � rd3n0

ð1

�1
S0 n0; f 0ð Þaeiv

0tdf 0

8
<

:

9
=

;
ð2:1:18Þ

with

S0 n0; f 0ð Þa� 2S n0 þ n0; f0 þ f 0ð Þajnb in and about n0; f0ð Þ 2 DV
¼ 0; n0 < �n0; f 0 < �f0;

�
n0; n0 ¼

��n0
��;
��n0
���

)

; ð2:1:19Þ

where the last relation of (2.1.19) is exact.

Since (2.1.19) applies, S0 �n0;�f 0ð Þ*a ¼ 2S0 n0 � n0; f0 � f 0ð Þ*a and thus S0 �n0;�f 0ð Þ*a 6¼
S0 n0; f 0ð Þa, with the integrals in (2.1.17) generally complex. This in turn leads to the concept

of the space–time complex envelope, which is an extension of the more familiar purely

temporal complexenvelopeof earlier communication treatments (e.g., [1]).Accordingly,we

define the complex envelope of the nb field a r; tð Þ by

E0 r; tð Þa �
ð1

�1 n½ �

e�2pin � rd3n
ð1

�1
S0 n; fð Þaeivtdf ¼ complexð Þ � E0ae

�if0a : ð2:1:20Þ

Here, f0a ¼ f0 r; tð Þa is a slowly varying real phase, like the envelope jE0aj, vis-à-vis (cos/
sin) v0t� 2pn0 � rð Þ. Applying (2.1.20) to (2.1.18) allows to write the real result for the

narrowband field:

a r; tð Þ6Re
n��E0 r; tð Þa

��ei v0t�k0 � r�f0 r;tð Þa½ �o ¼ ��E0a

��cos v0t� k0 � r� f0að Þ; ð2:1:21Þ

with k0 � 2pn0 a vector wave number specifying the direction î0 of the propagating field’s

wave fronts in the vicinity of the domain VR occupied by the receiving sensors. Thus,

k0 ¼ î0k0, where the explicit structure of k0 itself depends on the physical character of the

medium supporting the propagation of the fields.4 Equivalent forms of (2.1.21) are

a r; tð Þ6ac r; tð ÞcosF̂a Dfað Þ þ as r; tð Þsin F̂a Dfað Þ; F̂a Dfað Þ ¼ v0t� k0 � r
¼ ��E0a

��cos f0a

� �
cos F̂a þ

�� E0a

��sin f0a

�� �
sin F̂a

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
c þ a2

s

q
cos F̂a � tan�1 as=acð Þ� �

and so on: ð2:1:21aÞ

2.1.3.2 NarrowbandSensorOutputs Sinceweareprimarily interestedhere in the sensor

outputs X rm; tð Þ; m ¼ 1; . . . ; M, which now represent the sampled field at the discrete

4 This point is discussed and illustrated by the results of Chapters 8 and 9.
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spatial points rmf g but continuous in time (Fig. 2.4). These are subsequently to be suitably

combined and processed, ultimately for signal extraction. Let us consider first the vector

R̂a ¼ X rm; tð Þ½ �, which is the column vector set of sensor outputs, namely.

R̂a ¼ R̂ma
� � ¼

ð

VR

Amd r� rmð Þ �
( ð1

�1
h
ðmÞ
R

	
t; t
��r


a r; t� tð Þdt

)

d3VR rð Þ
2

4

3

5

¼ X rm; tð Þ½ �; ð2:1:22Þ

with a in more detail equal to a îk � îmrm=c0; t� t
	 


where îk is the direction of the wave

front of this incoming field and k0 ¼ îkk0. In (2.1.22), h
ðmÞ
R is the time-varying (linear)

Green’s function of the mth sensor’s filter.

Fornarrowbandfields, narrowbandfilters are appropriate. Fromearlierwork, (pp. 98–100

of Ref. [2], [1]), we find that the filter outputs are explicitly

X rm; tð Þ6
ð1

�1
h
ðmÞ
0 t; t rmj ÞE0 rm; t� tð Þacos v̂0t� k0 � rm � f0 rm; t� tð Þa

��

þvD t� tð Þ � g0 tjrmð Þ�dt; ð2:1:23Þ

with

vD � v0 � v̂0 � v̂0;v0ð Þ; hðmÞ
0 tjrmð Þe�ig0 tjrmð Þ ¼

ð1

�1
Y0 f 0jrmð Þeiv0tdt; f 0 ¼ f � f̂ 0

where

Y0 f 0jrmð Þ � Y f 0 þ f̂ 0jr
� � ¼ F h0 tjrmð Þe�ig0 tjrmð Þ �

)

;

ð2:1:23aÞ

z

x

y

→
rm + 1

→
rm + 2

→
rm' + 1

→
k2 

→
rm 

→
rm 

→
r0 

î01k0

VR

φR

θR

OR

FIGURE 2.4 Unconnected sensor elements at the points rm; rmþ1; . . . ; rk in a receiving domain VR

with “center” at OR where X rm; tð Þf g are the element outputs [Eqs. (2.1.22 and 2.1.23)] and î0 is the

unit vector in the direction of the wavefront, that is, k0 ¼ î0k0(2.1.21).
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wherevD ¼ 2pfDð Þmeasures the amount of “detuning” between the “center frequency” f0 of

the input field and the center frequency f̂ 0
� �

of the narrowband sensor outputs.5

Often it is reasonable to assume that without noticeable error, the array sensors are tuned

to the center frequency of the incoming field, so that vD ¼ 0, that is, f̂ 0 ¼ f0, as we shall

postulate henceforth unless otherwise required. As a result, Eq. (2.1.23) can bewritten in the

following equivalent forms:

X rm; tð Þ6Re e�iv0t�ik0 � rm
ð1

�1
h
ðmÞ
0 t; tjrmð ÞE0 rm; t� tð Þae�if0 rm;t�tð Þa�ig0 t jrmð Þdt

8
<

:

9
=

;

ð2:1:24aÞ

¼ Re 2â rm; tð Þ � ib̂ rm; tð Þ� �
eiv0t�ik0 � rm �

; with vD ¼ 0 ð2:1:24bÞ

where specifically now

â rm; tð Þ ¼ Re

ð1

�1
h
ðmÞ
0 t� t; tjrmð ÞE0 rm; tð Þae�if0 rm;tð Þa�ig0 t�t;tjrmð Þdt

b̂ rm; tð Þ ¼ Im

ð1

�1
h
ðmÞ
0 t� t; tjrmð ÞE0 rm; tð Þae�if0 rm;tð Þa�ig0 t�tjrmð Þdt

)

: ð2:1:24cÞ

Accordingly, we can write alternatively for the output of themth sensor into the space–time

processing portion of the receiver:

X rm; tð Þ6â rm; tð Þcos v0t� k0 � rmð Þ þ b̂ rm; tð Þsin v0t� k0 � rmð Þ ð2:1:25aÞ

¼ Xc rm; tð Þcos F̂m tð Þ þ Xs rm; tð Þsin F̂m tð Þ; F̂m tð Þ � v0t� k0 � rm; ð2:1:25bÞ

¼ X2
c þ X2

s

� �1=2
cos F̂m tð Þ � tan�1 Xs=Xcð Þ� � ¼ E rm; tð ÞXcos F̂m tð Þ � c

ðmÞ
s=c

	 

; ð2:1:25cÞ

with Xcm ¼ â rm; tð Þ;Xsm ¼ b̂ rm; tð Þ for the “in-phase” (cosine) and “out-of-phase” or

quadrature (sine) components, respectively, and c
ðmÞ
s=c � tan�1 Xs=Xcð Þ.

5 The approximation arises from neglecting the essentially zero contribution of the additive high-frequency terms

that lie outside the main portion of the narrow-band of the sensors. Thus, (refer to 2.63 (a,b) of Ref. [1]),

h
ðmÞ
R t; tjrmð ÞÞ¼_ 2h0 t; t rmj Þcos v0t� g0 t rmj Þð �;½ð ð2:1:23bÞ

and E0a; h0; g0; f0a are real, slowly varying quantities compared to cos v̂0t; cosv0t and so on. The narrowband
filter responses h0; g0 may be obtained from h

ðmÞ
R by applying the “high-Q” (�narrowband) approximation for the

filter in question or theymay be obtained fromF�1 Y0f g, (2.1.23a). See the discussion in (5), Section 2.2 of Ref. [1].
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It should be emphasized that our results above apply to both noise and signal fields,

aN and aS, where X rm; tð Þ can represent either class of sampled input field. However,

for the most part, X rm; tð Þ in previous (and subsequent) discussions designates the

received output of a sensor array or aperture. This can consist of noise alone or a

mixture of signal and noise to be subsequently processed by the receiver elements,

whereas S rm; tð Þ is explicitly a signal output of a sensor element. Thus, we can write

explicitly for the latter in these narrowband cases (before temporal sampling) the direct

analogues of (2.1.25a):

S rm; tð Þ6âS rm; tð Þcos v0t� k0 � rmð Þ þ b̂S rm; tð Þsin v0t� k0 � rmð Þ ð2:1:26aÞ

¼ Sc rm; tð Þcos F̂m tð Þ þ Sc rm; tð Þsin F̂m tð Þ ¼ S2c þ S2s
� �1=2

cos F̂m tð Þ � tan�1 Ss=Scð Þ� �
;

ð2:1:26bÞ

or as with Eqs. (2.1.2 and 2.1.3):

S rm; tð Þ � A
ðmÞ
0 sðmÞ tð Þ

. ffiffiffi
2

p
; with A

ðmÞ
0 tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2c þ S2s

q
;

sðmÞ tð Þ ¼
ffiffiffi
2

p
cos F̂m tð Þ � c

ðmÞ
s=c tð Þ

h i
; ð2:1:27Þ

where, again, F̂m tð Þ � v0t� k0 � rm (2.1.25b), and A
ðmÞ
0 tð Þ; cðmÞ

s=c tð Þ are slowly varying

vis-à-vis cos F̂m; sin F̂m. Note that the slowly varying amplitude and phase variables

are contained in âs; b̂s here. Moreover, if we include an epoch «, in the manner of Eqs.

(2.1.2–2.1.3), then t! t� «, with F̂m tð Þ!v0 t� «ð Þ � k0 � rm, in Eqs. (2.1.25) and

(2.1.26).

2.1.4 Noise and Signal Field Covariances: Narrowband Cases

Here, we develop the covariance structures of both noise and signal fields, when these are

narrowband, in the sense of Section 2.1.3.

2.1.4.1 Narrowband Noise In Section 2.1.2, we have considered the general situation of

inhomogeneous nonstationary (non-WS-HS) noise fields from the viewpoint of their

covariance functions after space–time sampling. Here, we extend our treatment to the

important cases of narrowband fields anoise, in the sense of (2.1.15–2.1.27) and as described

by (2.1.21) before space–time sampling, and by (2.1.25b) after such sampling, now with

t! tn therein. Normalizing by xj ¼ Xj=
ffiffiffiffiffi
cj

p
(2.1.7) and setting �xj ¼ 0, since these noise

fields are narrowband, we can write this normalized field in the vector form6

x r; tð Þ ¼ x rm; tnð Þ½ � ¼ xj
� � ¼ xcjcos F̂j þ xsj sin F̂j

� �
; j ¼ mn; ð2:1:28Þ

6 It is always possible formally to represent any field, broad- or narrowband, by (2.1.28). In the broadband cases

however, xcj ; xsj are not slowly varying. The concepts of envelope and phase here lose their usual physical

interpretation, although they can be redefined in terms of appropriateHilbert transforms; see (3) of Sections 7.5.3 of

Ref. [1] and (6) of Section 2.2.5 of Ref. [1].
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with xc;s ¼ Xc;Xsð Þ= ffiffiffiffiffi
cj

p
, where F̂j � v0 tn � k0 � rm=v0ð Þ (2.1.25b). As before (2.1.25a)

xcj ; xsj are the slowly varying “in-phase” and “out-of-phase” (quadrature) components of

x ¼ xj
� �

and F̂j ¼ v0t� k0 � rm (without “steering”).

We next proceed to the calculation of the narrowband7 noise fields covariance of

x r; tð Þ, (2.1.28) from (2.1.5 et seq.), remembering that now �xj ¼ 0 here. We obtain the

following (square) matrix:

kN ¼ kN rm; tn; rm0 ; tn0ð Þ½ � ¼ x~x ¼ xcj xcj0 cos F̂j cos F̂j0 þ xsj xsj 0 sin F̂j sin F̂j0
h

þ xcj xsj0 cos F̂j sin F̂j0 þ xsj xcj0 sin F̂j cos F̂j0 �
ð2:1:29aÞ

or

kN ¼ rcð Þjj0 cos F̂j cos F̂j0 þ rsð Þjj0 sin F̂j sin F̂j0
h

þ rcsð Þjj0 cos F̂j sin F̂j0 þ rscð Þjj0 sin F̂j cos F̂j0 �; ð2:1:29bÞ

which defines the covariances rc; rs; rcs; rscð Þ. Writing for the time delay from the mth

sensor to some reference point in the receiving array

Dtj � tn � k0 � rmð Þ=v0; Dtj0 � tn0 � k0 � rm0ð Þ=v0; ð2:1:30Þ

we have explicitly for these generally non-Hom-Stat, slowly varying covariances

rc ¼ rc Dtj;Dtj0
� �� � ¼ rcð Þjj0 ; and so on: ð2:1:31Þ

When a steering vector k0Rð Þ is introduced, which is the usual case in practical applications,
the time delay Dtj is modified to

Dtj � Dtj � k0R � rm=v0 ¼ tn � k0 � k0Rð Þ � rm=v0: ð2:1:32Þ

These covariances reduce for at least homogeneity and wide sense stationarity to the

expecteddifference relationsrc ¼ rc Dtj � Dtj0
� �� �

and soon. (Note that although ingeneral

the covariance kN, (2.1.29), is still scale normalized (2.1.7–2.1.10), it is not necessarily both

wide sense homogeneous and wide sense stationarity.) Nevertheless, by applying the

“narrowband” conditions (2.1.19), we obtain the (approximate) equivalent forms when

local wide sense homogeneity and stationarity are applicable, which allow towrite (2.1.29b)

now as

7 We assume that the narrowband noise field is generated by narrowband, nonscatter ambient sources. If the noise is

produced by scattering in themediumof propagation of the original signal, there are nonvanishing (statistical)mean

values, that is, coherent components �x 6¼ 0ð Þ are possible. If y is such a scatter field, letting x ¼ y� �y in (2.1.28)

allows at once to include the contributions of any nonvanishing mean value components. Accordingly, we have

rc ¼ xc0 ~xc
ðxÞ ¼ yc0 � �ycð Þ yc0 � �ycð Þh iðxÞ and so on.
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kN ¼ x~x6
�
rc þ rs

2

�

jj0
cos F̂j0 � F̂j

� �þ
�
rcs þ rsc

2

�

jj0
sin F̂j0 � F̂j

� �
2

4

3

5

¼ r0ð Þjj0 cos F̂j0 � F̂j

� �þ l0ð Þjj0 sin F̂j0 � F̂j

� �h i
; ð2:1:33aÞ

with

r0 � rc þ rsð Þ=2; l0 � rcs þ rscð Þ=2: ð2:1:33bÞ

This shows at once that r0 ¼ ~r0 and l0 ¼ �~l0. Moreover, since kNð Þjj ¼ 1, all j, it follows

that r0ð Þjj ¼ 1; l0ð Þjj ¼ 0, the latter directly from the relation l0 ¼ �~l0 above. Equation

(2.6.33) is exact when rs ¼ rc and rcs ¼ �rsc: this means that rc ¼ rc Dtj � Dtj0
� �� �

and

r0 ¼ r0 Dtj � Dtj0
� �� �

, with l0 Dtj � Dtj0
� �� � ¼ � l0 Dtj0 � Dtj

� �� �
. Then, the scale-nor-

malized covariance kN and its slowly varying components are now widesense Hom-Stat.8

2.1.4.2 Narrowband Signals In case of signal, refer to Eqs. (2.1.26a, 2.1.26b and

2.1.27), we distinguish two different classes: (i) the more common one where the signal

is deterministic and only the epoch phase f« ¼ v0« is high frequency (and random for

incoherent reception (Section 1.2.1.4); and (ii) the occasional one in which the signal itself

is essentially a random field, without significant deterministic structure, and is thus

analogous to the accompanying noise.

For (i), based on Eqs. (2.1.33a and 2.1.33b), we now define

Fj � F̂j Dtj
� �� fj; fj ¼ fðmÞ

n Dtj
� �	 


a slowly varying signal phase vis-�a-vis F̂j:

ð2:1:34Þ

For the normalized signal in general and explicitly for the narrowband cases here,

ŝj � a
ðmÞ
0n sðmÞ ¼ A

ðmÞ
0n sðmÞ

n

. ffiffiffiffiffiffiffi
2cj

q
; ŝjjnb ¼

A
ðmÞ
0 Dtj � «
� �

ffiffiffiffiffiffiffi
2cj

p �
ffiffiffi
2

p
cos v0 Dtj � «

� �� fðmÞ
n

h i
;

ð2:1:35Þ

with

sðmÞ
n jnb �

ffiffiffi
2

p
cos v0 Dtj � «

� ��fðmÞ Dtj � «
� �h i

; refer to ð2:1:1Þ--ð2:1:3Þ and ð2:1:27Þ:

Accordingly, we may proceed formally as above for the purely random noise cases to write

their covariances in the usual matrix form for these sampled fields, subject once more to the

8 In general, particularly for applications where detection is reverberation or clutter dominate, we may expect the

field to be non-Hom.-Stat., so that rc 6¼ rs; rcs 6¼ �~rsc: these variances are unequal.
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narrowband conditions of Section 2.1.4.1, in the locally Hom-Stat situations. Thus, for the

deterministic signal cases of (i), we may define the signal covariance by

Kŝ � ŝ~̂s6 r̂0ð Þjj0cos F̂j0 � F̂j

� �þ l̂0
	 


jj0
sin F̂j0 � F̂j

� �� �
; refer to Eqs: ð2:1:33a and 2:1:33bÞ:

ð2:1:36Þ

Now specifically from (2.1.33a and 2.1.33b), we have

r̂0ð Þjj0 � r
ðsÞ
0

	 


jj0
cosDfjj0 � l

ðsÞ
0

	 


jj0
sinDfjj0 ; l̂0

	 


jj0
� r

ðsÞ
0

	 


jj0
sinDfjj0 þ l

ðsÞ
0

	 


jj0
cosDfjj0 ;

ð2:1:37aÞ

with Dfjj0 �fj0 �fj , where r
ðsÞ
0 and l

ðsÞ
0 obey

r
ðsÞ
0 � rðsÞc þrðsÞs

	 
.
2; rðsÞcs þrðsÞsc

	 
.
2� l

ðsÞ
0 ¼�l

ðsÞ
0 ; r

ðsÞ
0

	 


jj
¼ 1; l

ðsÞ
0

	 


jj
¼ 0;

ð2:1:37bÞ

analogous to (2.1.33a et seq.). Again, like the case of the narrowband noise field x, Eqs.

(2.1.28, 2.1.37a and 2.1.37b) are exact (at least) in the locally Hom-Stat condition, where

r
ðsÞ
c ¼ r

ðsÞ
s ;r

ðsÞ
cs ¼�r

ðsÞ
sc .

Finally, for the purely noiselike signals of (ii) above, we have Fj ! F̂j , since fj are

essentially absorbed into r
ðsÞ
c ; r

ðsÞ
s , and so on, and therefore ultimately into r̂0 and x̂0

in (2.1.36).However, because the signal level is normalized here in termsof the noise outputs

of the sensors 
 cj;cj0
� �

at rm; rm0 , refer to (2.1.7) et seq.,Kŝ rm; tn; rm; tnð Þ is different from
unity, unlike the scale-normalized covariance of kN rm; tn; rm; tnð Þ.

2.2 CONTINUOUS SPACE–TIME WIENER–KHINTCHINE RELATIONS9,10

The classical result for theWiener–Khintchine relations, namely, that the Fourier transform

of the temporal covariance is proportional to the intensity of the frequency spectrum, refer to

Section 3.2.2 of Ref. [1] et seq., is directly extendable to the covariance and its transform of

the space–timefieldX(r,t) by a generalization of Lo�eve’s approach [6] (Refs. [1], pp 142 and
143, and [7], Chapter 4, and Section 2.2.2 following). In Section 2.2, we shall consider both

the Hom-Stat and non-Hom-Stat situations, with particular attention to the latter, because of

their frequent occurrence in practice. In addition, we shall devote considerable space to

discrete sampling of the received field itself, required by the digital processing employed in

many applications (Section 2.3 ff.)

9 We write the abbreviationW–Kh to distinguish the Wiener–Khintchine relations from the Wiener–Kolmogoroff

filters, which are abbreviated W–K.
10 R, r, n are in rectangular coordinates, unless otherwise indicated (for example, spherical, polar coordinates).
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We consider first the case of continuous sampled fieldsX(r,t)¼a(r,t) that arewide sense
homogeneous and stationary (Hom-Stat). The intensity spectrum of X(r,t) is defined by an

obvious extension of the purely temporal case11 to

WX n; fð ÞD!1 ¼ lim
D!1

E
2

Dð4Þ
��SX n; fð ÞD

��2
� �

¼ WX n; fð Þ ð2:2:1Þ

with the covariance of the sampled field as (one-half) the Fourier transform of (2.2.1).

The two Wiener–Khintchine relations extended to space–time for this case are given

explicitly by (2.2.1a and 2.2.1b):

WX n; fð Þ ¼ 2FDRFt KX DR; tð Þf g

¼ 2

ðð1

�1
KX DR; tð Þe2pin �Dr�2pif td3 DRð Þdt ð2:2:1aÞ

where

DR¼R2�R1¼ î1 R2x�R1xð Þþ î2 R2y�R1y

� �þ î3 R2z�R1zð Þ; t¼ t2�t1

d3 DRð Þ� d DRxð Þd DRy

� �
d DRzð Þ; r¼ îxxþ îyyþ îzz

( )

:

Here, n¼ îxnxþ îynyþ îznz and f ¼v=2pð Þ is a vector wave number with nx¼ 1=lx whose
reciprocals are wavelengths. Thewave numbers are also specified in (x, y, z)— rectangular

coordinate system frequency is given by f ¼v=2p, with v ¼ 2pfð Þ being an angular

frequency. Similarly, k¼ 2pn¼ îxkxþ îykyþ îzkz

	 

are vector angular wave numbers.

The inverse of (2.2.1a) is easily shown to be

KX DR;tð Þ¼ 1

2
F�1
k F�1

v W k=2p;v=2pð Þf g

¼ 1

2

ðð

�1
WX k=2p;v=2pð Þe�ik �DRþivt d3k

2pð Þ3
dv

2p
:

1

ð2:2:1bÞ

Equations (2.2.1a and 2.2.1b) are the space–time extensions of the Wiener–Khintchine

theorem, refer to Section 3.2.2 of Ref. [1].12 These reduce to the well-known forms for the

purely temporal covariance and intensity spectrum:

WX fð Þ� 2Ft KXf g¼ 2

ð1

�1
KX tð Þe�ivtdt; KX tð Þ¼ 1

2
F�1 WXf g¼ 1

2

ð1

�1
WX fð Þe�ivtdf :

ð2:2:2Þ

11 See Section 3.2.2 of Ref. [1], pp. 141–143, for an outline of the proof due to Lo�eve [8] in the temporal cases,

which can serve as a basis for an extension to suitably defined random functions of space and time.
12 Note that the dimensions of KX are [amplitude]2 while that of corresponding intensity spectrum WX are

[amplitude]2 interval [length]3 [time]¼ [A2][L3][T] or [A2]/[wave number3][frequency].
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Even if the noise field is scale inhomogeneous and scale nonstationary (in various

combinations), Eqs. (2.2.1a, 2.2.1b, 2.2.2) still apply, now to the normalized covariance

withWX replaced byWx andKX by kx, with the same arguments DR; tð Þ. Again, we remind

the reader of the well-known necessary and sufficient conditions on the covariance that its

Fourier transform be nonnegative with the fall-off in frequency and wave number

sufficiently rapid at infinity. The limiting cases KX DR;Dtð Þ ¼ d DR� DR0ð Þd t� t0ð Þ
and so on are employed when the concept of periodic DR0 6¼ 0; t0 6¼ 0ð Þ and “white”

spectra and “dc” phenomena are included DR0 ¼ 0; t0 ¼ 0ð Þ. See Ref. [7], Sections 21
and 22 for details.

2.2.1 Directly Sampled Approximation of the W–Kh Relations

(Hom-Stat Examples)

TheWiener–Khintchine relations (2.2.1a and2.2.1b) for randomnoise (and signal)fields can

also be expressed (approximately) in a discrete or sampled formulation. The resulting series

expressions can be useful for sampling procedures employed inmanypractical applications.

Among these are the design and implementationof digitalmatchedfilters,which in turn have

desirable optimal properties, for example, in the reception process (Section 3.5 ff).However,

wenote here that discrete samplesof the covariance of signal andnoisefields arenot the same

as the covariance of these sampled fields. In fact, the latter required a considerably more

indirect and analytically involved procedures than that described in the present section. (See

Eqs. 2.2.3 et seq.)

Physical fields are not naturally factorable into solely spatial and temporal portions,

that is, X Rm; tnð Þ 6¼ A Rmð ÞB tnð Þ, and neither are their associated statistics, for example,

KX DR; tð Þ 6¼ K
ðSÞ
X DRð Þ KðTÞ

X tð Þ.13 However, from the point of view of operational conve-

nience, as well as design, separation of space and time is often imposed on the receiver. The

result is constrained operation, where the temporal and spatial parts can be separately

optimized, which is in principle suboptimum to the unconstrained case that includes the

interactions between them. Quantitatively, the degree of suboptimality of the former

vis-à-vis the latter is usually assumed to be small. Because of the difficulty in measuring

this effect, it is usually ignored. The convenience of the imposed separability outweighs its

assumed small magnitude. The technique discussed here and subsequently offer the

possibility of quantifying this restriction (See Section 3.4.7).

The imposed condition of separating space and time now allows to express the

covariance KX and the associated spectrum of W–Kh relations (2.2.1a and 2.2.1b) for these

fields as

KX DR; tð Þ ¼ K
ðSÞ
X DRð ÞKðTÞ

X tð Þ ¼ K
ðSTÞ
X ; WX n; fð Þ ¼ W

ðSÞ
X nð ÞWðTÞ

X fð Þ: ð2:2:3Þ

In matrix form, these become the Kronecker product of space and time components:

KX ¼ KXð Þjj0
h i

¼ KX rm0 � rm; tn0 � tnð Þ½ � ¼ K
ðSÞ
X rm0 � rmð Þ K

ðTÞ
X tn0 � tnð Þ

h ih i
¼ amm0B½ �;

13 An exception occurs when either A(DR) or B(t), or both, are monofrequentic, that is, A(R) is described by a

single wave number n� n0ð Þ and B(t) by B tð Þ ¼ ð1=2Þcosv0t, and A(DR)¼KX(R2�R1). Even if all space–time

samples are independent that is, the matrix KX ¼ Kmn;m0n0dmm0dnn0
� � ¼ Kmn;mn

� � 6¼ Kmm0 ;nn0
� �

and so on, KX does

not factor.
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that is;

KX ¼K
ðSÞ
X K

ðTÞ
X ¼AB¼ amm0bnn0½ �; A¼ amm0½ �; B¼ bnn0½ �;

ð2:2:4Þ

where A and B, respectively, are functions of space and time. Thus,A¼M	Mmatrix and

B¼N	N matrix and the product is an (MN	MN)¼ (J	 J) square matrix, as expected.

Furthermore, the elements ofA andB can bewritten amm0 ¼ am0�m;bnn0 ¼ bn�n0 from (2.2.3).

From this result (2.2.3), we obtain the expression corresponding to the continuous forms

(2.2.1a and 2.2.1b).

Next, we can obtain (approximate) discrete W–Kh relations by observing first that the

elements of A and B can also be written amm0 ¼ ak; k ¼ m0 �m, and bnn0 ¼ bl with

l ¼ n0 � n because of the assumed WS-HS property of the field X(r, t). Then, the elements

of integration in W–Kh relation (2.2.1a) can be written D3K ¼ akblD3RDt, where

D3RDt ¼ DxDyDzDt is the four-dimensional volume element. From the continuous forms

(2.2.1a and 2.2.1b) we find directly that the corresponding discrete form of these integral

relations is approximately

W
STð Þ
X nq; fp

� �
62

XM

k¼�M

XN

l¼�N

akble
2pinq �Rk�2pifptlD3RDt

62
XM

k¼�M

XN

l¼�N

K
ðSÞ
X Rkð ÞKðTÞ

X tlð Þe2pinq �Rk�2pifptlD3RDt

6W
Sð Þ
X nq
� �

W
Tð Þ
X fp
� �

9
>>>>>>>>=

>>>>>>>>;

; ð2:2:5aÞ

where q¼ (�M, . . ., þM) and p¼ (�N, . . ., þN). Here specifically tl ¼ n0 � nð ÞDt
¼ lDt; l ¼ n0 � n, and Rk ¼ rmþk � rm ¼ î1R1k þ î2R2k þ î3R3k ¼ î1 xmþk � xmð Þþ
î2 ymþk � ymð Þ þ î3 zmþk � zmð Þ � kDR, where l, and k are integers. Similarly, we have14

nq ¼ nsþq � ns � qDn and fp ¼ r0 � rð ÞDf ¼ pDf ; q; rð Þ integers. The inverse relations,

namely, the (approximate) discrete form of (2.7.1b), are similarly obtained, with the volume

element now DW ¼ aqblDnDf , where D3n ¼ DnxDnyDnz. We have

K
STð Þ
X Rk; tlð Þ6 1

2

XM

q¼�M

XN

p¼�N

aqbpe
�2pinq �Rkþ2pifptlD3nDf

6
1

2

XM

q¼�M

XN

p¼�N

W
ðSÞ
X nq
� �

WðTÞ fp
� �

e�2pinq �Rkþ2pifptlD3nDf

6K
Sð Þ
X Rkð ÞK Tð Þ

X tlð Þ

9
>>>>>>>>>=

>>>>>>>>>;

; ð2:2:5bÞ

with the imposed separability again evident. A physical demonstration of WS-HS by direct

calculation of the noise (and signal) fields, including the specific physical conditions that

must be satisfied therein, can be made. In any case, we emphasize that separability of space

14 Dn 6¼ D3n; see remarks following Eq. (2.2.1a).
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and time here is an imposed ensemble property. (Note thatwhen the separability constraint is

removed, KST
X !K

ðSTÞ
X Rk; tlð Þ and W

ðSTÞ
X !W

ðSTÞ
X nq; fp
� �

in (2.2.5a and 2.2.5b).

SinceGaussian randomprocesses are essentiallydefinedby their covariance functionsKX

(from which associated means and second-order moments are immediately obtained), the

resulting pdf values (of discrete, sampled values) can be constructed at once, including

various types of inhomogeneities, nonstationary, and so on, exhibited by the direct sampling

of KX and WX in the discussion above. For non-Gaussian processes and fields, however,

higher order covariances, which are not functions of the first-order KX, appear explicitly as

well as implicitly in their statistical description. Therefore, it is usually not enough to

describe inhomogeneity or nonstationarity in second-order, that is, wide sense terms alone

(see Chapter 8 following).

Finally, we must distinguish here between the sampling procedure above and those in

Section 2.2.3. The former is an analytic approximation applied directly to the W–Kh

relations themselves [Eq. (2.2.5a and 2.2.5b)], whereas the latter is the actual physical

operation applied to the received field, in the manner of Eqs. (1.6.2a). Thus, the former is a

method of approximation, while the latter represents discrete sampling of the continuous

field data.

2.2.2 Extended Wiener–Khintchine Theorems: Continuous Inhomogeneous

and Nonstationary Random (Scalar) Fields

As we have already noted (Section 2.1.2), real nonstationary processes and inhomoge-

neous fields are the rule rather than the exception in practice. Frequently, we can

assume with some justification from experiment that a received field is effectively, or at

least to a good approximation homogeneous and stationary (Hom-Stat) in the vicinity

of the receiver. However, in many cases, we must contend with the fact that the field in

question is not so obliging. We must accordingly take this bothersome fact into account

if we are to achieve effective or even near-maximal detection and estimation and the

correct decisions and measurements that follow. We have already seen [Eqs. (2.2.1 and

2.2.2)] that the covariance and the associated intensity spectrum are among the

important statistics that describe such random fields whose analytical representation

must now be extended to account for their non-Hom-Stat condition. We therefore seek

appropriate generalizations of the usual Hom-Stat Wiener–Khintchine cases discussed

in Section 2.2.1. Sections 2.2.2–2.2.3 and the following present some of these

generalizations.

2.2.2.1 Continuous Non-Hom-Stat Fields Here, the (real) field in the neighborhood

of the receiver is continuously sampled for a finite period and over a finite spatial interval

(1.6.2) to yield a continuous data stream X(r,t) after sampling,15 of space–time “size”

Dð4Þ ¼ R0 ¼ X0Y0Z0j jj jT . During this interval,X(r,t) is assumed to be non-Hom-Stat. Let us

now consider the amplitude wave number frequency spectrum of the sample X r; tð ÞD in D,
which is the Fourier transform of X(r,t):

15 We assume the simplest sampling situation, where a r; tð Þ ¼ k0ainput r; tð Þ, with k0 representing the role of the

transducer in changing from the input field dimensions to other dimensionalities, such as, pressure to current

displacement. In most cases, we shall absorb the conversion parameter k into /, that is, a(r,t)¼ainput, and so on

to electric potential (volts).
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SX n; fð ÞD ¼
ðD=2

�D=2

X r; tð ÞDe2pir � n�2pitfd3rdt; with Dð4Þ ¼ R0xR0yR0z

� �
T ¼ D; Xh i ¼ 0;

ð2:2:6aÞ

and ) SXh i ¼ 0, where we have applied (1.6.2b) to the input field to obtain

X r; tð ÞD ¼ X r; tð Þ; r; tð Þ 2 D; and 0 elsewhere. Here, as usual, d3r ¼ dxdydz and

n ¼ î1nx þ î2ny þ î3nz, where now X(r,t) is understood to represent the ensemble of

representation of X. The inverse transform of SX n; fð ÞD is directly

ð1

�1
� � �
ð
d3ndf SX n; fð ÞDe�2pin � rþ2pift ¼ X r; tð ÞD; 2 D ¼ Dð4Þ

	 

;

¼ 0; elsewhere; hXi ¼ 0; ð2:2:6bÞ

with d3n ¼ dnxdnydnz in rectangular coordinates. The (continuously) sampled field X(r,t)

may also be the result of a two- or one-dimensional sampling operation, that is,

r ¼ î1rx þ î2ry or r ¼ î1rx, for example, in which case only n ¼ î1nx þ î2ny or

n ¼ î1nx respectively appear in the spectrum, and d3rdt ¼ drxdryd z� 0ð Þdz or

drxd y� 0ð Þd z� 0ð Þdrydrz represents the differential elements of integration.16 Also, it

may be more convenient in some cases to use spherical or polar coordinates in (2.2.6a and

2.2.6b), (for which the Jacobian of the transformation is n2dn sin ududf or ndndf, with
n � r ¼ în � îr

	 

n rj j) (2.2.1a above.).

We next use the definitionWX D; D<1j in (2.2.1) to obtain this intensity spectrum, based on

the finite sample D in (2.2.6a), namely,

WX n; fð ÞD � E
2

Dð4Þ
��SX n; fð ÞDj

2
� �

¼ 2

Dð4Þ F XDf gj j2 ; ð2:2:7Þ

which is assumed to exist from (2.2.6a and 2.2.6b). Thus, recalling from (2.1.1) that the

(auto) covariance is symmetric in (r,t), obtain

)Wx n; fð ÞD ¼ 2

D

ðDð3Þ=2;D=2

�Dð3Þ=2;�D=2

X r1; t1ð ÞX r2; t2ð Þ e2pin � r1�r2ð Þ�2pif t1�t2ð Þd3r1d3r2dt1dt2

¼ 2

D

ðDð3Þ=2;D=2

�Dð3Þ=2;�D=2

KX r1; t1; r2; t2ð Þ e2pin � r1�r2ð Þ�2pif t1�t2ð Þd3r1d3r2dt1dt2:

ð2:2:8Þ

This, in turn, is finite, positive (or zero), when KX is the (untruncated) covariance, with

Xh i ¼ 0 here. Since

16 We shall use rx for x, and so on and vice versa, including r for î1xþ î2yþ î3z, interchangeably.
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ð1

�1
e2pin � r2�r1þrð Þd3n

ð1

�1
e2pif t2�t1þtð Þdf ¼ d r2 � r1 þ rð Þd t2 � t1 þ tð Þ; ð2:2:9aÞ

the double, that is,wavenumber–frequencyFourier transformofWX n; fð ÞD, definedover the
ensemble X r; tð ÞD, is

ð1

�1
WX n; fð ÞDe�2pin � rþ2piftd3ndf

¼ 2

D

ðDð3Þ=2;D=2

�Dð3Þ=2;�D=2

KX r1; t1; r2; t2ð Þd3r1d3r2dt1dt2 �
ð1

�1
e2pin � r2�r1þrð Þþ2pif t2�t1þtð Þd3ndf ;

ð2:2:9bÞ

which gives for (2.2.8) the result

ð1

�1
WX n; fð ÞDe�2pin � rþ2piftd3ndf ¼ 2

D

ðD=2

�D=2

KX r1; t1; r1 � r; t1 � tð Þd3r1dt1: ð2:2:10Þ

Equations (2.2.8 and 2.2.10) are the non-Hom-Stat versions of the (wide sense) homoge-

neous–stationaryWiener–Khintchine relations (2.2.1a and2.2.1b), and the extensionofEqs.

(3.37–3.39) of Ref. [1] to now include space as well as time.

At this point, it is convenient to introduce the more compact notation17

p1 � r1; t1ð Þ; p2 � r2; t2ð Þ; or in vector form explicitly;

pð1;2Þ � rð1;2Þ � î4tð1;2Þ; q � nþ î4f ;
n

ð2:2:11Þ

with

r ¼ îxrx þ îyry þ îzrz and q ¼ îxnx þ îyny þ îznz þ î4f ¼ î1R
�1
x þ î2R

�1
y þ î3R

�1
z þ î4f

ð2:2:11aÞ

and where

d4p � d3rdt ¼ dxdydz or drxdrydrzdt and d4q ¼ d3ndf ¼ dnxdnydnzdf ð2:2:11bÞ

where notationallyF(p) is a function of p, that is,p, pj j; p1; :::; p4, and so on. In fact,F(p) is
usually a functional of p in F(g(p)), where g pð Þ ¼ px and so on.

17 Thus, we have K pð Þ ¼ K rm � î4tn
� �

or K rm; tnð Þ; K p1;p2ð Þ ¼ K rm � î4tn; rm0 � î4tn0
� �

or K rm; tn; rm0 ; tn0ð Þ:
the notation is self-explanatory.
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We, therefore, write (2.2.8 and 2.2.10) as the following:

I: Spectrum : WX n; fð ÞD ¼ 2

D

ðDð3Þ=2;D=2

�Dð3Þ=2;�D=2

KX p1; p2ð Þe2piq � p1�p2ð Þd4p1d
4p2

¼ WX qð ÞD ð2:2:12aÞ ð2:2:12aÞ

II: Covariance :
2

D

ðDð4Þ=2

�Dð4Þ=2

KX p1; p1 � pð Þd4p1 ¼
ð1

�1
WX qð ÞDe�2piq � pd4q

ð2:2:12bÞ

(These results, Eqs. (2.2.7–2.2.12b), are the generalizations of the purely temporal results

of Eqs. (3.37–3.39) of Ref. [1] to space–time.)

For the real non-Hom-Stat fields typical of physical communication processes,

where D ! 1, it can be demonstrated that the right-hand number (of 2.2.12b) exists,

provided

ðiÞ KX is suitably continuous at t1 ¼ t2 ¼ 0 and r1 ¼ r2 ¼ 0;
ðiiÞ Xðr; tÞ possess a finite space and time average X r; tð Þh i

for almost all members of the ensemble X; and
ðiiiÞ Xðr; tÞ is postulated to be an ðrealÞ entirely random field:

9
>>=

>>;
ð2:2:13Þ

Accordingly, as D ! 1, we finally obtain18

KX p1;p1 � pð Þh i ¼ 1

2

ð1

�1
WX n; fð Þ1e�2piq � pd4q ¼ 1

2
F�1
n;f WX;1
 � ð2:2:13aÞ

with

2

ð1

�1
KX p1; p1 � pð Þh ie2piq � pd4p ¼ WX n; fð Þ1 ¼ 2Fr;t KXh if g; ð2:2:13bÞ

where lim
D!1

WX n; fð ÞD !WX qð Þ1. Equations (2.2.13a and2.2.13b) constitute an extended

form of the more familiar W–Kh theorem (2.2.1a and 2.2.1b).

A hybrid expression for (2.2.13a and 2.2.13b) follows directly when the spatial domain

|DR| remains finite, while T ! 1, a situation often approached in practicewhere the spatial

portion of the data samples necessarily remain bounded. Then, Dð4Þ ¼ jD3RjT !jD3Rj
(T ! 1), |DR| ! 1, symbolically, and WX n; fð Þ1 !WX n; fð Þ DRj j;1 in (2.2.13a and

18 A proof of the existence of (2.2.13a and 2.2.13b) when D ! 1may be found as an extension of the Hom-Stat

cases from the temporal proof outlined in Section 3.2.2 ofRef. [1], refer to footnote, Section 3.4.5 ofRef. [1], p. 194.
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2.2.13b). In both cases, when the non-Hom-Stat, nonstationary conditions result in

j X r; tð Þh i2j!1 (for almost all members of the ensemble), the limits on WX do not exist

asD ! 1 or T ! 1, and thus Eqs. (2.2.13a and 2.2.13b) aremeaningless. The casewhere

the intensity level for the field X(r,t) increases with time, or space and time, is one such

example. On the other hand, for suitably bounded nonstationarities, the relations (2.2.13a

and 2.2.13b) can be applied.

Since KX r1; t1; r2; t2ð Þ ¼ KX r2; t2; r1; t1ð Þ, that is, is symmetric for these real fields,

we see that KX p1; p1 � pð Þh i ¼ KX p1; p1 þ pð Þh i, from which it follows that WX n; fð Þ ¼
WX �n;�fð Þ (2.1.12)a); KX p1; p1 � pð Þh i is an even function (n, f). The critical analytic

complexity resulting from the non-Hom-Stat nature of the field is that the covarianceKX now

depends on when the field is initially observed, so that it is no longer possible to take

advantage of the inherent simplification of the convolutional form when Hom-Stat occurs.

Ensemble averages are now always required, since we cannot use the (wide sense) ergodic

theorem (Section 1.7.1 of Ref. [1]) to replace the average by observations of a single

representation XðjÞ r; tð Þ in the space–time domain.

As a further example of the need for the statistical average (<>), we find for the case of

cross-covariance of two possibly related field ensembles X(r,t) and Y(r,t), the resulting

extension of the Wiener–Khintchine theorem (2.2.12a and 2.2.12b) in the non-Hom-Stat

cases:

I: Spectrum : WXY qð ÞD ¼ 2

D

ðD=2

�D=2

KXY p1; p2ð Þe2piq � p1�p2ð Þd4p1d
4p2 ð2:2:14aÞ

II: Covariance :
2

D

ðD
4=
2

�D4=2

KXY p1; p1 � pð Þd4p1 ¼
ð1

�1
WXY qð ÞDe�2piq � pd4q: ð2:2:14bÞ

The corresponding expressions as D ! 1 andWXY qð ÞD !WXY qð Þ, withWXY qð Þ (almost)

everywhere finite, and subject to (i–iii) (2.2.13), are found at once paralleling the procedure

for (2.2.13a and 2.2.13b), namely,

II: Covariance : KXY p1; p1 � pð Þh i ¼ 1

2

ð1

�1
WXY qð Þe�2piq � pd4q ¼ 1

2
F�1
q WXYf g

ð2:2:15aÞ

I: Spectrum : WXY qð Þ ¼ 2

ð1

�1
KXY p1; p1 � pð Þh ie2piq �pd4p ¼ 2F�1

r;t KXYh if g; ð2:2:15bÞ

where

KXY p1; p1 � pð Þ ¼ KYX p1; p1 þ pð Þ; and WXY qð Þ ¼ WYX qð Þ*: ð2:2:15cÞ

The concept of the intensity spectrum of a nonhomogeneous, nonstationary random field is

accordingly extended from the more familiar Hom-Stat cases by the procedure above
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(2.2.7–2.2.15c). As can be seen, considerably more sample data are required to approxi-

mate the defining covariances, because it is the ensemble mathematically regarded as

having an infinite number of members that is invoked here. In high-frequency radar

applications, a large number of relevant samples can be obtained in the short time available

for the decision process. Where sufficient computational power is available, it should

be possible to obtain good approximations for KX (and KXY ) in real time and thus to replace

the theoretical ideal KX p1; p1 � pð Þ with effective estimates. In sonar applications, on the

other hand, effective estimates of KX may not be so precise. An exception occurs when

the non-Hom-Stat condition is comparatively weak, allowing one to assume essentially.

Hom-Stat conditions. In any case, it is the stability (or instability) of the medium that is

usually the controlling factor here.

2.2.3 The Important Special Case of Homogeneous—Stationary Fields—Finite

and Infinite Samples

When theHom-Stat condition is applicable, thenKX p1; p2ð Þ ¼ KX p2 � p1ð Þ ¼ KX p1 � p2ð Þ
on the infinite sample interval. For finite samples (D<1), we easily see the following on

applying Eq. (2.2.12a):

I: Spectrum :

WX qð ÞD ¼ 2

D

ðDð8Þ=2

�Dð8Þ=2

KX p1 � p2ð Þe2piq p1�p2ð Þd4p1d
4p2

¼ 2

ð1

�1
KX pð ÞDe2pi q � pð Þd4p � 0; KX pð Þ ¼ KX �pð Þ

9
>>>>>>>>>=

>>>>>>>>>;

ð2:2:16Þ

Here, p ¼ p1 � p2, that is, p ¼ r1 � r2 � î4 t2 � t1ð Þ ¼ r� î4t, with r ¼ r1 � r2; t ¼
t2 � t1. In addition, we have compactly

KX pð ÞD ¼ KX pð Þ1 1� jp3j=D4
� �

; ¼ 0; jD4j < jpj; ð2:2:16aÞ

or equivalently,

KX pð ÞD ¼ KX pð Þ 1� Rð3Þ�� ��=D4
	 


1� tj j=D4
� �

; ¼ 0; Rð3Þ�� �� < rð3Þ
�� ��; T < tj j;

ð2:2:16bÞ

refer to (2.2.6a), where D4 ¼ R3
�� ��T ; R3

�� �� ¼ RxRyRz

� �
is the domain of the (ensemble) of

finite samples.

Taking the Fourier transform of both sides of (2.2.16) gives the following in these Hom-

Stat cases.

II: Covariance : KX pð ÞD ¼ 1

2

ð1

�1
WX qð ÞDe�2piq �pd4q: ð2:2:16cÞ
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To establish the W–Kh theorem in case of infinite sample intervals is not difficult.19 We

need to show that lim
D!1

WX�D approaches a definite limit, that is,

lim
D!1

WX qð ÞD ¼ 2

ð1

�1
KX pð Þe2piq � pd4p ¼ 2F KXf g ¼ WX qð Þ; ð2:2:17aÞ

so that as required

KX pð Þ ¼ 1

2

ð1

�1
WX qð Þe�2pi q � pð Þd4q ¼ 1

2
F�1 WX qð Þf g: ð2:2:17bÞ

We accordingly outline the steps showing lim
D!1

WX qð ÞD ¼ WX qð Þ [Eq. (2.2.17a)]. First,
we require KX pð Þ in (2.2.16a) to be continuous and then begin with the nonnegative form

Eq. (2.2.17a). We next have the following:

(1) Equation (2.2.16a)multiplied20 by 1� qj j=q0ð Þe�2pip � q, where qj j ¼ vxvyvz � f
�� �� and

Dvj jf ¼ v0xv0yv0zf0 � q0j j; (2.2.18)

(2) Then, integrate it with respect to q over the region � q0j j=2; q0j j=2ð Þ to obtain

ðq0

�q0

1� qj j=q0ð ÞWX qð ÞDe2piq �pd3q¼ 2

ð1

�1
KX pð ÞD

Y4

l¼1

sin q0l p
0
l �plð Þ=2½ �

ql p0l �plð Þ=2
� �2

q0j jd3p0;

ð2:2:19Þ

where dp¼ dp1dp2dp3dp4 ¼ drxdrydrzdt; q0l ¼ v0lj j; l ¼ 1;2;3; q04 ¼ f0, and pl ¼ rl ;
l¼ 1;2;3; p4 ¼�x.

(3) The coefficient of e�2piq � p in the left integrand is nonnegative. Therefore, this

integrand is proportional to a characteristic function or, equivalently, to a proper pdf.

(4) According to the continuity theorem of L�evy, in Section 10.4 of Ref. [1], the right-
hand side of (2.2.19) converges uniformly in every finite interval to KX pð ÞD as

q0j j!1, under the above requirement that KX pð ÞD be continuous.

(5) Consequently, KX pð ÞD for which KX 0ð ÞD ¼ KX 0ð Þ > 0 is interpretable as a charac-

teristic function, except for the scale factor KX 0ð ÞD.
(6) Also, it follows from the L�evy continuity theorem that as D!1 in every finite

interval p, KX pð ÞD is also a characteristic function when divided by KX 0ð Þ. Thus,
since lim

D!1
KX pð ÞD ¼ KX pð Þ, the result (2.2.17a) follows, proving the W–Kh

theorem (2.2.17a and 2.2.17b) for these Hom-Stat fields X(r,t). Moreover, since

KX pð Þ ¼ KX �pð Þ andWX qð Þ ¼ WX �qð Þ, we see that KX pð Þ andWX qð Þ are cosine

19 This demonstration (2.2.18–2.2.20) is a simple extension of the proof of Lo�eve [4]. See the footnote, p. 142 of

Ref. [1].
20 This is to be interpreted like Eqs. (2.2.16a and 2.2.16b).
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Fourier transforms of one another, for example,

WX qð Þ ¼ 4

ð1

0

KX pð Þecos 2piq � pd4p; KX pð Þ ¼
ð1

0

WX qð Þecos2piq � pd4q ð2:2:20Þ

refere to (2.2.17a and 2.2.17b). (See the discussion in Section 3.2.2, and following it, of

Ref. [1] for the purely temporal cases. See also Section 2.2.1 of this chapter for an

introductory treatment of the space–time cases.

2.3 THE W–Kh RELATIONS FOR DISCRETE SAMPLES IN THE

NON-HOM-STAT SITUATION

In Section 2.2.1, we have presented a direct approximation of the continuous Hom-Stat

W-Kh form, followed in Section 2.2.2 by the continuous extensions ofW–Kh relations to the

non-Hom-Stat cases. Now, as a preliminary to the treatment of apertures and arrays in

Section2.3,weneed toexamine inmoredetail the roleof discrete space–time samplingof the

received input fielda(r,t) itself and its sampled outputX rm; tð Þ, since the covariance of such
samples is not the same as the sampled covariance. As we shall see below, this requires a

somewhat more intricate analysis than the continuous treatment of Sections 2.2.1 and 2.2.2

becausewe are replacing a continuumwith a series of discrete values of the input field, taken

at dimensionless points. Accordingly, we begin by applying the discrete sampling operator

of Eq. (2.1.2) to the continuous input field a(r,t), to consider first the following.

2.3.1 The Amplitude Spectrum for Discrete Samples

Using (1.6.2a and 1.6.2b), we find that for the finite intervals considered here, the individual

samples of received input are

X rm; tnð Þ ¼ TS að Þd ¼ k0

ðRð3Þ=2

�Rð3Þ=2

d3r

ðT=2

�T=2

a r; tð Þinputd r� rmð Þd t� tnð Þdt ¼ k0a rm; tnð Þinput

¼ a rm; tnð Þ; � D
2
� rm; tn � D

2
; ¼ 0 elsewhere: ð2:3:1Þ

Here, D is the finite space–time sample interval D ¼ Rð3Þ�� ��T
� �

applied to ainput and

containing the sample a rm; tnð Þ.21
Discrete sampling in space–time is seen to be straightforward here, directly yielding the

expected result Xj ¼ aj , refer to Eq. (2.3.1). But for the resulting spectrum, it is a more

complex affair, requiring a modification of the usual Fourier transform definition.We begin

by considering the analogy with Eq. (4.2) of Ref. [1], namely,

21 The conversion factor k0 represents the effect of the physical transducer employed by the sensor at rm; tnð Þ to
convert the external field (usually) to a suitable voltage or current.
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Sy fð Þ ¼
ðT=2

�T=2

y tð Þe�2pvtdtY
XN=2

�N=2

Dnyne
�2pivnT0 ¼ Syn fð Þ;�f0 � f � f0

¼ 0; elsewhere

9
>>=

>>;
; ð2:3:2Þ

With yn ¼ y tnð Þ; Dn ¼ tnþ1 � tnð Þ ¼ DTn, and for periodic samplings, tn ¼ nT0 and

Dn ¼ DTn ¼ t0 (refer also to Eq. (71) versus Eq. (48) of Ref. [9]). We can now define a

preliminary relation for a space–time spectrum, namely,22

SXj
n; fð Þ ¼ SXj

qð Þ � Xj �Dð4Þ
oj � e2pipj � q;

� Doj=2 � rm; tn � Doj=2; ¼ 0; elsewhere in space--time; ð2:3:3Þ

for which Dð4Þ
0j

� Dð3Þ
0m
Dtn in the extension to space as well as time, like the interval

Dtn � tnþ1 � tn between time samples in earlier work [10], with Xj everywhere finite on

the sample interval Dð4Þ
0j
. For pj and q, we have

pj ¼ rm � î4tn and q ¼ nþ î4f ; Drm ¼ rmn � rm: ð2:3:4Þ

(We observe that the dimensionality of Sxj are A½ � L½ �3 T½ � or A½ � f½ ��1 nj j3
h i3

as required since

Sxj q ¼ n; fð Þ is a four-dimensional spectrum, three in wave number space and one in

frequency space.) Thus, the components of pj are the intervals in space

Drm � rmþ1 � rm ¼ îDm Drmj j and in time Dtn � tnþ1 � tn of a point array. The spheres

in Fig. 2.7 represent the spatial domains of the vectors rm; rmþ1, and so on. In addition, the

quantities aj; Xj; SXj
can represent ensemble values in the overall sample interval that is

taken from the continuous field ainput in the manner of Eq. (2.3.1). See Figures 2.5–2.7

Note that the spectrum in (2.3.3) for the point datum Xj is apparently unbounded.23 In

fact, (2.3.3) is periodic inwavenumber and frequency (for each j¼mn),with periodDð4Þ
0j

and

is completely specified in the primary interval �1=2Dð4Þ
0j
; 1=2Dð4Þ

0j

	 

for each j. By suitable

choice of the scalar factor Dð4Þ
0j

in (2.3.3), we can remedy the spectral indeterminacy. This is

achievedbychoosing aprimary interval to limit thedomainof (n and f) for each jth interval.24

Accordingly, we see from this, and the earlier example (2.3.2), that Dð4Þ
0j

must represent

the spatial and temporal sampling interval, here extending from rm and tn at the jth sample by

the amounts Drmj j and Dtn ¼ T0n , respectively. Thus, in (2.3.3), we have for Drð3Þm Dtn

D0j ¼ rmþ1 � rmj j tnþ1 � tnð Þ ¼ Drmj jT0n ; ¼ 0 elsewhere; ð2:3:5Þ

where j, jþ 1 represent consecutive space and time points.We shall verify that this is indeed

the case forD0j whenwe evaluate the inverse transformXJ ¼ F�1 SJð Þ, refer to Eq. (2.3.3) ff.

22 See the text following Eq. (2.3.1).
23 The nonlinear character of the discrete sampling operator Td in (2.3.1) produces the infinite “white” spectrum

over n; fð Þ periodically, which represents the additional frequencies generated by Td.
24 By requiring thewave number–frequency spectrum tovanish outside this primary interval,we avoid the resulting

infinite energy catastrophe, which is clearly nonphysical and which is not now implicit in our model of space–time

samples on bounded intervals. The spectrum is still continuous, in the primary interval, but is null bounded

everywhere else.
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For the jth interval, the corresponding domains of n and f in wave number–frequency

space are given by the reciprocal n0m and f0n of the domains of Drm and T0n , namely,

�n0m � n� n0m or 0� n� n0ð Þm; 0�fn � 2p; 0� un � p; and 0� f � f0n

where

�R0m �Drm �R0m or 0� Drmj j �R0m ; 0�fm � 2p; 0� um � p

9
>=

>;
;

ð2:3:6Þ

expressed in spherical coordinates, by which we reveal, as expected, the linear dimension-

ality ofDrm and hence the reciprocal linearity of nj j ¼ n¼ L�1½ �. The entire region occupied
by the set of data discrete points is represented symbolically by R0, where we also have the

bounding conditions �R0 �R0m �R0ð Þ and 0� T0n � Tnð Þ. Accordingly, we find now that

the upper limits of nj j and t are respectively for each component of n

n0ð Þm ¼ 1=R0m ; with fvm;umð Þ in 0;2p;0;pð Þ; and f0n ¼ 1=T0n : ð2:3:7aÞ

Thus, it is thefinite spatial intervals betweenconsecutivepoints that determine the individual

finite continuous domains of the corresponding wave numbers and frequencies for these

generally aperiodic samples.

The transform variables p, q, (2.3.4), representing the location of successive points in

space–time and wave number–frequency space are explicitly in spherical coordinates

î1 ¼ îx; and so on
	 


q ¼ înn þ î4f ; with în ¼ î1 cos fn sin un þ î2 sin fn sin un þ î3 cos un

rm ¼ îmrm; and îm ¼ î1 cosfm sin um þ î2 sin fm sin um þ î3 cos um

)

: ð2:3:7bÞ

From (2.3.7b), we easily see that

în � îm ¼ cosfn sinun cosfm sinumþ sinfn sinun sinfm sinumþ cosfn cosum ¼ coscnm;

ð2:3:8Þ

1m

z

yy 0

x

x

+r

rm

θ∆
∆rm

î∆

φ∆

FIGURE 2.5 Geometry of Drm ¼ îD Drmj j
	 


, the interval defined by rm; rmþ1ð Þ [Eq. (2.3.4)].
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which is cosine of the angle between în and îm, and correspondingly, (x, y, z) - components of

n and rm are

nx¼ nj jcosfn sinun; ny¼ nj jsinfn sinun; nz¼ nj jcosfn; with nj j¼ n2xþn2yþn2z

	 
1=2

rmð Þx¼ rmj jcosfm sinum; rmð Þy¼ rmj jsinfmsinum; rmð Þz¼ rmj jcosum

9
=

;
:

ð2:3:9Þ

From (2.3.4) and (2.3.7b–2.3.9), we readily obtain the appropriate form of the transform

variables in (2.3.3) for a straight line in both r-space and n-space (Fig. 2.6):

pj �q¼ îm � în rmj j nj j� î4fTn; dq¼dndfndundf ; ð2:3:10Þ

From (2.3.10), we observe that it is pj that reflects the orientation in space of the interval

Drmj j. For example, if rm lie only on the xy-plane, then um¼p=2 and

pj ¼ rmj j î1 cosfmþ î2 sinfm

	 

� î4Tn. Hence, only the wave numbers

nx¼ nj jcosfn sinun; ny¼ nj jsinfnsinun associated with the sampled field appear in the

spatial spectrum. Similarly, for point (or equivalently sensor) data samples aligned along an

axis, say thex-axis, we have um¼p=2;fm¼0ð Þ, so thatpj ¼ î1 rmð Þx� î4Tn. Then, as seen in

Section 2.2.2.1, it is the components ofpj that determine the components ofq in the exponent

of (2.3.3) and hence in SXj
qð Þ and its inverse. Also, as a consequence of this, the differential

element in (2.3.10) becomes for these examples dq¼dndfndundf and

dq¼dnd fn�0ð Þdfd un�p=2ð Þdu, with D0j ¼2p2n0mf0n and n0m , respectively, in (2.3.3)

and (2.3.7a) ff. In all cases as expected, the dimensionalities of rmj j and |n| are [L] and L½ ��1
,

respectively, so that the dimensionality of |pj | and |q| are [LT] and LT½ ��1
, as required of the

amplitude spectrum (2.3.3) here (in addition to the dimensionality of the field samples Xj

� �
).

Figures 2.7 and 2.8 illustrates the space–time geometry of a typical jth¼ interval.

We are now ready to determine the amplitude wave number–frequency spectrum of the

entire sample of data pointsXj; j ¼ 0; 0ð Þ; . . . ;MN. For convenience in comparison with the

results of Section 2.2.2, we consider the case ofMþ 1, Nþ 1 sample points,M, N even, in

the interval R0j jT , so that we have MN intervals in space and time each bounded by

vz

vx

vy

2π

v2 + dv

dv

ν0m

θx = π

φv

φv

θv = 0

Ov

θm

θv

ν + dν
ν

FIGURE2.6 The domain of n and n0m in wave number space for the line intervalDrm ¼ rmþ1 � rm.
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consecutive sample points, selected under the principle of the “nearest neighbor.” The

intervals are equally divided aboutM=2, that is, extending from�M=2 toM=2 in each half of
the sample space R0j jT , as shown in the figures. From 2.2.7b) and (2.3.10), the scalar length

of a typical interval in space–time is Drmj jT0n and the entire length of the array of points is the
sum of the intervals as defined above, namely,

DJ ¼
XJ

j

D0j ¼
XJ

m;n

Drmj j3T0n : ð2:3:11Þ

For the connected intervals, we have (for the ensemble)

XJ ¼
XJ=2

�J=2

Xj; Xj ¼ 0; and SJ n; fð ÞD ¼
XJ=2

�J=2

SXj
qð Þ

¼
XJ=2

�J=2

XjDoje
2pipj � q ¼

XJ=2

�J=2

ajDje
2pipj � q

0

@

1

A ð2:3:12Þ

from (2.3.3). It is evident on taking the inverse Fourier transform of SD with the help

of (2.3.7b) and (2.3.12) that

XJ ¼
XJ=2

�J=2

Xj ¼ F�1 SJ;D
 � ¼

XJ=2

�J=2

ðn0m=2

�n0m=2

dv

ð2p

0

df

ðp

0

du

ðf0n=2

�f0n=2

SXj
qð Þe�2piq � pj df

2p2n0mf0n ¼ D�1
0j
; )n0m ¼ 2p2 Drmj j� ��1

; ð2:3:13Þ

as required, with v replaced by |n|¼ n and q given by (2.3.7b). From (2.3.11), we see that in

terms of wave number–frequency bounds n0m ; f0nð Þ, D0j ¼ 2p2 or 4pð Þ�1
. Thus, the wave

number–frequency domain of SJ qð ÞD consisting of the sum of the individual domains of

Sj qð ÞDj is also finite. Like them, it also vanishes outside its own Fourier dimensional (n, f)
intervals, being continuous within that interval.

R0m

z

x

y

0

x

m

z

m+1

y

θm

φm

∆rm

∆rm

0R

0R
(R0x)m

(R0y
)m

(R0z)m

rm+1(≠Xj+1)

rm

(Xj)

–T/2

T/2

1

FIGURE 2.7 Geometry of the vector interval Drm in spherical coordinates, cf. Eq. 2.3.7b, and an

array of points m¼ 1, . . ., M in space, with a typical interval Drm, etc., and time samples.

106 SPACE–TIME COVARIANCES AND WAVE NUMBER FREQUENCY SPECTRA



2.3.2 Periodic Sampling

Instead of the deterministically irregular sampling process of the above, both in space with

respect to interval length and in direction, as illustrated in Figs. 2.5 and 2.6, our results above

may be considered simplified if we use periodic sampling in space and time. With the same

interval distance and temporal separations, we have, for f0n ¼ f0 ¼ T�1
0 ;

ðiÞ Drm ¼ îmr0 ¼ îm rmþ1� rmð Þ and
T0n ¼ T0
T ¼ nT0

� �

different direction of rmð Þ

ðiiÞ Drm ¼ î0r0
rm ¼mî0r0

� �
and

T0n ¼ T0
T ¼ nT0

� �
straight line in spaceð Þ

9
>>>>>>=

>>>>>>;

; n¼ înn¼ în=r0:

ð2:3:14aÞ

In any case, with periodic sampling, we have the following for the overall array length DJ :

Dð4Þ
J ¼ JD0j ¼ JD0 ¼ Jr0T0; with D0j � D0 ¼ r30T0: ð2:3:14bÞ

Note that if in (ii) r0 is not parallel to an axis, it is then possible to obtain the direction of a

(localized) source producing Xj . (We shall discuss this in more detail in Section 2.5 when

considering actual arrays of sensors in space.) Figure 2.9a andb shows examples of aperiodic

and periodic sampling in time.

Finally, Eq. (2.3.3) becomes for the entire sample

CaseðiÞ : ð2:3:14aÞ : SJ n; fð ÞD ¼
XM;N=2

�M;N=2

X îmr0;nT0

	 

r30T0
� �

e2pi în � îmð Þr0n�nfT0½ �; n¼ nj j;

ð2:3:15aÞ

θ

φ

Or = Oν νsinθ (0) yν

νz

ν

νx

ν0m

νdφ

FIGURE 2.8 Geometry of the differential elements dn, du, df.
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CaseðiiÞ : ð2:3:14aÞ : SJ n; fð ÞD ¼
XM;N=2

�M;N=2

X m; î0r0;nT0

	 

r30T0
� �

e2pi în � î0ð Þmr0n�nfT0½ �

ð2:3:15bÞ
with the basic interval nowD0j ¼ r30T0 � D0, independent of j (¼mn), and the total interval is

DJ ¼MND0 ¼ Jr30T0, refer to Eq. (2.3.14b). The single data sample is still

Xj ¼ aj ¼K0ainput

� �
. From (2.3.4 and 2.3.7b), we have again for the basic space–time

coordinates,

pj ¼mîmr0 � î4nT0; q¼ îvnþ î4f ; and g0dndudfdf ; ð2:3:15cÞ

where the limit on v in the periodic version of the integral over SX qð Þ is given by (2.3.13). For
these three-dimensional cases, the normalizing factor is specifically g0 � s=pn30 f0
¼ ðs=pÞR0mT0 again, refer to Eq. (2.3.13a). Equations (2.3.8–2.3.10) provide some of the

general relations modified here by the assumption of periodicity.

2.4 THE WIENER–KHINTCHINE RELATIONS FOR DISCRETELY

SAMPLED RANDOM FIELDS

With the results (2.3.10–2.3.13) above, we are now ready to calculate W–Kh relations for

finite samples of discrete data, that is, for Xj

 �
, under the quite general conditions of non-

Hom-Stat inputs and aperiodic sampling. We begin by modifying the definition of spectral

intensity (2.2.7) used in the continuous cases of Section 2.2.2 to

WXJ
qð ÞD � E

2

DJ

SD qð Þj j2
� �

¼ 2

DJ

F XJð Þj j2 ; ð2:4:1Þ

cf. (2.3.12). With the help of (2.3.13), this becomes

WXJ
qð ÞD ¼ 2

DJ

XJ=2

�J=2

XJ0=2

�J0=2

XjXj0D0jD0j0 e
2pi pj�pj0ð Þ �q ð2:4:2aÞ

t tn=0 n=0

(a) (b)

–T/2 –T/2

–t –t

T/2 T/2

X(rm, tn') X(rm, n' T0)X(rm, tn)

T0

tn tn+1

∆n

FIGURE 2.9 (a) Aperiodic sampling of X(r ,t): X rm; tnð Þ and so on (2.3.3), in �T=2; T=2ð Þ.
(b) Periodic sampling of X ¼ X rm; nT0ð Þ in �T=2; T=2ð Þ [Eq. (2.3.14a)].
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¼ 2

DJ

XJ=2;J0=2

�J=2;�J0=2

KX pj; pj0
� �

D0jD0j0 e
2pi pj�pj0ð Þ � q ð2:4:2bÞ

with DJ , Eq. (2.3.11), the effective overall sample size in space–time, for aperiodic

(nonoverlapping) individual samples, in the finite domain D ¼ R0j jT , with KX being the

covariance of the sample values Xj at points j, j0 in D. For periodic samples,

DJ ¼ JD0 ¼ Jr30T0 and pj;j0 ¼ îmr0 � î4T0; îm0r0 � î4T0, refer to Eq. (2.3.14a). Equations

(2.4.2a and 2.4.2b) are the discrete analogues of the continuous case (2.2.8) above.

Let us now obtain the other member of W–Kh transform pair, paralleling Eqs. (2.2.9–

2.2.12b). For this,weneed the following result relating thedelta functionsd xj � xj0
� �

and the

Kronecker delta d
j
j0 ¼ djj0
� �

:

lim
D! 0

D � d xj0 � xj
� � ¼ d

j
j0 ¼ djj0 or lim

D! 0
d
j
j0=D ¼ d xj0 � xj

� �
: ð2:4:3Þ

Then, for any value of pk in D ¼ R0j jTð Þ, we have with respect to the Fourier transform of

the intensity spectrum (2.4.2a)

F�1 WXJ
qð ÞD

 �
pk

¼ 2
XJ=2;J0=2

�J=2;�J0=2

D0j

DJ

KX pj ; pj0
� �

lim
D0j

!D0
0 ! 0

D0
0

ð1

�1
e2pi pj�pj0 �pkð Þ � SQdq

2

4

3

5:

ð2:4:4Þ

The expression in the brackets [ ] is given by (2.4.3) D0
0d pj0 � pj � pk

� �� � ¼ d
j�k
j0 , the

Kronecker delta. Summing over j0 gives KX pj0 ; pj � pk
� �

D, with D0j=DJ ¼ D0j=
P

j D0j ,

from (2.3.11). The result is finally

 

2
.X

D0j

j

!
XJ=2

�J=2

D0j KX pj; pj � pk
� � ¼

ð1

�1
WXJ

qð ÞDe�2piq � pkdq < 1: ð2:4:5Þ

Weobserve that the intensity spectrum (2.4.2) is composed of separate primary intervals that

are individually bounded in wave number–frequency–space according to D�1
0j
, refer

to Eq. (2.3.13).

For periodic sampling in space and time, we use (2.3.14 and 2.3.15) to obtain directly the

simpler result:

Periodic Sampling :
2

J

XJ=2

�J=2

KX pj; pj � pk
� �

D ¼
ð1

�1
WX qð ÞDe�2piq � pkdq ¼ F�1

d WX qð ÞD
 �

ð2:4:5aÞ

where pj , q, and so on are given explicitly now by (2.3.15c). The intensity spectrum (2.4.2b)

is modified to the following:

ðIÞPeriodic Sampling : WXJ
qð ÞD ¼ 2D0

J

XJ=2

�J=2

XJ0=2

�J0=2

KX pj ; pj0
� �

D0e
2pi pj�pj0ð Þ � q ð2:4:5bÞ
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These are the expected discrete analogues of (2.2.10b) for the continuous cases, now for

periodically sampled data Xj

 �
in the finite domain D, when the received field is non-Hom-

Stat. (Note also that becauseKX is real and symmetric, KX pj; pj � pk
� � ¼ KX pj; pj þ pk

� �

and hence WX qð Þ ¼ WX �qð Þ, that is, WX n; fð Þ ¼ WX �n;�fð Þ, refer to Eq. (2.2.12).

Provided we can apply conditions (ii) and (iii) of (2.3.13), we can extend (2.4.5) to the

infinite sample interval, that is, jDj!1 for non-Hom-Stat fields obeying (i)–(iii). The

results are again analogous to (2.3.8a and 2.3.8b).

W Xjf g qð Þ1 ¼ 2

ð1

�1
KX pj; pj � pk
� �� �

e2pipk � qdpk; ð2:4:6aÞ

with

KX pj; pj � pk
� �� � ¼ 1

2

ð1

�1
W Xjf g qð Þ1e�2piq � pkdq; ð2:4:6bÞ

once more provided Xj

�� ��2
D E

< 1 in the entire region �1 � D � 1. Here, the wave

number–frequency region now extends over the infinite domainD! �1. For the periodic

cases, D0j ¼ D0 ¼ r0T0, (2.3.14b), and one uses (3.3.35b) for the coordinates, in (2.4.1–

2.4.5) and subsequently, for example, in (2.4.6a–2.4.12b).

In the hybrid cases, where the spatial sample is bounded DRj j < 1ð Þ but the temporal

portion is unbounded, that is, T ! 1, we have

II: Covariance : 2
XM=2

�M=2

X1

�1
KX rm; tn; rm � rk; tn � tkð Þ ¼

ð1

�1
W Xf g qð Þ R0j j;1e2piq � pkdq

ð2:4:7aÞ

with the transform pair member (2.4.2b) in detail, namely:

I: Spectrum : W Xjf g qð Þ R0j j;1¼ 2

M

XM=2

�M=2

XM0=2

�M0=2

Drmj j lim
N!1

1

N

Xn;n0¼1

� n;n0ð Þx�1
T0nKX rm;tn;rm0 ;tn0ð Þ

8
<

:

�e2pi rm�rm0ð Þ�v�f n�n0ð Þ½ �T : ð2:4:7bÞ

The complexity of these results, and in particular for the intensity spectrum, refer to Eqs.

(2.4.2b and 2.4.2b), arises largely from the non-Hom-Stat character of the fields, as well as

technically from the explicit addition of the spatial contributions.

2.4.1 Discrete Hom-Stat Wiener–Khintchine Theorem: Periodic Sampling

and Finite and Infinite Samples

Similar to the continuous cases of Section 2.2.2 above, when the discrete samples Xj

 �
of

finiteduration D < 1ð Þare extracted from theHom-Statfields of infinite duration D!1ð Þ,
we have directly from (2.4.2b), using (2.3.14b) for D0,
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I: Spectrum : W Xjf g qð ÞD ¼ 2

DJ

XJ=2

�J=2

XJ0=2

�J0=2

KX pj � pj0
� �

D2
0e

2pi pj�pj0ð Þ � q

¼ 1

K

XK

�K

K
ðDÞ
X pkð Þ �D0e

2pipk � q � 0ð Þ ¼ 2F KX pkð ÞD
 �

;

ð2:4:8Þ

Here, pk ¼ pj � pj0 ¼ pj0 � pj , and so on, because of the Hom-Stat condition, and

K
ðDÞ
X pkð Þ ¼ KX pkð Þ1 1� pkj j=DJð Þ; ¼ 0;DJ < pkj j; with K ¼ MN; ð2:4:8aÞ

1� jpkj=DJ ¼ 1� jrRj=DjRjð Þ 1� jtkj=Tð Þ; jpkj < D; ð2:4:8bÞ

where we have used the discrete form of the continuous identity25

1

D

ðD=2;D=2

�D=2;�D=2

F x1 � x2ð Þe2piq � x1�x2ð Þd3x1d3x2 ¼
ðD

�D

FðDÞ xð Þe2piq � xd3x; ð2:4:9Þ

whereF Dð Þ xð Þ ¼ 1� xð3Þ
�� ��=D

� �
; xð3Þ
�� �� � 0;¼ 0; xð3Þ

�� �� � D. Specifically, this discrete form
of (2.4.8a) is given by

XK

�K

FD xkð Þe2piq � pk ¼
XJ=2

�J=2

XJ0=2

�J0=2

Dð4Þ
0

D
F xj � xj0
� �

e2piq � xj�xj0ð Þ: ð2:4:10Þ

For covariance, we obtain the other member of the transform pair F�1 W
Xjð Þ

n o
as follows.

We write from (2.4.8),

1

2

ð1

�1
W Xjf g qð ÞDe�2piq � pld3q ¼ 1

K

XK

�K

K
Dð Þ
X pkð Þ Dð4Þ

0

ð1

�1
e2pi pk�plð Þ � qd3q

8
<

:

9
=

;
: ð2:4:11aÞ

Now, from (2.4.3), the expression in the braces is just jdkl j, unchanged in the limit Dð4Þ
0 ! 0,

so that (2.4.11a) becomes the desired result:

II:Covariance : KX pkð ÞD ¼ 1

2

ð1

�1
W Xjf g qð ÞDe�2piq � pkdqjpl ! pk

ð2:4:11bÞ

with F KX�Df g, (2.4.8), the associated intensity spectrum for the finite samples (D<1) of

these Hom-Stat fields on the infinite interval.

25 Note that KðDÞ; FðDÞ are not the same as KD, and so on in (2.4.5)–(2.4.7).
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Again, when the infinite sampling interval is considered, the discrete situation here

presents similar difficulties to those encountered in the continuous cases above, when

D ! 1, refer to Section 2.2.3, Eqs. (2.2.17a) et seq. However, the steps (1)–(6) of

Eqs. (2.2.18)–(2.2.20), when modified for discrete sampling, may also be used to establish

Lo�eve’s results when D ! 1. We then obtain

I: Spectrum : W Xjf g qð Þ1 ¼ 2Dð4Þ
0

X1

�1
KX pkð Þ1e2pipk � q ¼ 2F KX pkð Þ1

 �
:

ð2:4:12aÞ

and

II: Covariance : KX pkð Þ1 ¼ 1

2

ð1

�1
W Xjf g qð Þ1e�2piq � pkdq ¼ 1

2
F�1 W Xjf g qð Þ1

n o
:

ð2:4:12bÞ

These are the discrete counterparts of (2.2.17a, 2.2.17b, and 2.2.20) for the cases of

continuous sampling on the infinite sampling interval (D ! 1).

2.4.2 Comments

The discrete sampling procedure of Section 2.2.3 vis-à-vis the continuous procedures of

Section 2.2.2 needs some further remarks. The latter is a straightforward extension of the

continuous field a r0; t0ð Þ sampled in the interval D to become the continuous data stream

X(r,t): from (1.6.2), X ¼ Ts að Þc ¼ a ¼ k0ainput, where k0 as before
26 is the only effect of

this transducer in the (linear) all-pass filterwhoseweighting function (i.e., Green’s function)

is k0d r0 � rð Þd t0 � tð Þ. In case of discrete samples of the input field, however, the sampling

operation X rm; tnð Þ ¼ Ts að Þd ¼ k0ainput rm; tnð Þ transforms the continuous input into a

series of ordered numbers Xj

 � ¼ X rm; tnð Þf g in the intervalD, at a series of discontinuous,
dimensionless points. To construct a function of Xj , and

P
j Xj , such as the amplitude

spectrum, for example, we must define an interval between consecutive points. This in turn

reestablishes a continuous function on D, which employs the sampled data at the discrete

points and allows to perform the desired evaluation. Since the points are dimensionless, we

can, in principle, use any interval measure at these points. For our purposes (refer to

Section 2.3.1), we have chosen the one-dimensional straight line connections, illustrated in

Fig. 2.7.This yields direct analogues of the correspondingcontinuous formsofSection 2.2.2.

The establishment of the interval enables us to define a corresponding region for transform

variable q [Eqs. (2.3.4) and (2.3.7b)], and thus for the resulting wave number–frequency

spectra.

At this point, it is helpful to summarize the principal results of Sections 2.2–2.4,

in particular for generalizations of the Wiener–Khintchine relations. For this purpose, we

include Table 2.1. The important role of the covariance and its Fourier transform,

the intensity spectrum of the field Xj rm; tnð Þ �
, arises in a variety of situations: (i) It is

the governing statistics in the detection and extraction of signals in Gaussian noise (refer to

26 See footnote 21.
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Chapters 3–6 ff.]. (ii) It is a critical statistic in the extended theory of threshold detection

and estimation of signals in non-Gaussian noise when correlated noise samples are

encountered. (iii) It is a key element in determining the structure of the matched filters,

employed in both optimumand suboptimumdetection and estimation (Sections 3.3–3.5, and

Chapters 4–6 ff.). As is evident from Table 2.1, it is the non-Hom-Stat character of these

sampled fields that increases considerably the complexity of the results. This is primarily the

consequence of employing ensembles of data as opposed to the single representation for a

Hom-Stat sample, that is, being able to assume that (at least locally) the ergodic condition

applies practically (see [1]).

Besides the results for continuous sampling on the space–time interval D, discussed in

Section 2.2.2 for the non-Hom-Stat cases, we have presented in Section 2.3.1 a correspond-

ing treatment for discrete sampling. Finally, examples of the hybrid cases involving discrete

sampling in space, for application to arrays (cf. Section 2.5), with continuous sensor outputs

in time, are also given in Section 2.4. These are also good models of many actual array

systems in practice. Generalization of the continuous random field concept is available in

Chapter 4, Part I, of Yaglom [2], and references therein (pp. 500–505), including books

on statistical inference, that is, measurement. For the latter, from the point of view of

communication engineering, see, for example, Ref. [11].

2.5 APERTURE AND ARRAYS—I: AN INTRODUCTION27

In transmission and reception, coupling to the medium is represented by the operators

TA;TR, cf. Fig. 1.1a and b and Eqs. (1.1.1a) and (1.1.1d). This is accomplished physically

with the help of apertures and arrays of sensor elements. By aperture, wemean a continuous

sensor body to each element dj to which is applied a transmitted signal or a received field.

Arrays, on the other hand, consist of separate sensor bodies. These arewell approximated in

practice by continuous discrete “point” elements in space, connected physically to a

common reference. Furthermore, with each sensor is associated a delay that in concert

with the other sensors acts to direct the energy of the signal or field, that is, to form a beam.

The larger the array or aperture, the narrower or more focused the beam, for transmission or

reception. In this way, space as well as time is used to increase the effectiveness of

transmission and reception. The role of apertures and arrays is of course well known and

well documented: see, for example, Refs. [12–14], and more recently Refs. [6, 10, 15]. The

important engineering treatise of Van Trees [16] on this subject is particularly noted.

Here, we begin by considering apertures and arrays alone, without an accompanying

noise background, to illustrate the elements of their operation. Later, in Chapters 2–5, we

shall examine their role as essential elements of Bayes matched filters for the optimum test

statistics 
 Y*
x

� �
and performance parameters Y*

s ; and so on
� �

, where background noise is

now present. In previous studies, such noise has generally been considered to be Gaussian,

Hom-Stat, and usually spectrally white in wave number–frequency space. In the later

treatment, we have removed this restriction and also consider non-Hom-Stat noise fields,

along with similar signal fields. This includes emphasis on a more physical description of

aperture and array operation and its relation to the generation of the associated fields.

27 The present section is an extension of earlier work of the author [17] Sections 4.1 and 4.2, andmostly subsequent

studies [7, 18] involving the application of apertures and arrays [3, 4, 7, 18].
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In particular, besides the requisite definitions, conditions (i.e., causality, stability, etc.), the

various Fourier transform relations are presented in Section 2.5.1. In Sections 2.5.2 and 2.5.3

following, we illustrate the role of the aperture in the generation of the field, specifically for

an isotropic Helmholtz medium [19]. Section 2.5.4 thus treats the reciprocal case of

reception. Approximations of the general results for narrowband outputs are included in

Section 2.5.5.

2.5.1 Transmission: Apertures and Their Fourier Equivalents

We begin with continuous functions, continuous sampling, and linear time invariant filters,

the latter distributed in space in a finite interval R0j j. The four-dimensionalGreen’s function,

that is, space–time aperture weighting function associated with these transmitting aper-

tures (Tr) is h r; tð ÞTr.Here, h r; tð ÞTr is physically realizable or causal,28 that is, operates only
on the past (and immediate present) of its input. For the spatial portion of these filters, the

related condition of spatial causality is the radiation condition. These space–time causality

conditions are described analytically in chapter 8. (See Section 2.2.5(3) of Ref. [1].) The

various Fourier transforms of the continuous function h r; tð ÞTr, which has the dimensions

L3T½ ��1
, are as follows:

(1) The Aperture Transfer or System Function:

Y r; fð ÞTr ¼ Ft h r; tð ÞTr
 � ¼

ð1

�1
h r; tð ÞTre�iv tdt; v ¼ 2pf ; ð2:5:1aÞ

with its inverse.

(2) The Aperture Weighting Function (Green’s Function):

h r; tð ÞTr ¼ F�1
f YTrf g ¼

ð1

�1
Y r; tð ÞTreiv tdf : ð2:5:1bÞ

(3) The Aperture Beam Function:

A n; fð ÞTr ¼ Fr YTrf g ¼
ð1

�1
Y r; fð ÞTre2pin � rd3r ð2:5:2aÞ

¼ FrFt hTrf g ¼
ð1

�1;ðDÞ

ð
h r; tð ÞTre2pin � r�iv tdtd3r: ð2:5:2bÞ

28 Noncausal filters can, of course, be employed, but they require the whole set of data within the data interval

before they can process any of it.
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Here, YTR 6¼ 0 when the spatial domain is finite, that is, R0j j, and vanished outside this

interval, that is, YTr; R0j j 6¼ 0; r 2 R0j j;¼ 0; r =2 R0j j. Correspondingly, the domain of the

space–time filter where hTr 6¼ 0 is R0j jT ¼ D; hTr ¼ 0, outside D, expressed by

R0j j ¼ T ¼ 0 together. hTr is realizable or causal for t> 0 — and obeys the radiation

conditions (cf. chapter 8), properties that govern their behavior when applied to signals

and their generation as fields. Similarly, we have the partial inverse.

(4) The Aperture System Function:

F�1
n YTrf g ¼

ð1

�1

ð
Y n; fð ÞTre�2pir � nd3n ¼ Y r; fð ÞTr; ð2:5:3aÞ

with the total inverse

(5) The Aperture Weighting Function:

F�1
n F�1

f ATrf g ¼
ð1

�1

ð
A n; fð ÞTre�2pir � nþiv td3ndf ¼ h r; tð ÞTr: ð2:5:3bÞ

Here, n as before (cf. Section 2.2.2), is a vector wave number, that is,

n ¼ înn ¼ î1=lx þ î2=ly þ î3=lz, with l ¼ l2x þ l2y þ l2z

	 
1=2
in rectangular coordinates,

and 2p n¼ k is the corresponding angular vector wave number. Since the spatial domain of

the aperture is necessarily finite ðjR0j < 1Þ, we have in more detail the representations

ð

R0j j
ð Þd3r �

ð1

�1
ð Þ R0j jd

3r; and

ð1

0�
ð ÞT¼þ1dt ¼

ð1

�1
ð ÞTdt ð2:5:4aÞ

with dr ¼ dxdydz ¼ drxdrydrz, dn ¼ dnxdnydnz in general, with the dimensionality of v

depending on that of r, that is, if r ¼ î1rx þ î2r2, then n ¼ î1nx þ î2ny, and

dr ¼ drxdry; dn ¼ dnxdny, and so on. In the more condensed notation of Section 2.2.2

et seq., we may write

p ¼ r� î4t ¼ î1rx þ î2ry þ î3rz � î4t and q ¼ nþ î4f ¼ î1nx þ î2ny þ î3nz þ î4f ; with

dp ¼ drdt; dq ¼ dndf

ð2:5:4bÞ

in the rectangular coordinate system used here for the apertures, and where now

A n; fð ÞTr ¼ A qð ÞTr and h r; tð ÞTr ¼ h pð ÞTr are the abbreviated forms for the relations above.

Finally, since the Green’s function hTr is real, we have

Y r; fð ÞTr ¼ Y r;�fð Þ*Tr and A n; fð ÞTr ¼ A �n;�fð Þ*T orA pð ÞT ¼ A �pð Þ*T
	 


;

ð2:5:5Þ

from (2.1.12) applied to (2.5.1a) and (2.5.2b).
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2.5.1.1 Two BeamPattern Examples It is instructive to determine the beampatternATr,

Eq. (2.5.2a), in some special cases. Here, we consider the spatial portion of the beam pattern

as is often done independent of the frequency dependent part: we regard n as the independent
variable, ignoring the fact thatn¼ n(f) (cf. (2.5.16b) ff.)Thus,we leth(r,t)¼H(r) andabsorb

the time-dependent feature, so that in effect h(r,t) is “frozen” at some value t0, that is,
h(r,t)¼H(r). Next, we let the weighting functionH rð Þ ¼ q0 rxð Þ along the x-axis, between
�L=2; L=2ð Þ, so that the beam pattern is from (2.5.2a)

Að1Þ nð ÞTr ¼
ðL=2

�L=2

q0 rxð Þe2pinxrxdrxjq rxð Þ¼q0
¼ q0Lð Þ sin pLncosfnsinunð Þ

pLncosfnsinun
ð2:5:6Þ

from nx ¼ n cos fn sin un, (2.3.9), where Ln ¼ L=l; l ¼ l2x þ l2y þ l2z

	 
1=2
, with n

having some nonzero value in the three-space occupied by n. Figure 2.10a shows some

sections ofA nð ÞTr along different angles fn ¼ 0; p=6; p=3; p=2; un ¼ p=2ð Þ. Note that the
dimension of the resulting beam pattern is 
[L], as expected.

Our second example is displayed in Fig. 2.10b. Here, we again postulate a uniform

weighting q0ð Þ, now over a circular disk of finite radiusR0 in the xy-plane, that is, ur ¼ p=2.
The beam pattern is again distributed in three dimensions, like the example above. In this

case, it is convenient to use spherical coordinates, although the aperture itself is two

dimensional. We have for a source density now given by q0 ¼ L½ ��2
the pattern

Að2Þ nð ÞTr ¼
ð2p

0

q0dfr

ðR0

0

rdre2pinr în � îrð Þ ¼ q0

ð2p

0

dfr

ðR0

0

rdr exp 2pinr cos fr � fnð Þsin fnf g

ð2:5:7Þ

where în � îr ¼ sinfn � cos fr � fnð Þ, from (2.5.7)–(2.5.8). Since
Ð x
0
xJ0 xð Þdx ¼ J1 xð Þ, as is

readily seen from the expansion of J0 xð Þ, we obtain

Að2Þ nð ÞTr ¼ q0

ðR0

0

rJ0 arð Þdr ¼ q0
R0

a
J1 aR0ð Þ; a � 2pn sin un: ð2:5:8Þ

Aperture Aperture

(b)(a)

A (ν)Tr A (ν)Tr

θν = 0

θν = π /2

π /6

π /2π /3

L /2
L /2

q0 L q0 R
2
0

φν  = π /2, φν  = π /2

φ φ

π /2.4

î3

î3

î1
î1

î2
î2

FIGURE2.10 (a) Sections of aperture beamEq. (2.5.6) (finite line aperture onx-axis); beam in three

dimensions. (b) Symmetrical aperture in xy-plane; beam in three dimensions (Eq. 2.5.8).
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This beam pattern is also dimensionless, as expected, that is,
 L2½ �, and n again occupies all
of v-space, vanishing O nj j�3=2

as nj j!1. Figure 2.10b sketches a beam from a three-

dimensional aperture, whose beam pattern is obtained from

Að3Þ nð ÞTr ¼ q0

ðR0

0

r2dr

ð2p

0

df

ðp

0

e2pi nrð Þ în � îrð Þsin u du; ð2:5:8aÞ

where în � îr is given by the appropriately modified form of (2.3.8), namely,

în � îr ¼ cos fn sin unð Þcos br sin ur þ sin fn sin unð Þsinfn sinfr þ cos unð Þcos ur:
ð2:5:8bÞ

2.5.1.2 The Aperture as Energy “Lens” Let us nowapply a signal sample of space–time

extent D to the aperture filter h r; tð ÞT, the (volume) element dð3Þj ¼ djxdjydjz
� �

in the

region jð3Þ � dð3Þj=2; jð3Þ þ djð3Þ=2
	 


, for all positions29 j in the aperture occupying

the space VT jð Þ, that is, j 2 VT jð Þ. The output of this element is

STr j; tð ÞDd3j ¼
ð1

�1
Sin j; tð ÞDh j; t� tð ÞTrdtd3j; Sin 2 D; Sin ¼ 0; Sin =2D ð2:5:9aÞ

ReplacinghT by its equivalent (2.1.1a) andSin;D by its Fourier transform,wehave for (2.5.9a)

STr j; tð ÞD ¼
ð1

�1
Y j; fð ÞTrSin j; fð ÞDeiv tdf ; v ¼ 2pf ; ð2:5:9bÞ

where, of course, Sin j; fð ÞD (nonuniformly) occupies the entire frequency domain

(�1< f<1) generated by the truncated signal sample Sin j; tð ÞD. The filtered output

ST j; tð ÞD (2.5.9b) is the signal source per unit volume dj, which plays a key role in the

generation of the transmitted field, as we shall see in Section 2.5.2 (Figure 2.13b shows the

beam.)

To illustrate the beam forming or “focusing” character of the aperture, let us consider the

total energy fromall the emitting elements inVT jð Þbefore their propagation into spaceover a
time period T0, that is, E T0ð Þ ¼ Ð T0

0
ST tð Þ2Ddt. We begin with (2.5.9b):

ST tð ÞD ¼
ð1

�1
ST j; tð ÞDd3j

¼
ð1

�1
d3j

ð1

�1
eiv t

ð1

�1
A n; fð ÞTre�2pij � nd3n

ð1

�1
Sin n0; fð Þe�2pij � n0d3n0

0

@

1

Adf ;

ð2:5:10aÞ

29 For transmission, we use the convention r ! j here (cf. Eqs. (2.5.12) et seq. For reception, r ! h, refer to
Section 2.5.3.
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from (2.5.3a) and F�1
n Sin n; fð Þf g ¼ Sin j; fð ÞD. Since

ð1

�1
e�2pij � nþn0ð Þd3j ¼ d n0 þ nð Þ ¼ d n0x þ nxð Þd n0y þ ny

� �
d n0z þ nzð Þ; ð2:5:10bÞ

we see that (2.5.10a) becomes

ST tð ÞD ¼
ð1

�1
eiv tdf

ð1

�1
A n; fð ÞTrSin �n; fð Þd3n: ð2:5:10cÞ

From this, we can illustrate the directed energy role of the aperture beam former AT by

calculating

E T0ð Þ ¼
ðT0

0

ST tð Þ2Ddt ¼
ð1

�1
S tð ÞDS tð Þ*Ddt ¼

ð1

�1
df

ð1

�1
A n; fð ÞTrSin �n; fð Þd3n

������

������

2

¼
ð1

�1
df

ð1

�1
Bin n; fð ÞTrd3n

������

������

2

¼
ð1

�1
ET0 fð Þdf � E T0ð Þ;

ð2:5:11Þ

where ETr fð Þ is the energy density (in Hertz), or intensity, of the projectable radiation in the
beam. The larger the aperture in space, the narrower or the more focused the beam. [This is

easily inferred from (2.5.2a) on letting rbe large inY r; fð ÞTr,withYT such that (r-large)YTr is
nonvanishing, then Fr YTrf g ¼ A n; fð ÞTr ! d n� 0ð ÞF fð Þ.]

2.5.2 Transmission: The Propagating Field and Its Source Function

However, our physical picture is still incomplete:we need to examine the explicit function of

the beam 
 ATSinð Þ as it is projected into space. For this, we must specify a propagation

equation appropriate to the medium that supports it. Accordingly, we choose the common

generic model of a homogeneous isotropic medium governed by the well-known time-

dependent Helmholtz equation, or wave equation,

r2a R; tð Þ � 1

c20

q2

qt2
a R; tð Þ ¼ GT j; tð Þ; ¼ 0; GT =2VT jð Þ; ð2:5:12Þ

where c0 is the speed of propagation of a wave front.
30 In addition, (2.5.9a) obeys the initial

conditiona R; tð Þ ¼ 0; t < t0, and the boundary condition that themedium is homogeneous,

that is, here c0 is constant and the medium contains neither scatterers nor boundaries (other

than that of the source, VT ). Furthermore, it is isotropic, that is, has the same properties

independent of direction. Additional conditions are spatial causality or the radiation

condition, which ensures that only outgoing waves from the source are propagated and

only time-related solutions are possible. (Other conditions are specified in Section 8.1.3 ff.)

30 Note that the dimensions of the field a are A½ � L�1½ � T�1½ � and ) GT½ � ¼ A½ �= L3½ � T½ � ¼ amplitude pair (unit

volume	 unit time), where amplitude [A] is determined by the medium, including a vacuum.
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Here, GT is a source function, associated with the volume element dj, that is, (2.5.9a)
and (2.5.9b), in the aperture VT jð Þ, give, GT ¼ STr j; tð ÞD.

The solution of (2.5.12) is well known to be (Section 7.3 of Ref. [19]; and here see

chapter 8).

a R; tð Þ ¼
ð

VT

GT j; t� r jð Þ=c0ð Þd3j=4pr jð Þ; r jð Þ ¼ R� j ð2:5:12aÞ

or

a R; tð Þ ¼
ð

VT

d3j

4p R� jj j
ð1

�1
Y j; fð ÞTrSin j; fð ÞDeiv t� R�jj j=c0ð Þdf ð2:5:12bÞ

by (2.5.9b). This can be expressed alternatively and more conveniently to accommodate a

unity of initial conditions here with the help of the contour integral:

a R; tð Þ ¼
ð

VT

d3j

4p R� jj j
ði1þd

�i1þd

Y j; s=2pið ÞTrSin j; s=2pið ÞDes t� R�jj j=c0ð Þ ds

2pi
; ð2:5:12cÞ

where Re sð Þ < d; 0 < d, and all singularities of the integrand lie to the left of d. The

(usually) straight line contour (�i1þ d, þi1þ d), that is, s¼ ivþ d here is called a

Bromwich contour and is represented by
Ð
Br
, (Chapter 4 of Ref. [20]), and s is a complex

variable, that is, a complex angular frequency (see also Ref. [16] where s ! p therein, and

chapter 8 for a more detailed discussion). The geometry of (2.5.12a)–(2.5.12c) is shown in

Fig. 2.11. Equation (2.5.12) is valid for both broad- and narrowband signals.

2.5.2.1 The Far-Field Approximation Formany applications,we are interested in fields

at considerable distances from the aperture VT jð Þ, namely, fields in the Fraunhofer or far-

field region, where the maximum dimension of the aperture is much smaller thanR, that is,

z

x

y

OT

P(R)θT

φξ

φξ
ψ ξT

ξ

vL

R

î2

î1

î3

îT î0T

dξ

P(R0)

φR

VT (ξ)

r

FIGURE 2.11 Geometry of transmission from the aperture VT jð Þ; rþ j ¼ R: [��: Wave front at

P(R); î ¼ normal, to wavefront at P(R)].
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|R|� |j|max. The condition enables us to simplify (2.5.12) considerably, enabling us to

display the role of the aperture as beam former explicitly in space. We begin with the

Fraunhofer condition and write

r ¼ R� jj j ¼ R� jð Þ � R� jð Þf g1=2 ¼ R
�
1� 2j �R=R2 � j � j=R2½ ��1=2

¼ R� j � îT þ 1

2R
j � j� j � ÎTj
� �þ O jj j3=R2

	 
 ð2:5:13Þ

where îT � R= Rj j. We have explicitly

îT ¼ î1 cos fT sin uT þ î2 sinfT sin uT þ î3 cos fT ;

îj ¼ î1 cos fj sin uj þ î2 sin fj sin uj þ î3 cos uj ð2:5:13aÞ

j ¼ îjj; j � j ¼ jj j2; j � IT � j ¼ j � îT
	 
2

¼ îj � îT
	 
2

jj j2 ¼ jj j2cos2cjT ; ð2:5:13bÞ

wherecjT is the angle between j and îT (orR)with the subscriptsn replacedby j andmbyT).

The dyadic (in rectangular coordinates) is

ÎT ¼ îT îT ¼ diag: î1T î1T ; î2T î2T ; î3T î3T

h i
; with î1T ¼ î1 cos fT sin uT ; and so on;

ð2:5:13cÞ

and ÎT itself is a dyadic or second-rank tensor, or equivalently, a square matrix with only

diagonal elements [7]. Using this in (2.5.11), we obtain

1

2R
j � j� j � ÎT � j
� � ¼ jj j2

2R
1� îj � îT

	 
2� �
ð2:5:13dÞ

for the third term of (2.5.13a), so that we can write

r ¼ rj j6R� j � îT þ jj j2
2R

1� îj � îT
	 
2� �

6R� j � îT þ O jj j2=2R
	 


ð2:5:13eÞ

for the far-field or Fraunhofer approximation.31 A condition here for (2.5.13) to be valid

is that

jj j2max

2R
1� îj � îT

h i2� �

cjT

¼ jj j2max

2R
� 1

2p

ð2p

0

1� cos2cjT

� �
dcjT ¼ jmaxj j2

4R
� jj jmax or jmaxj j � 4R;

ð2:5:14Þ

31 For points in space closer to the aperture, such that (2.5.13)must be considered in the exponent, the pointR is said

to be in theFresnel region, where now the aperture beam function,AT , and hence the beamgeneratedby it, aswell as

the field itself, is no longer independent of aperture structure (j). The amplitude of the field 
R�1ð Þ, however, is still
not noticeably affected.
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namely, the condition that the point of observation R in space be sufficiently far away from

the aperture’s average maximum dimension jmaxj j ¼ jj jmax

D
1� îj � îT

h i2E1=2

cjT

for the far-

field condition (2.5.14) to be satisfied.

Next, we consider the fact that the signal to the aperture is applied only for a time T

(Fig. 2.12a), starting at t ¼ t1 and ending at t ¼ t1 þ T , as in Fig. 2.12a. The integrand over

frequency is modified by inserting the factor 1� e�sTð Þ, which cancels the contribution of
the first term when t> T. Furthermore, the far-field approximation (2.5.13c) allows us to

write (2.5.12c) as

a R; tð ÞFF6
ð

Br1

es t�R=c0ð Þ

4pR
1� e�sT
� � ds

2pi
�
ð1

�1
Y j; s=2pið ÞTreij � îTS=ic0Sin j;

s

2pi

	 


D
d3j;

ð2:5:15Þ

From this and Eqs. (2.5.2a) and (2.5.3b), we can get

îTs=2pic0 ¼ nT ; ð2:5:15aÞ

a (complex) wave number (which in turn becomes the real wave number of Section 2.2.2

when s ! 2pf). Following theprocedure of (2.5.10a)–(2.5.10c),we readilyfind that (2.5.15)
can be represented in turn by

a R; tð ÞFF6a R; t� R=c0ð Þ ¼
ð

Br1

es t�R=c0ð Þ

4pR
1� e�sT
� � ds

2pi
�
ð1

�1
A nT � n̂;

s

2pi

	 


Tr
Sin n̂;

s

2pi

	 

d3n̂;

ð2:5:15bÞ

with jmaxj j � 4R (2.5.14). Equation (2.5.15b) is the desired far-field expression for the field

at R in the direction indicated by the unit vector îT. Inserting a steering vector nOT
into the

(a)

(b)

(c)

T

t1t = 0

Sin (t, ξ )

t = 

→ ∞

t1 → – ∞

→ ∞

t →

t

t1 + T

t1

t1

FIGURE 2.12 A (broadband) signal Sinð Þ applied to the aperture. (a) Finite duration. (b) Semi-

infinite duration. (c) Steady state �1 � t � 1ð Þ.
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aperture, where each element at dj has an appropriate delay with respect to the common

reference pointOT (Fig. 2.15), nowenables us to direct the energy of the source (2.5.11) to an

arbitrary location, sayP R0ð Þ of Fig. 2.11. For thismore general situation, (2.5.15b) becomes

a R; tð ÞFF6
ð

Br1

es t�R=c0ð Þ

4pR
1� e�sT
� � ds

2pi
�
ð1

�1
A nT � nOT

� n̂; s=2pið ÞTrSin n̂; fð ÞDd3n̂

ð2:5:16aÞ

for the truncated input Sin j; tð ÞD ¼ Sin j; tð Þ; Sin 2 D : VT jð Þ;�t1 � t � t1 þ Tð Þ; t1 ¼
R=c0; Sin ¼ 0, Sin =2D, as shown in Figs. 2.6 and 2.7. Equation (2.5.16a) applies for a

continuous sample in t1; t1 þ Tð Þ (Fig. 2.12a).When T !1, the factor 1� e�sT reduces to

1, that is, in Fig. 2.12b. If t1 ¼ �1, namely, the source has been “on” since t1 ¼ �1, then

the integrand of the Br1 contour is exp st, and the contour itself is the imaginary axis, with a

possible indentation about poles, and so on, on this line, that is, one has a Fourier transform.

When nOT
¼ nT , themaximum energy in the beam 
ASinð Þ (2.5.1.2) is focused on the point

R ¼ R0. For these ideal media, which among other benign properties are nondispersive, the

speed of propagation c0 is a constant independent of frequency, ([19], pp. 477–479, and

Chapter 9 generally). This means that the defining wavelength–frequency relation

lf ¼ c0 ¼ constant is obeyed, namely,

c0 fð Þ ¼ c0 ¼ lf and ) nj j ¼ n ¼ f=c0; since n ¼ 1=l; d3n ¼ n2 sin ududf;

ð2:5:16bÞ

From this we see that32 nT ; nOT
are functions of frequency, allowing us to write (2.5.16),

finally, with the help of (2.5.16b):

a R; tð ÞFF6
ð

Br1

es t�R=c0ð Þ

4pR
1� e�sT
� � ds

2pi

�
ð1

�1
n̂2dn̂

ðp

0

sin ûdû

ð2p

0

A D̂iTs=2pic0 � n̂; s=2pi
	 


Tr
Sin n̂; s=2pið Þdf̂

9
>>>>>>=

>>>>>>;

ð2:5:17aÞ

where a ¼ 0; t < R0=c; t > R0=cþ T and where

îT ¼ Eq: ð2:5:13aÞ; D̂iT � îT � îOT
; nT � nOT

¼ DnT ¼ D̂iT f=c0 ¼ D̂iT s=2pic0ð Þ
	 


;

ðs ¼ complex angular frequencyÞ:
ð2:5:17bÞ

As noted earlier (2.5.12c), the singularities of the integrand all lie to the left of d, that is, Re

s< d, d> 0. In the Fresnel region, closer to the source, the condition (2.5.14) is not satisfied

and this comparatively simple result (2.5.17a) for a homogeneous, in fact isotropic, medium

(R ! R, and c0 constant) no longer holds because of the influence of the additional

32 Here, n̂ is a variable of integration, independent of the physical quantities nOT
; nT , and so on.
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j-dependent term (2.5.14) in the phase. This “nearer far-field” region, however, can be

important in applications such as synthetic aperture radar (SAR) and sonar (SAS), and in

telecommunications, where the far-field conditions (2.5.14) are not satisfied. Physically, it is

apparent from (2.5.16a)–(2.5.17b) that the spatial and temporal portions of the space–time

field a(R,t) are not generally separable: ST 6¼ S T symbolically. Separability can be

imposed artificially, here at the transmitter, by designing the aperture or array structures

independent of the temporal portions, which is a useful convenience for the system designer.

However, separability is a constraint and as such reduces performance, at least in principle,

with respect to the optimum, unconstrained joint space–time design. The latter properly

accounts for the physical fact of wave number dependence on frequency (2.5.16b),

particularly in the broadband cases, which can be described by (2.5.17b), as well as for many

narrowband signals. This dependence, however, increases the difficulty of implementation,

since the steeringvectornOT
¼ îOT

f=c0

	 

itself is a functionofall the frequencies in thedriving

signal Sin.

Only for monofrequentic signals, that is, sinusoids, is strict separation possible. If the

bandwidths of the input signal, namely, the wave number and temporal frequency band-

widths, are both sufficiently narrow, then separability (S T) is, in practice, possible with

ignorable error. (For details, see Section 3.5 ff.)

Besides the far-field condition (2.5.14), there is another condition on the aperture in its

capacity as a space–time filter (2.5.1a), namely, that it does not significantly distort the

projected signal Sin. Ideally, no distortion would be the goal. This requires that the aperture

have theweighting functionh j0; t0ð ÞTr ¼ H0d j0 � jð Þd t0 � tð Þof an “all-pass”filter,which is
equivalent to ATr ¼ ATrjd ¼ H0d n̂� DnTð Þd s0�s

2pi

� �
. The resulting field is

a R; tð ÞFF ¼ a R; t� R=c0ð Þ
����� FF
d

6
ð

Br1

es t�R=c0ð Þ 1� e�sTð Þ
4pR

Sin DnT s=2pið Þ; s=2pið Þn ds

2pi

¼ 0; R=c0 � t � R=cþ T;

9
>>=

>>;

ð2:5:18Þ

where |d refers to the all-pass nature of hTr, the aperture weighting function (2.5.1b). When

DnT ¼ 0, that is, when îT ¼ îOT
the beam formed by the aperture is pointed in the direction of

a potential target at R0 (Fig. 2.11). Then, (2.5.18) becomes

a R0; tð Þ
����� FF
d

6Sin 0; t� R0=c0ð ÞD=4pR0;
t � R0=c0 � tþ T; ¼ 0; elsewhere;

D̂iT ¼ 0

(

ð2:5:18aÞ
for the undistorted, “on-target” signal, “painted” by this transmitter, as shown in Fig. 2.13a.

One criterion of performance is to measure the ratio of the intensity of the field at a pointR0

when the beam pattern AT is not “all-pass,” that is, (2.4.17a) and (2.4.17b), to the ideal

case (2.5.18a) where it is,

a R0; tð ÞFF
�� ��2 ¼ Eqs: ð2:5:17aÞ and ð2:5:17bÞ ¼ Sin 0; t� R0=c0ð Þj j2 =4pR0 � g0 � 1:

ð2:5:19Þ

Other, related criteria are also clearly possible.
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2.5.3 Point Arrays: Discrete Spatial Sampling

In contrast to the aperture, whose elements are effectively connected to form a continuum,

arrays are regarded as essentially discrete elements in space. An excellent practical

approximation is to consider the discrete elements as “points,” defined physically as being

smaller than the shortest wavelength employed at the input of the array. At each of these

points, there is a linear filter (time-invariant at the moment), which produces a delayed,

filteredversionof the inputSin.Theseoutputs are then added, again forming abeamof energy

from the transmitter, which is then propagated into themedium. The beam is steered in some

appropriate direction, in a precisely similar fashion to the operation discussed above in

Section 2.5.2.

However, for the spatial Fourier transform FðdÞ
rm
f g of this sampled Green’s function, we

must now employ the analysis of Section 2.3.1, where Ff g is replaced by FðdÞf g:

F X rð Þf g ¼
ð1

�1
X rð Þe2pin � rdr!

XM

m¼1

FðdÞ
rm

Xmf g �
XM

m¼1

XmDme
2pin � rm ; ð2:5:20Þ

withDm ¼ rmþ1 � rmj j the interval between samplepoints, as described inSection2.3.2.1.33

The aperture weighting (or Green’s) function, (2.5.1b), is now replaced by

h rm; tð Þ; t > 0, at each point r ¼ rm; m ¼ 1; . . . ; M. Accordingly, the array beam function

(2.8.2b), when considered apart from propagation, becomes33

A
ðdcÞ
M n; fð ÞTr ¼

XM

m¼1

Dm

ð1

�1
hðmÞ rm; tð ÞTre2pin � r m�iv tDdt

¼
XM

m¼1

Dm � Ym rm; fð ÞTre2pin � rm�iv t; Dm ¼ rmþ1 � rmj j
ð2:5:20aÞ

The spatial portions of the other aperture relations (2.5.1)–(2.5.3) are similarly modified.

x y

z

P(R)

(a) (b)

t' = 0
t' = t –

T2
T1

R +T1
R
c0

c0

T1

T1

R
c0

R
c0R +T2

R
c0R

FIGURE 2.13 (a) Field a(R,t) after transmission in three dimensions. (b) A beam pattern.

33 It is only a matter of convenience here to use the positive octant and time axis for our discrete samples instead of

the symmetrical sampling plans of Section 2.3.3.1.
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In the special case of the propagated field (Section 2.5.2) in the specific instance of a

Helmholtz medium (H), we see at once that the source functionGT becomesGT jm; tð Þ and
that the field at a point P(R) is now represented by34

Eq: ð2:5:12aÞ34 : aðdcÞ R; tð ÞH ¼
XM

m¼1

G
ðdcÞ
T jm; t� r jmð Þ=c0ð Þm

4pr jmð Þ ; r jmð Þ ¼ R� jmj j;

ð2:5:21aÞ

Eq: ð2:5:12bÞ34 : aðdcÞ R; tð ÞH ¼
XM

m¼1

1

4p R� jmj j
ð

Br1

Ym
ðdcÞ jm; s=2pið ÞTr

S
ðdcÞ
in�m jm; s=2pið ÞDes t� R�jmj j=c0ð Þ ds

2pi
; ð2:5:21bÞ

and for the far-field:

Eq: ð2:5:12cÞ34 : aðdcÞ ðR; tÞ
�����
H

FF
6
ð

Br1

es t�R=c0ð Þ 1� e�sTð Þ
4pR

ds

2pi

�
XM

m¼1

Y ðdcÞ
m jm;s=2pið ÞTr SðdcÞin�m jm;s=2pið ÞDe2pijm � nT�nOTð Þ;

ð2:5:21cÞ

wherewehave introduced a steering vectornOT
into the phase component 2pijm � nT �nOT

ð Þ.
(We note again (2.5.16b), that nT and )nOT

are functions of frequency, where now f

is extended to the complex quantity s=2pi.)
Now from (2.3.3), (2.3.15), and (2.5.20), we see that the discrete Fourier transforms of

Y
ðdcÞ
m and S

ðdcÞ
in�m are given by

Y
ðdcÞ
m Dme

2pin � jm ¼ ) Y
ðdcÞ
m n; s=2pið Þ;

S
ðdcÞ
in�mDme

2pin � jm ¼ ) S
ðdcÞ
in�m n; s=2pið Þ;

ð2:5:22Þ

with Dom ¼ rmþ1 � rmj j, for the mth interval between sensors (2.5.28). Substitution

into (2.5.21c) and noting because of the finite interval D for S
ðdcÞ
in�m, and Y

ðdcÞ
m that we can

replace
PM

m¼1 by the infinite sum
P1

m¼�1 , however, does nothing to simplify (2.5.21c)),

evenwhenwe restrict the array toa straight line in space, that is, jm ¼ î0; r0

	 

m. The reason,

of course, is that AðdcÞ
m ; S

ðdcÞ
D; mð Þ remain functions of m(¼ 1, 2, . . .,M), because of which it is

generally not possible to effectuate the sum
P

m . Thus, it is much more convenient to deal

34 The superscript (dc) is to remind the reader that the quantities so designated have been discretely sampled, here in

space (d), but are continuously sampled (observed) in time (c). Then, in the same fashion (dd) represents discrete

sampling in both space and time, while (cc), or no superscript, indicates that observation, that is, sampling in space

and time are both continuous. Thus, (dc) here implies a type of sampling in space–time (ST).
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with the result (2.5.21c) itself than to use its equivalent Fourier transform FðdÞ Y ðdcÞSðdcÞin

	 


and have to contend with the sum of each of m-different beam patterns, that is,

XM

m¼1

ð

n½ �

ð

n0½ �

AðdcÞ
m S

ðdcÞ
in�m

���
Dð Þ
e2pijm � DnT�n�n0ð Þdn dn0; with DnT ¼ nT � nOT

; ð2:5:22aÞ

where the integrations over n; n0ð Þ are along the line of Eq. (2.3.13), here restricted to

space only.

2.5.3.1 Same Signal Inputs to the Array However, there is one important and frequently

employed situationwhere comparatively simple results are obtained, namely, the casewhere

the same input signal is applied to each of the M sensors, with Green’s functions hðmÞ r; tð Þ.
Then, Sin�m ¼ Sin tð ÞT is independent of sensor location jmð Þ, and (2.5.21c) for the

transmitted field can be written

a R; tð Þ

�����
H

FF

Sin

6
ð

Br1

Sin s=2pið ÞD
1� e�stð Þes t�R=c0ð Þ

4pR
A
ðdcÞ
M DnT ; s=2pið ÞTr

ds

2pi
; ð2:5:23Þ

where

A
ðdcÞ
M DnT ; s=2pið ÞTr ¼

XM

m¼1

ð

n½ �

AðdcÞ
m n; s=2pið ÞTre�2pi n�DnTð Þ � jmdn: ð2:5:23aÞ

From (2.3.13) and the discussion following the integral over dn ¼ n2sin udndfdfð Þm for

the interval Dm comes

ðn0�DnTð Þ=2

� n0�DnT=2ð Þ

sin u n2dn

ð2p

0

df

ðp

0

A
ðdcÞ
M jTre�2pi n�DnTð Þ � jmdu ¼ YðdcÞ

m jm; s=2pið ÞTr; e�2piDnT � jm

ð2:5:24Þ

which reduces (2.5.23a) to the result of (2.5.22):

A
ðdcÞ
M DnT ; s=2pið Þ ¼

XM

m¼1

YðdcÞ
m jm; s=2pið Þe�2piDnT � jm : ð2:5:24aÞ

Now the resultant beam pattern A
ðdcÞ
M , (2.5.23a), of the transmitting array is the sum of the

beam patterns associated with m sensors at jm; m ¼ 1; . . . ; M, when the same signal is

applied to each of them, even through theweighting functions may be different for different

m (2.5.20).

Again, from (2.5.16b) we observe that for general input signals, space and time are not

naturally separable, since DTn ¼ îT � î0T

	 

s=2pic0: separation of the two is an imposed
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constraint. For example, let us assume that the local beampatternsAðdcÞ are proportional to a
constant Am multiplied by a phase shift, namely,

AðdcÞ
m jTr ¼ Y jm; s=2pið ÞTre2pi n�DnTð Þ � jm ¼ Am � e�2piDnT � jm� �

e2pin � jm ð2:5:24aÞ

and thus

YðdcÞ
m ¼ Ame

�2piDnT � jm ; refer to Eq:ð2:5:22Þ; ð2:5:24bÞ

is similarly modified. Accordingly, the overall beam pattern A
ðdcÞ
M of the array of

sensors becomes

A
ðdcÞ
M DnT ; s=2pið ÞTr ¼

XM

m¼1

Ame
�2piDnT � jm ¼

XM

m¼1

Ame
�sD̂iT � jm=c0 ;

D̂iT � îT � îOT

	 

;

ð2:5:25Þ

which is even simpler if the weightings Am are independent of m, that is, Am ¼ A.

When the array is a straight line in space with equal spacing r0ð Þ between sensors,

that is, then it is possible to evaluate the sum in (2.5.25) exactly by a finite geometric

series SMx
m ¼ 1� xMþ1ð Þ= 1� xð Þ; xj j < 1. (An example of this situation is given in

Eqs. (3.1.22)–(3.1.24) following.) Note that the beam patterns presented here and earlier are

generally complex but under the requirement that the filter’sweighting function hðmÞ r; tð Þ is
real, vide (2.5.5). The frequency dependence (i.e., on s) of the beam pattern is explicitly

shown here in (2.5.25) again, revealing once more the general nonseparability of the spatial

and temporal parts of the propagating field.

The formal effect of discrete sampling in space is twofold: (1) to change the domain of

integration of the wave numbers from �1 � n � 1ð Þ to the finite interval

� n0½ �m=2 � n � n0½ �m=2, refer to Eq. (2.5.24), and (2) to modify the explicit forms of the

beam pattern and input signal spectrum according to (2.5.22). Equations (2.5.21a)–(2.5.25)

apply for the general case of arbitrary lengths and directions of the sampling intervals Dm,

(Fig. 2.6). If we include discrete sampling in time, aswell as space, then the results above are

extended with the help of Section 2.3 directly, for example, D0m !D0j j ¼ mnð Þ; t! tn.

However, since it is not possible physically to generate d-function pulses, we will always

have signals of finite, nonzero duration in transmission. Accordingly, we do not need to

consider the fully discrete cases further here. Reception is another matter when we are

required to digitalize the received input signal (and noise).

2.5.4 Reception

The reception process is largely the reverse of transmission. That reception is not completely

the inverse operation, as is well known, is due to the effects of the channel, which exhibits

ambient noise, signal-generated noise, that is, interference and scattering, and the often

inherent inhomogeneity of themedium itself. However, the methodology of Sections 2.5.1–

2.5.3 can be applied herewith appropriate modifications. The relevant geometry is shown in

Fig. 2.14.

APERTURE AND ARRAYS—I: AN INTRODUCTION 129



The continuous input field to the sampler T̂sð Þc or d (2.5.26), which selects a finite

segment of the received fields is represented by

X r; tð Þ ¼ T̂
ðccÞ
s a r; tð Þ ¼ a r; tð ÞD; r 2 Rj j; t 2 Tð Þ; ¼ 0 elsewhere; ð2:5:26aÞ

or the (column) vector

X rm; tnð Þ½ � ¼ T̂
ðddÞ
s a r; tð Þ

h i
¼ a rm; tnð ÞD
� �

; D ¼ Rj jT ; ¼ 0; otherwise: ð2:5:26bÞ

For much of analysis throughout we are concerned with Eq. (2.5.26b), namely, the set of

discrete space–time samples of data (Chapters 3,4, and so on following), which constitutes

the input to the detectors and estimates of our processing systems.Wenext take advantage of

the results of Sections 2.5.1 and2.5.2 and consider some specific cases involving receptionof

Helmholtz fields (Eq. 2.5.12) in an ideal medium, processed by apertures and arrays. As

noted in Section 2.5.2, these are respectively continuous and discrete operators R̂
ðcÞ

and R̂
ðdÞ
,

respectively, on the input X r; tð Þ or X rm; tnð Þ [(2.5.26a) and (2.5.26b)]. As expected, each
produces a single butdifferent result, since theystemfromdifferent operations.Accordingly,

we begin with the following.

2.5.4.1 Continuous Sampling (Helmholtz Medium) The Helmholtz medium here is

assumed to be ideal, that is, nondispersive, infinite, and contains no other elements than the

receiver and transmitter. Accordingly, for reception, we begin by writing the results of

Section 2.5.2 for the transmitted field aT R; tð Þ, particularly Eqs. (2.5.12a)–(2.5.16a), along
with Eq. (2.5.9b), as a guide for the corresponding received fielda h; tð ÞR at a typical sensor
element 
 dhð Þ, when transmitter (T) and receiver (R) are in each other’s far-field (FF) or

Fraunhofer region. The relationships of the respective component terms are readily seen to

be in the present case of continuous sampling:

Transmission (T|FF) Reception (R|FF)

Eq: ð2:5:9bÞ GT ¼ S
ðccÞ
in j; tð ÞDjT ! aðccÞ h; tð ÞDjT jFF : received field input

ð2:5:27aÞ

z

îR ⋅ îη

îR

îη

îO

x

–x

y

OR

VR(η)

R0

OT

wave frontη

dηR'

FIGURE2.14 Geometry of a receiving apertureVR hð Þ, where rþh¼Rwith sensor element at dh,
source point at P(R). Here îh � îR ¼ cosFhR.
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Eq: ð2:5:1aÞ Y ðccÞ j; s=2pið ÞT ! Y ðccÞ h; s=2pið ÞR :
receiver aperture system

function

ð2:5:27bÞ

Eq: ð2:5:13cÞ : phase : R� jj j 6R� ij � îT ! R0�hj j
amplitude : 6R; jj j�R ! R0

: phase;

: amplitude

)

; R0j j� hj j ð2:5:27cÞ

For (2.5.27c) we see from Fig. 2.15 that

hþR0 þ j¼R0 or h¼R0� R0 þ jð Þ; whereR0 �R0 and jj j�R0; R0; ) R0 ¼R0�h;

ð2:5:27dÞ

where R0 is the distance from P(j) in the transmitter’s aperture to the sensing element

at P(R0) in the receiver. The input signal from the receiver (R) to its temporal processing

element is accordingly, refer to Eqs. (2.5.12c) and (2.5.15)35

ZðccÞ tjR0ð ÞR¼ R̂aDjR¼
ð

VR

aðccÞ hjR0;tð ÞDjTdh6
ð

VR

dh

4pR0

ð

Br1

Y ðccÞ
�
h;

s

2pi

�

R

aðccÞ h; tð ÞDjT jFFesðt� R0�hj jc0Þ ds
2pi

6
ð

Br1

es t�R0=c0ð Þ 1�e�sTð Þ
4pR0

ds

2pi

ð

VR� hð Þ
Y ðccÞ

�
h;

s

2pi

�

R

eih
.̂iRs=c0aðccÞ

�
h;

s

2pi

�

D Tj jFF
dh

9
>>>>>>=

>>>>>>;

ð2:5:28aÞ

wherewe have included the factor 1�e�sTð Þ to account for the input, as well as the received
signal, truncated in time to the interval (O, T) (2.5.15). Adding a steering vector

exp �h.̂iOR
s=c0

	 

to the aperture element Y

ðccÞ
R associated with dh and using (2.5.10b),

with the Fourier transform Fh of Y
ðccÞ
R and a

ðccÞ
T , gives us directly the analogies of (2.5.15b)

and (2.5.16a), namely,35

OR

z
VT

(ξ)

ξ

x

OT

y

VR(η)

–η = r~

η

R
R'

RO

z'

x'

y'

FIGURE 2.15 Schema of transmitter and receiver in each other’s far-field.

35 Refer to Fig. 2.14.
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ZðccÞ tjR0ð Þ¼
ð

VR hð Þ
aðccÞ h; tð ÞD

�����R
FF

dh6
ð

Br1

es t�R0=c0ð Þ

4pR0

1�e�sT
� � ds

2pi

ð1

�1 nð Þ

�AðccÞ
�
DnR�n;

s

2pi

�

R

aðccÞ n;
s

2pi

 !

DjT

�����
FF

dn ð2:5:28bÞ

where DnR�nR�nOR
¼ D̂iRf=c0.

Here, from (2.5.16a), we have explicitly for the transmitted field from the source atOT to

the receiver element dh:36

aðccÞ R0;tð Þ
D

����� T
FF

¼
ð

Br1

es
0 t� R0j j=cð Þ

4pR0

1�e�s0T
	 
 ds0

2pi

ð1

�1 nð Þ

AðccÞ DnT�n0;
s0

2pi

� �

T

Sin n;
s0

2pi

� �

D
dn0

ð2:5:28cÞ

where, as in Section 2.5.2, DnT�nT�nOT
¼D îTf=c0.

The double transform of the input field in (2.5.27) is Fh; t aðccÞ h; tð Þ� � ¼ Sa n̂; s=2pið ÞD,
where aðccÞ ¼ 0 if t < R=c0; t < R=c0 þ T , and the spatial domain VT jð ÞRec of the

transmitting aperture is finite, that is, R0j j < 1, as is the region VR hð Þ occupied by the

receiving apertureA
ðccÞ
Rec in (2.5.27).ThevectordistanceR locates the (point) source precisely

in the far-field of the receiver, when DnR ¼ 0. Note that unlike the case of transmission,

where knowledge of the type of medium must be explicit in addition to its statistical

properties, only the latter can be specified for aRec in reception.

When the same signal is applied to the aperture elements (dj) of the transmitter.

Eqs. (2.5.28b) and (2.5.28c) reduce to the simpler relations:

ZðccÞðt R0j Þ ¼
ð

VRðhÞ
aðccÞ h; tð ÞD

�����R
FF

6
ð

Br1

es t�R0=c0ð Þ

4pR0

	 1� e�sT
� �

AðccÞ DnR;
s

2pi

	 


R
aðccÞ s

2pi

	 


D

�����T
FF

ds=2pi; ð2:5:29Þ

where now the input signal to the receiver is

aðccÞ R0; tð Þ
D

�����T
FF

6
ð

Br1

es
0 t�R0=cð Þ

4pR0

1� e�s0T
	 


AðccÞ DnT ;
s0

2pi

� �

T

Sin
s0

2pi

� �

D

ds0

2pi
;

ð2:5:29aÞ

refer to Eq. (2.5.17a).

36 Refer to Fig. 2.14.
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2.5.4.2 Discrete Sampling Let us next consider the following two cases in reception: (I)

discrete sampling in space, appropriate to arrays of “point” sensors, and (II) discrete

sampling in both space and time, that is, the complete discretization of the received field

and its subsequent processing by the receiving array. For case (I), we obtain for the receiver

version of (2.5.21):

I: ZðdcÞ DnRð Þ ¼ R̂
ðdcÞ

Z r; t0ð ÞRec
�����H
FF

6
ð

Br1

est 1� e�sT
� �

�
XM

m¼1

Y ðdcÞ
m hm; s=2pið ÞRecaðdcÞ hm; s=2pið Þ

D

�����H
FF

e2pihm �DnR ds

2pi
;

ð2:5:30Þ

where R̂
ðdcÞ ¼ ~1RðdcÞ and a hm; tð Þ 2 D; ¼ 0, otherwise. Here, now Y

ðdcÞ
Rec embodies the

receiving array, refer to Eq. (2.5.2a). With discrete spatial sampling of the array, we

encounter the same problem of complexity of the result as we did in applying (2.5.22)

for transmission, refer to Eqs. (2.5.22) and (2.5.23). Here, however, we cannot assume that

the input signal, that is thefield, is independent of sensor position, so that (2.5.30) remains the

simpler alternative to (2.5.22a) when applied to reception.

For case (II), the results (2.3.10), (2.3.12), and (2.3.13) with (2.3.4) can be applied to give

for the output of the receiver, before subsequent processing,

II: Z
ðddÞ
J DnRð Þ ¼ R̂

ðddÞ
a h; tð ÞRec ¼

XN

n¼1

XM

m¼1

aðddÞ hm; tnð ÞRece2piDnR �hm

¼
XN

n¼1

XM

m¼1

ð

f0n½ �
df

ð

n0m½ �
dn̂AðddÞ

m n̂; fð ÞRece�2pi n̂�DnRð Þ �hmþ2piftn

;

ð2:5:30aÞ

where tn ¼ nT0n ¼ nT0; f0n ¼ 1=T0 for periodic sampling, (2.3.14a) et seq., and

AðddÞ
m n; fð ÞRec ¼ Doja

ðddÞ
j e2piq � pj and DnR ¼ nR � nOR

; j ¼ m; n; q ¼ nþ î4f ;

ð2:5:30bÞ

where (m, n) 2 M, N and 0 otherwise. Here Doj ¼ hmþ1 � hm

�� ��Tn � DhmTn, which is the

space–time interval between samples, refer toEq. (2.3.5) et seq. The quantityDnR represents
the wave numbers associated with the beam direction îR and a steering vector pointed at a

position îoR

	 

. We observe that ZðdcÞ and ZðddÞ are largest when DnR ¼ 0, that is, when the

receiver is pointed at the transmitter, as expected. An alternative to these cases is to

use continuous sampling to obtain Z h; tð Þ; h; tð Þ 2 D, in the manner of (2.5.26) and then

to apply the sampling procedure, TðddÞ
s , Eq. (1.6.2b). The result is the (vector) output of
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the receiver after the sampling:

ZðddÞ hm; tnð Þ� � ¼ T
ðddÞ
S Z h; tð Þf g ¼ T

ðddÞ
S R̂

ðccÞ
a h; tð ÞDR

; 1; 1 < m; n < M;Nð Þ; ¼ 0; elsewhere

¼ T
ðddÞ
S

Ð
Br1

est 1� e�sTð Þ ds

2pi

ð1

�1 n̂ð Þ

A
ðccÞ
0 DRn� n̂; s=2pið ÞRecSaDR n̂; s=2pið Þdn̂

9
>>>=

>>>;

;

ð2:5:31Þ

where T
ðccÞ
S a ¼ aDR

, Xðh; tÞ 2 D; ¼ 0, elsewhere. In general, because of the relation

c0 ¼ fl, (2.5.16b), for ideal media and for more complex media where c0 ! c fð Þ ¼ fl fð Þ,
n ¼ n fð Þ ¼ l�1 fð Þ� �

, the wave number n(f) is a function of frequency, that is,

DnR ¼ nT fð Þ � nOT
fð Þ. As we have noted earlier, space and time are not generally separable.

2.5.5 Narrowband Signals and Fields

When the transmitted signal Sin or the received field aRec is sufficiently narrowband,

considerable simplification is possible in our preceding results and their implementation.

From (2.1.18) and (2.1.19), we see at once that the aperture functions AðccÞjTr;Rec are now
represented by

AðccÞ n; fð Þ
�����Tr
Rec

(
¼ 2A n0 þ n0; f0 þ f 0ð Þajnb � A0 n0; f 0ð Þ; f0 � Df < f < f0 þ Df

¼ 0 elsewhere

)

;

ð2:5:32aÞ

and similarly for the various inputs

Sin; a n; fð Þ ¼ 2Sin; a n0 þ n0; f0 þ f 0ð Þnb � S0 n0; f 0ð Þin; a; f0 � Df < f < f0 þ Df
¼ 0 elsewhere:

� �
:

ð2:5:32bÞ
Since f ¼ f0 þ f 0; n ¼ n0 þ n0 the bounds on f 0; n0 are equivalently

�Df < f 0 < Df ; � Dn < n0 < Dn: ð2:5:32cÞ

2.5.5.1 Transmission Consequently, for transmission (see Section 2.5.2.1) the

continuous narrowband version of (2.5.17a), with the help of (2.1.18)–(2.1.19)

and (2.5.32a), becomes specifically for these Helmholtz media37

aðccÞ R; tð Þ

�����
H

FF

nb

¼ Re

(

eiv0 t�R=c0ð Þ
ð

Br1

es
0 t�R=c0ð Þ 1� e�s0T

� �

4pR

�
ds

2pi

�

�
ð1

�1 n̂0½ �

A
ðccÞ
0 D̂iTs0=2pic0 � n̂0; s0=2pic0
	 


Tr
S0 n0; s0=2pic0ð ÞTrdn̂0

)

ð2:5:33aÞ

37 Note from (2.1.18)–(2.1.21ab), the appearance of (Re) in (2.5.33a), since a(R, t), being physical, is always a

real quantity.
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Sin; D 6¼ 0; R=c0 < t < R=c0 þ T ; Sin 2 D; ¼ 0; Sin =2D;

with D̂iT ¼ îT � îOT
; n0T � n0OT
ð Þ ¼ D̂iTs0=2pic0, from (2.5.16b) and (2.5.17b), where

nT; nOT
are now functions of f 0, for the ideal medium here. For sufficiently narrowband

signals, we can choose a corresponding narrowband aperture such thatA
ðccÞ
0 !A

ðccÞ
0 n0; f0ð Þ,

that is, n0 þ n0; f0 þ f 06n0; f0ð Þ, with A
ðccÞ
0 now effectively a constant at and immediately

about n0; f0ð Þ. Accordingly, we may replace s0 by s0 and n̂ 6¼ 0 in A
ðccÞ
0 , which then reduces

(2.5.33a) to the much simpler result37

a R; tð Þ

�����
H

FF

nb

6 Re
A
ðccÞ
0 D̂iTf0=c0; f0
	 


Tr

4pR
eiv0 t�R=c0ð Þ

ð

Br1

es
0 t�R=c0ð Þ 1� e�s0T

	 

S0 s0=2pið Þin

ds0

2pi

8
<

:

9
=

;

6 Re A
ðccÞ
0 D̂iTf0=c0; f0
	 


Tr
Sin t� R=c0ð Þnb; D=4pR

n o
;

Sin t� R=c0ð ÞD; nb 6¼ 0; R=c0 < t < R=c0 þ T; ¼ 0 elsewhere: ð2:5:33bÞ

Note that in this case of sufficiently narrowband signals, and therefore, sufficiently

narrowband apertures, space and time processing are effectively separable, that is,

ST6S T . Thus, the design and implementation of the array can be carried out

independent of the signal, which is customarily done in practice. The keywords here

are “sufficiently narrowband,” particularly at very high frequencies n0; f0ð Þ, where

n0; f 0ð Þ, although relatively small vis-à-vis the central frequencies n0; f0ð Þ, may be

actually sufficiently large for the aperture to seriously modify the input signal. In this

situation, of course, (2.5.33b) fails and (2.5.33a) must be used, unless the more general

“broadband” formulation (2.5.17b) is required. (We observe here that the narrowband

condition applies to both wave numbers n0ð Þ and temporal frequencies f 0ð Þ.) For

transmission arrays (Section 2.5.3), which employ discrete spatial sampling of the input

signal, similar results for the field of narrowband signals are obtainedwhen s is replaced by

s0; DnT by n0T � n0OT
; A

ðdcÞ
M by A

ðdcÞ
0m

and so on, in (2.5.22) for a R; tð Þ ¼ aðdcÞ R; tð Þ. This
can be expressed directly in terms of the aperture functionA

ðdcÞ
0m

in the important case of the

same now narrowband input signal applied to each array element at jm; m ¼ 1; . . . ; M.

The result is specifically

aðdcÞ R; tð Þ

�����
H

FF

nb

Sin ¼ S0

6Re eiv0 t�R=c0ð Þ
ð

Br1

S0 s0=2pið Þ in; Dð Þ 1� e�s0T
	 
 es

0 t�R=c0ð Þ

4pR
A
ðdcÞ
0m

Dn0T; s0=2pið ÞTr
ds0

2pi

8
<

:

9
=

;
;

Sin; D 6¼ 0; R=c0 < t < R=c0 þ T ; Sin; D 2 D; ¼ 0; Sin;D =2D; ð2:5:34Þ

with

AðdcÞ
oM

DTn
0
T ; s

0=2pið Þ ¼
XM

m¼1

ð1

�1 nð Þ

AðdcÞ
om

n0; s0=2pið ÞTre�2pi n0�DnTð Þ � jmdn0
)

: ð2:5:34aÞ
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Aspecial case of some importance occurswhen the local beampatternsAðdcÞ
om

, that is, the

pattern per sensor for this narrowband situation, are represented by

AðdcÞ
om

¼ AðdcÞ
om

e2pi n
0 � jmð Þ; D̂iT ¼ îT � îOT

; and so on; ð2:5:35Þ

refer to Eq. (2.5.16b). The full beam pattern of the sensor array in this special case is

AðdcÞ
oM

¼
XM

m¼1

AðdcÞ
om

e2piDn
0
T � jm ¼

XM

m¼1

AðdcÞ
om

es
0 îT�îOTð Þ � jm=c0 ; ð2:5:36Þ

which is a “shaded” beampattern (viaAðdcÞ
om

), reducing to the still simpler and familiar form

with uniform shading in these narrowband cases, namely:

A
ðdcÞ
0M

¼ A
ðdcÞ
0m

XM

m¼1

ei îT�î0Tð Þ � jms0=c0 : ð2:5:36aÞ

[See (2.5.24a)–(2.5.25) for the general case of more complex beam patterns, including

broadband as well as narrowband width (in wave number–frequency).]

2.5.5.2 Reception When the field in reception is narrowband, we proceed in a similar

manner to that above for transmission, refer to Section 2.5.4, adapting the general results

for (2.5.27) and (2.5.31), again with the help of (2.5.32a)–(2.5.32c) and (2.1.18)–(2.1.21a).

We obtain for the case of continuous sampling (2.5.27) in this instance,

ZðccÞ tð Þnb ¼ R̂a h; tð Þnb
� �ðccÞ ¼ Re

(

eiv0t

ð

Br1

est 1� e�s0T
	 
 ds0

2pi

ð1

�1 n̂0ð Þ

A
ðccÞ
0 D̂iRs0=2pic0 � n̂0; s0=2pi
	 


Rec

� S0 n̂0; s0=2pið Þa; Ddn̂0
)

; ð2:5:37Þ

where ZðccÞ tð Þnb 6¼ 0; ZðccÞ tð Þnb 2 D; ¼ 0 otherwise, with Dn0R ¼ n0R � n00R , and so on,

andA
ðccÞ
0 ; S0ja; D givenby (2.5.32a)–(2.5.32c).At the other extremeofdiscrete sampling,we

sample the continuous output of the arraywhen the incoming field is narrowband, getting for

the output the vector of data

ZðddÞ rm; tnð Þ
h i

nb
¼ T

ðddÞ
S ZðccÞ r; tð Þnb ¼ T

ðddÞ
S R̂a r; tð Þnb
� �ðccÞ

; ð2:5:38Þ

where the discrete sampling operator T
ðddÞ
S is given explicitly by (1.6.2b), and R̂anb

� �ðccÞ

by (2.5.37).

When the field is sufficiently narrowband in its space–time bandwidth, as for (2.5.33b) in

the case of transmission Sin ¼ Sin; nb
� �

, we obtain by the same argument the simple result for

reception:

Z ddð Þ rm; tnð Þnb
h i

¼ T
ddð Þ

S Re e�iv0tA
ðccÞ
0 D̂iRf0=c0; f0
	 


Rec
a r; tð ÞðccÞnb

n o
: ð2:5:39aÞ
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This becomes explicitly on using (1.6.2b)

Z ddð Þ rm; tnð Þnb
� � ¼ Re e�iv0tnA

ðccÞ
0 D̂iRf0=c0; f0
	 


Rec
aðccÞ rm; tð Þnb

n o
6¼ 0; rm; tð Þ 2 D

¼ 0; elsewhere

ð2:5:39bÞ

where

a rm; tnð Þnb ¼ E rm; tnð Þa
�� ��cos v0tn � 2pnOL � rm � f0 rm; tnð Þa

� � 6¼ 0; rm; tnð Þ 2 D;
¼ 0; elsewhere:

�
:

ð2:5:40Þ

From (2.1.25a)–(2.1.25c) Eaj j is the (absolute) value of the complex envelope andf0a is its

phase. Both are narrowband.We remark that Z
ðddÞ
m; n

h i
is the (vector) of sampled values of the

narrowband field after reception by the array and before subsequent processing.

2.5.6 Some General Observations

In Section 2.5, we have examined in an introductory fashion some of the definitions and

elements of apertures and arrays, in conjunction with a simple propagation model, that is, a

Helmholtz medium represented by the well-known partial different equation (2.5.12) in an

infinite, ideal medium, excluding the source. This also includes a more general field

generated by a source and a field (not necessarily a Helmholtz one) that itself is a source

for a typical receiver with an aperture or array. For the former, we have the conversion of a

purely temporal source into a space–time field (T̂AT, Fig. 1.1b). For the latter, we have the

reverse procedure of conversion of a space–time field into a temporal process in the receiver

(T̂AR, Fig. 1.1b).

From the analysis presented in Section 2.5, we may make certain general as well as

particular observations regarding the transmission and reception operations. Although

apparently well known, these do not appear to have been discussed much previously. They

are as follows:

(1) Generally, beam patterns are functions of frequency as is the associated wave

number. This alsomeans that the required steering vectorsmust be a similar function

of frequency as is the associated wave number in order to achieve effective steering

and to maintain the shape of the beam, refer to Eqs. (2.5.16a)–(2.5.17b).

(2) Physically, space and time are coupled together in the propagation of a field by the

finite speed or the wave velocity c0 (which is a constant in our Helmholtz example,

refer to Eq. (2.5.12), characteristic of a nondispersive medium). It is thus not

possible that space and time phenomena are naturally separated, that is

ST 6¼ S T . Requiring S T , that is, separation of spatial and temporal opera-

tions, in processing these ST fields while often chosen is accordingly a constraint,

namely, a reduction in optimality (Sections 2.5.3, 3.4.6, 3.4.7 following).

(3) Discrete sampling (i.e., discretization leading to digitalization) modifies the incom-

ing field after processing by the receiving aperture or array, refer to Eqs. (2.5.31)
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versus (2.5.27). The modification depends on which stage(s) in reception the

sampling occurs. (See the papers referred to in Refs. [21–33] for further discussion

and analysis.)

(4) The wave number–frequency apertures or aperture beam functions (2.5.2a)

and (2.5.2b), that is, the Fourier transform of the aperture weighting function

h(r, t), are not generally Bayes-matched filters as defined and discussed in Sections

3.4 and 3.5 following. This is because they do not consider the signal received in the

accompanying noise. They are, however, proportional (within a constant) to Bayes-

matched filters when the noise fields are “white,” that is, have a constant wave

number–frequency intensity spectrum.

For specific details, consider again Sections 2.5.1–2.5.3, which provide an introduc-

tion to the role of aperture and arrays in the transmission and reception of these

(scalar) fields.

2.6 CONCLUDING REMARKS

As noted in Chapter 1, we have provided amore detailed formulation of the binary detection

problem. Particular attention has been given to various classes of spatiotemporal Bayes

detectors, their associated costs of decision, and the formal procedures for evaluating

performance, measured by the relevant probabilities of correct detection and false alarms.

The generalized likelihood ratio (GLR) L(X), of course, embodies the algorithm whereby

signal and noise are processed, and the GLRT is the associated statistical test of the

hypotheses H1 : S� N versus H0 : N, namely, signal and noise versus noise alone. In most

of this development, space and time play equally significant roles, since we must deal with

channels that have spatial as well as temporal features. A brief summary of the principal

topics considered so far in this chapter is noted below:

(i) The first half of this chapter, Section 2.1–2.4, is devoted to theWiener–Khintchine

(W–Kh) relations and in particular, to their extensions to the non-Hom-Stat noise

(and signal) situations, where both continuous and discrete sampling of the input

field a(r, t) are specifically required.

(ii) In Section 2.1, broadband and narrowband noise, signals, and their various

covariance structures in space–time are considered.

(iii) Section 2.2.1 treats the case of homogeneous–stationary fields and their associated

W–Kh results.

(iv) Section 2.2.2 provides extensions of theW–Kh relations to the non-Hom-Stat cases

for continuous sampling.

(v) Discrete sampling of random fields is treated in Section 2.3, which requires a

modified approach because of the point nature of the sampled field.

(vi) In Section 2.4, the Wiener–Khintchine relations for discretely sampled random

fields are considered.

(vii) Section 2.5 provides an introductory treatment of apertures and arrays (with

continuous and discrete spatial sampling) for transmission and reception,

illustrated by propagation in an ideal Helmholtz medium, with specific attention to

beam formation.
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The results of this chapter provide someof the formal structure for the specificapplications to

follow, where actual realizations of these theoretical results are obtained, sometimes in their

optimal form and more frequently in near-optimum approximations.
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3
OPTIMUM DETECTION, SPACE–TIME
MATCHED FILTERS, AND BEAM
FORMING IN GAUSSIAN NOISE FIELDS

An exact reduction of the generalized likelihood ratio, or its monotonic equivalents, and

the exact evaluation of the error probabilities in detection are not usually possible. In

fact, canonical but approximate analytical results can be obtained only in the critical

limiting situations of weak signal operation. However, there are some results that are

exact for all signal levels. These owe their tractability in part to the originally Gaussian

nature of the noise fields in combination with the mode of reception, that is, whether or

not reception is coherent or incoherent, and to the particular type of doppler distortions

and amplitude fading (if any). Here, we shall consider several classes of such problems,

where a major difference from earlier work (Chapters 19–23 of Ref. [1]) is the extension

to spatially distributed noise and signal fields that are inhomogeneous and nonstationary.

Among the new results is our exact treatment of broadband incoherently received signals

and noise, and the cases where the background noise is slowly fading (Section 3.3).

Also, among the new results is a rather extended examination of space–time discrete

matched filters and the inherent beam-forming capabilities of their spatial parts

(Sections 3.4 and 3.5).

The organization of this chapter is as follows: Section 3.1 presents a treatment of coherent

detection when everything is known about the signal except its presence or absence.

Section 3.2 provides actual optimum results in selected cases, representing typical exact

examples of broad- and narrowband reception. These are discussed for coherent detection,

including detector algorithms and optimal performance, aswell as some typical examples of

array performance. The important cases of incoherent reception are next, including, besides

the optimumalgorithms, performance given in terms of thewell-knownQ-function, for both

Non-Gaussian Statistical Communication Theory, David Middleton.
� 2012 by the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.
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Neyman–Pearson (NP) and Ideal Observers (IO). A section specifically on array processing

in conjunction with the temporal aspects of reception provides some further insight into the

role of spatial processing.

These sections are then followed by several sections involving variations on incoherent

reception: A discussion of the effects of Rayleigh fading on detection and treatment of

optimum narrowband reception in terms alternative to the fully narrowband treatment given

earlier in Section 3.2. Section 3.3 treats coherent and incoherent detection when the

background noise is slowly varying. Section 3.3 continues with a treatment of broadband

incoherent reception, involving the eigenvalues and eigenfunctions of the space–time

covariance. Section 3.3 then concludes with the definition of the signal-to-noise ratio at the

output intermsoftheminimumdetectablesignalandtheprocessinggain.Section3.4contains

an extended discussion of Bayes space–time matched filters, including the Wiener–

Kolmogoroff cases and space–time variable examples. Section 3.4 also treats the imposed

separability of space and time. Section 3.5 then concludes our study with a variety of approxi-

mate results, includingmatched filters as optimal beam forming systems. Again, the important

special case of the imposed separation of space–time fields on these filters is included here.

Finally, we note that our general results can easily be specialized directly to the more

familiar and previously considered cases where the noise is locally homogeneous and

stationary.

3.1 OPTIMUM DETECTION I: SELECTED GAUSSIAN PROTOTYPES—

COHERENT RECEPTION

Having presented the fundamentals of the Gaussian field, determined practically by its

covariance function, we are now in a position to evaluate a number of examples of coherent

and incoherent detection in such Gaussian noise. These examples range from the coherent

cases of everythingknownapriori about the signal except its presence or absence to themore

complexcasesofincoherentreceptioninvolvingnotonlyignoranceaboutthesignalepochbut

also the presence of fading and variability of the accompanying noise level. The list is,

of course, not complete, but it represents typical prototypes illustrating some of the

techniques used to accommodate the more involved situations encountered in practice.

These prototypes are exact examples and have interest in their own right, including as they

do the spatial as well as the temporal aspects of the received data. It is assumed that the

signal is “on” and sampled at tn; 0 � tn � N, during the observation period (0, T ).

Moreover, the original field itself is received over a spatial domain determined by an array

containing m¼ 1, . . .,M (point) sensors. We note that in the general context of detection

(and estimation, refer to Chapter 5) here and throughout the book, such arrays are defined

by their connection to a common reference point and combination ¼ Smð Þ of their outputs
at this point to form a “beam,” as discussed in Section 2.3.

3.1.1 Optimum Coherent Detection.1 Completely Known Deterministic Signals in

Gauss Noise

Let us begin with the simple but nontrivial example of optimumOn–Off detection in Gauss

noise of an otherwise completely known signal at the receiver. The normalized, canonical

1 For the definition of coherent reception, see Section 1.2–1.4.
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signal is represented by Eqs. (3.1.1a) and (3.1.1b). The epoch « and parameters uðmÞ are also
known a priori, that is, « ¼ «0; u

ðmÞ ¼ u
ðmÞ
0 .What is not known is whether or not the signal is

present in the accompanying (additive) noise.Our problemhere is the familiarOn-Off test of

the simple hypothesesH1: SþN versusH0: N, with the signal class inH1 consisting of one

member, refer to Fig. 1.1a and Section 1.2.1. In particular, we wish to determine:

(1) Whether or not the completely deterministic signal S, whose structures and strength

are fully specified at the receiver, is present in the received data X ¼ X rm; tnð Þ ¼
Xj¼mn

� �
;1; 1 � m; n � J.

(2) The (Bayes) optimum receiver T̂R�OPT (Fig. I.1) for this purpose, namely, the

decision algorithm; and

(3) The expected performance, by the methods of Section 1.7, obtaining the various

probabilities a*; b* of decision error and of correct decisions, that is, 1�a*; 1�b*,

including the Bayes risk or cost.

Reception is coherent and if the signal is present, its structure is completely known at the

receiver. Our results apply generally for any signal, independent of narrow- or broad-

bandedness.

3.1.1.1 The Detection Algorithm The noise pdf’s are here under H0 and H1 in

normalized form and with �x ¼ 0:

H0:wJ xð Þ¼ e�ð1=2Þ~xk
�1
N x

2pð ÞJ=2 ffiffiffiffiffiffiffiffiffiffiffiffi
detkN
p ; H1 :wJ x�asð Þ¼exp � ~x�~asð Þk�1N x�asð Þ=2� ��

2pð ÞJ=2 ffiffiffiffiffiffiffiffiffiffiffiffi
detkN
p ; x¼ Xjffiffiffiffiffi

cj

p

" #

ð3:1:1Þ

where the normalized signal ŝ has a variety of equivalent forms:

ŝ¼as¼ Sj=
ffiffiffiffiffi
cj

qh i
¼ Aoj=

ffiffiffiffiffi
cj

qh i
¼ a0jsj
� �¼ A0jffiffiffiffiffi

cj

p sðmÞn

" #

; a0¼ A0ffiffiffi
c
p ) a0j¼a0

ffiffiffiffiffiffiffiffiffiffi
c=cj

q
;

ð3:1:1aÞ

for broadband waves. For narrowband signals, we have the vector

ŝ¼as¼ A0jffiffiffiffiffiffiffi
2cj

p
ffiffiffi
2
p

cos v0tn�fj

� �
" #

¼ A0jffiffiffiffiffiffiffi
2cj

p
ffiffiffi
2
p

sðmÞn

" #

; a0¼ A0ffiffiffiffiffiffi
2c
p ) a0j¼a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c=2cj

q

ð3:1:1bÞ

withA0j¼A
ðmÞ
on tnð Þ now slowly varying compared to

ffiffiffi
2
p

cos v0t�fj

� �
. The intensities of the

various signals areSA2
0j and ð1=2ÞSA2

0j , since Sjjnb¼ Aoj
� ffiffi

2
p

� � ffiffiffi
2
p

cos v0tn�fj

� �
givesA2

0j=2

for its intensity. The normalized intensities are SjA
2
0j=cj and SjA

2
0j=2cj , respectively, for

broad- and narrowband signals. Here we let ŝ represent either (normalized) signal, as the

case may be.
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Forming the likelihood ratio and taking its logarithm give directly

z ¼ logL xð Þ ¼ logm� 1

2
~as k�1N as

	 

þ ~as k�1N x; ð3:1:2Þ

with the normalized signal in the two different cases—broadband and narrowband—given

now by ŝ. The terms in parentheses are the bias and the term involving x contains the data.

Thus, using (3.1.3a) and 3.1.3b), we have compactly for both cases,2

Y*
s�coh ¼ ~as k�1N as ¼ ~̂sk�1N ŝ ¼

X

jj0
A0jA0j0 k

�1
N

� �
jj
=
ffiffiffiffiffiffiffiffiffiffi
cjcj0

q
; ðbbÞ; ð3:1:3aÞ

or

¼
X

jj0

A0jA0j0 k
�1
N

� �
jj0

2
ffiffiffiffiffiffiffiffiffiffi
cjcj0

p
ffiffiffi
2
p

cos v0tn�fj

� � �
ffiffiffi
2
p

cos v0tn0�fj0
� �n o

; nb ð3:1:3bÞ

In case of preformed beams (M¼ 1), time enters only in the temporal structure of the

algorithm (3.1.2). The result then reduces to the simpler forms with cj ¼ c
� �

log L xð Þ¼ logm�1
2
~̂sk�1N ŝþ~̂sk�1N x; ŝbbð Þj ¼A0n=

ffiffiffi
c

p
; ŝnbð Þn¼

A0nffiffiffiffiffiffi
2c
p ffiffiffi

2
p

cos v0tn�fnð Þ

¼ ffiffiffiffiffiffiffi
2aj

p
; aj ¼ a0nsn; s2n ¼ 1; ð3:1:4Þ

a0n ¼A0n=
ffiffiffiffiffiffi
2c

p
:

The test statistic is

Y*
x�coh¼ ~xk�1N ŝ: ð3:1:5aÞ

Generally, the decision process is specifically

DecideH1 : SþN if

DecideH0 :N if

Y*
x�coh � log Kcoh=mð ÞþY*

s=2

Y*
x�coh < log Kcoh=mð ÞþY*

s=2

" #

coh

: ð3:1:5bÞ

Where preformed beams are used and only temporal processing is carried out, the decision

process reduces to the simpler form,

H1 : a0Y*
x�coh � log Kcoh=mð Þþ a20

2
Y*

s�coh; or H0 : a0Y*
x�coh < log Kcoh=mð Þþa20Y*

s�coh=2:

ð3:1:5cÞ

For the Neyman–Pearson detector, the threshold Kcoh > 0, while for the Ideal Observer

Kcoh¼ 1.

9
>>>=

>>>;

2 C*
s�coh may also be regarded as a “generalized” signal-to-noise (power) ratio since

Y*
s�coh ¼ ~̂sk�1N ŝ ¼ Ssisj k�1N

� �
ij
¼Pij kSð Þij k�1N

� �
ij
� S=Nð Þ2
� �

, where k�1N ¼ ~k
�1
N . See also Y*

S-inc, Section

3.2.1 following.
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3.1.1.2 Space–Time Matched Filter The test statistic Y*
x�coh ¼ ~as k�1N x (3.1.5)

represents the weighted space–time cross-correlation of the signal replica

ð� ~as k�1N Þwith the received data x. (Here, we equate the received signal with the signal

replica, although generally the two are not strictly equivalent in practical cases.) All signal

parameters are also known a priori. Note, however, the comparative generality of the noise

covariance, which can include the effects of inhomogeneity and nonstationarity here. Note

also that the optimum processor Yx�coh is linear in the data x ¼ x rm; tnð Þ½ �½ � as a direct

consequence of coherent reception and of the Gaussian character of the additive noise.

However, coherent reception can be highly nonlinear in the received data when the noise

itself is non-Gaussian. Finally, we observe that ~̂sk�1N ¼ k�1N ŝ
� �

is a (discrete Bayes) space–

time matched filter,3 that is,

k�1N ŝ ¼ H; or
X

j0
kNð Þjj0Hj0

h i
¼ ŝj
� � ¼ as: ð3:1:6Þ

Here, specifically, ŝ ¼ ŝnb or ŝbb, as givenby (3.1.1a) and (3.1.1b), and thefilter is optimum in

the Bayesian sense. Note that if we use nonnormalized forms, we have the equivalent

relations KNĤ ¼ S, where Ĥ ¼ Hj=c
1=2
j

h i
.

In more detail, the matched filterH ¼ kNŝ obeys the discrete set of equations, which we

call discrete integral equations, by analogy to their integral counterparts:

X

m0; n0
kN rm; tn; r

0
m; t
0
nð ÞH rm0 ; tn0ð Þ ¼ ŝm;n ¼ ŝ rm; tnð Þ;

with

0 � rm; tnð Þ � R½ �M ; TN
� �

; 0 � rm0 ; tnð Þ � R½ �M0 ; TN0
� �

; j ¼ m; n ¼ 1; 1; . . . ;M;N;

ð3:1:6aÞ
where RM½ � is the value ofR at rM . Now the matched filters in time have a direction, from a

past to the “now” of operation. Thus,we desire to accumulate the past until the present. Their

responses, that is, their “memory,” must have the form H rm; tnð Þ ¼ H rm; TN�tnð Þ;
0 � tn � TN , and is zero outside this interval. For the spatial filter, there is no preferred

direction, backward or forward in space, so thatH rm; . . .ð Þ ¼ H �rm; . . .ð Þ and the direction
is optional. Thus, the complete (discrete) space–time filter is, of course, linear and is written

H rm; TN�tnð Þ; 0 � rm � R½ �M; 0 � tn � TN ; and is zero outside this space–time inter-

val. The spatial constraint is determinedby the “size” of the aperture or array, and a realizable

time filter (operating only on the past) is obtained, for example, with a switch at t ¼ TN , or

practically with a transversal or delay-line filter. The size of the time window is determined

by the observation period. For independent but inhomogeneous and nonstationary noise

samples, the normalized covariance iskN ¼ djj0
� �

. The discrete set of equations (3.1.6a) is at

once solved. The result is for narrowband waves:

Hj

� � ¼ djj0Hj0
� � ¼ H rm; TN�tnð Þ½ � ¼ ŝj

� �
: ð3:1:6bÞ

(For the full covariance, it is Ĥ ¼ Sj=c
1=2
j

h i
.)

3 Matched filters and the matched filter concept are discussed further in Sections 3.4 and 3.5 ff., including

extensions to space as well as time. As shown in Section 3.4.4, the Bayes matched filter H ¼ k�1N ŝ here is also a

Wiener–Kolmogoroff (W–kh) filter.
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Figure 3.1 shows a schematic of the matched filter Hj

� �
, that is, the solution of (3.1.6a),

for operation in the general case, for both broad- and narrowband inputs, depending on the

signal ŝj .

3.1.2 Performance

Our next step now is to obtain the various probability measures of performance. For this we

need the following well-known relation (e.g., Eq. 7.26 of Ref. [1]).

I jð Þ ¼
ð
� � �
1

�1

ð
e
i~jy�

1

2
~yAy

dy ¼ 2pð ÞJ=2
detAð Þ1=2

e�~jA
�1j=2; ð3:1:7Þ

where j, y are column vectors, j ¼ jj
� �

; y ¼ yj
� �

, andA ¼ ~A is a symmetric J � J matrix,

such that ~yAy and ~jA�1j are positive definite (see Section 7.3 of Ref. [1] and references

therein). With the help of (3.1.7), we can obtain the characteristic functions (cf’s) of

z ¼ logL xð Þ, (3.1.2), under H0 and H1. This is carried out by using the relations in (3.1.1),

respectively, for z ¼ logL xð Þ. The result is

H0 :
H1 :

F1 ijð Þh i Q1

P1
¼ exp ij logm�Y*

s=2
� ��j2Y*

s=2
� �

coh

� �
Q1;P1

; m ¼ p=q;



�
ð3:1:8Þ

where the upper sign applies to the pdfQ1 and the lower toP1. Taking the indicated transform

F�1 zf g ¼ zh i P1

Q1

 gives for the pdf values under H0;H1:

Q1 zð Þ
P1 zð Þ

�
¼ 2ps*2

0

� ��1=2
exp � z�log m� s*2

0 =2
h i2

=2s*2

0

	 


coh

; ð3:1:9Þ

where

s*2

0�coh 	 Y*
s�coh Eq:ð3:1:3Þ: ð3:1:9aÞ

Here, s*2

0�coh is often called the detection parameter and is more precisely the detection

performance parameter (DPP). This is a form of output signal-to-noise (intensity) ratio.

x = [xmn ] = xmn
m n n

Hmn yn
[yn ]

yn

space processing time processing

ψ x
* _ 

coh

≥  KT

<  KT

decision

test statistic

or
H1 : S + N

H0 :  N
Σ Σ Σ

FIGURE 3.1 Spatial and time processing for optimum broad- or narrowband coherent

detection of (completely) deterministic signals in Gaussian noise fields with linear arrays (refer

to Section 3.1.3.)
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This is interpreted more fully in the remainder of Chapter 3. Figure 3.2 shows a typical set

of curves of the pdf values Q1 zð Þ and P1 zð Þ for the test statistic z ¼ logL, (3.1.9)

and (3.1.9a). Basically, Y*
s , both for coherent and incoherent detection, may also be

defined as an (output) signal-to-noise ratio from the detector. Thus, the conditional error

probabilities may be obtained directly. The exact results here are

a*
F

b*

�
¼ 1

2
1�*H s*

0�coh
2
ffiffiffi
2
p � log Kcoh=mð Þ

ffiffiffi
2
p

s*
0�coh

" #( )

; with *H xð Þ ¼ 2=
ffiffiffi
p
p� � ðx

0

e�t
2

dt 	 erf x:

ð3:1:10Þ

2 2

K

(a)

(z – logµ)

β*
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αF
*

αF
*
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4.0

1.0

= α0Φs

=

=
–1

kcoh

µ

µ
1.0 ( kcoh )

1/2 2

FIGURE 3.2 (a) Probability densities of z ¼ logL xð ÞEq. (3.1.9), under H0 : Q1 zð Þ and H1: P1 zð Þ.
Error probabilitiesb

ð1Þ*
0 ¼ b*
� �

versusb
ð0Þ*
1 ¼ a*

F

� �
for optimum coherent binary detection of a known

signal in additive normal noise (a form of ROC diagram), Eq. (3.1.10).
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The optimum probability of correctly deciding that the signal is present in the received

data x is then

P*
D¼pp*D¼p� 1�b*

� �¼p

2
1þ*H s*

0�coh
2
ffiffiffi
2
p �log Kcoh=mð Þ

ffiffiffi
2
p

s*
0�coh

" #( )

¼p

2
1þ*H s*

0�cohffiffiffi
2
p �*H �1 1�2a*

F

� �� �� �

ð3:1:10aÞ

from (3.1.10). Here, a* ¼a*
F

� �
is the false alarm probability, which when preselected is

equivalent to determining the threshold (or cost ratio) K, from

logKcoh¼ logm�s*2

0�coh=2þs*
0�coh

ffiffiffi
2
p *H �1 1�2a*

F

� �
: ð3:1:11Þ

Figure 3.2 shows b* versus a* from (3.1.10). This is a form of receiver operating

characteristic (ROC).4

Finally, the various Bayes risks [see Section (1.6.4)] may be obtained as linear combina-

tions of the conditional error probabilities.

3.1.2.1 Neyman–Pearson and Ideal Observers These detectors are special forms of the

Bayes detector. For the NP detector (Section 1.8.1), we have

NP : a* ¼ a*
F fixed or equivalently Kcoh > 0 fixedð Þð Þ;

then

b*!b*
NP ¼

1

2
1�*H s*

0�cohffiffiffi
2
p �*H 1�2a*

F

� �
2

4

3

5

8
<

:

9
=

;
;

with

P*
DjNP ¼ pp*DjNP ¼ p � 1�b*

NP

� �
; a* ¼ a*

fixed:

1

CCCCCCCCCCA

ð3:1:12Þ

Whens*
0�coh!1; b*

NP! 0 as expected. TheNP detector is an example of a constant false

alarm rate (CFAR) detector, where “rate” refers to a succession of decisions in time, with

fixed threshold or equivalently a constant false alarm rate.

For the Ideal Observer, on the other hand (cf. Section 1.8.2), a* and b* are linearly

combined and then optimized. Equations (3.1.10) still apply, now with Kcoh ¼ 1: With a

“symmetric channel,” defined here by the a priori probabilities p ¼ q ¼ 1/2, or m ¼ 1, we

have a decision error probability

IO : m ¼ 1 ¼ Kcoh : P*
e ¼

1

2
a*þb*
� � ¼ 1

2
1�*H s*

0�coh=2
ffiffiffi
2
ph in o

ð3:1:13aÞ

and a Bayes risk R*jIO ¼ C0P
*
e , refer to Section (1.8.2) and (3.1.13a). The probability of

correctly detecting a signal is

P*
c ¼ 1�P*

e ¼
1

2
1þ*H s*

0=2
ffiffiffi
2
p� �n o

: ð3:1:13bÞ

4 ROC curves usually plot p
ð*Þ
D ¼ 1�bð*Þ� �

versus að*Þ.
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The decision process itself is now from (3.1.5), with Kcoh ¼ 1:

IO :
decideH1: SþN; if Y*

x�coh � Y*
s�coh=2

decideH: N; namely; P*
e ; if Y*

x�coh < Y*
s�coh=2

)

; m ¼ K ¼ 1:

ð3:1:13cÞ

When s2
0�coh!1; P*

e ¼ 0 and P*
c ¼ 1, no error, and when s2

0�coh! 0; P*
c ¼ 1=2 ¼ P*

e,

the expected a priori probability is p ¼ q ¼ 1=2.
If should be noted that when the “channel” is unsymmetric, that is, p 6¼ q, we must

determine P*
e from Pc, Eq. (3.1.10), namely:5

P*
c ¼ 1�P*

e ¼
1

2
þ q

2
*H s*

0�coh
2
ffiffiffi
2
p þ logm

ffiffiffi
2
p

s*
0�coh

" #

þ p

2
*H s*

0�coh
2
ffiffiffi
2
p � logm

ffiffiffi
2
p

s*
0�coh

" #( )

;

ð3:1:14aÞ

and

) P*
e ¼ qa*þ pb* ¼ 1

2
1�q*H s*

0�coh
2
ffiffiffi
2
p � logm

ffiffiffi
2
p

s*
0�coh

" #

�p*H s*
0�coh
2
ffiffiffi
2
p þ logm

ffiffiffi
2
p

s*
0�coh

" #( )

:

ð3:1:14bÞ

The decision process depends on s*
0�coh, but the individual error probabilities qa

*; pb* are

no longer equal. Equation (3.1.14b) reduces to (3.1.13b) for the symmetrical channel

(m¼ 1), which is the familiar result (3.1.13c), with an acceptable or unacceptable error

probability according to (3.1.13a). When s*
0�coh!1; then P*

c ¼ 1 and P*
e ¼ 0: On the

other hand, when s*
0�coh! 0, we find that

P*
c ¼

1

2
1þ q�pð Þ ¼ q; log m > 0

¼ 1

2
1�qþ pð Þ ¼ p; log m < 0

9
>>>=

>>>;

; ð3:1:14cÞ

with the respective error probabilities

P*
e ¼

1

2
1�qþ pð Þ ¼ p; log m > 0

¼ 1

2
1þ q�pð Þ ¼ q; log m < 0

9
>>>=

>>>;

: ð3:1:14dÞ

Aswe have remarked above, theNP (orCFAR) detector is normally employedwhen the cost

consequences of missing a signal are relatively large, as in radar and sonar applications. On

the other hand, when the probability of decision error is not costly (per decision), as in

telephony using error correcting codes (and usually when a priori signal and “no signal”

5 The threshold Kcoh is always unity in these IO cases.
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probabilities are equal), then the Ideal Observer approach is appropriate. Accordingly,

P*
e[(3.1.13a) and (3.1.13b)] is now the measure of performance error P*

e (Eq. 3.1.14b) in the

more general case of the unsymmetric channel. Other binary detectors, of Section 1.6, may

similarly employNPor IOprocedures, as appropriate. Finally,we note that ŝ can be replaced

by ŝh i 6¼ 0: the statistical average<> does not result in a vanishing value, so the coherent

operation is still possible. For incoherent reception; ŝh i ¼ 0 and more complex detector

structures are needed (Section 3.2.1).

3.1.3 Array Processing II: Beam Forming with Linear Arrays

As we have previously noted (Section 2.5), forming a beam consists of combining sensor

outputs with appropriate delays (spatial processing) in order to maximize the (received)

signal energy observed in the direction of the source in question (when, or course, there is a

source to be observed).

Accordingly, let us apply the results of Section 2.5.4 for reception and illustrate the

concept here with the following simple example. We begin with the case of a received

sampled field X rm; tð Þf g that contains an additive noise of specified covariance, which in

turn consists of independent (normal) noise samples, that is, kN ¼ djj0
� �

and KN ¼
cjdjj0
� � ¼ cmndmm0; nn0

� �
.6 This gives for the test statistic (3.1.5a) the simple result

Y*
x�coh ¼ ~xk�1N ŝ ¼ c�1j

X

j

XjSj: ð3:1:15Þ

Here, specifically, the signal and data samples are represented by their Fourier transforms:

S
ðmÞ
T tn�«0�Dtmð Þ ¼

ð1

�1
S
ðmÞ
T fð Þ*e�iv tn�«0�Dtmð Þdf 6¼ 0; 0 � tn � T; ¼ 0; elsewhere;

ð3:1:15aÞ

Xj ¼ X
ðmÞ
T tn�«0ð Þ ¼

ð1

�1
S
ðmÞ
X fð Þeiv tn�«0ð Þdf ; real 6¼ 0; 0 � tn � T; ¼ 0; elsewhere;

ð3:1:15bÞ

both at time tn�«0. Summing over �1 � n � 1, and since S
ðmÞ
T , X

ðmÞ
T vanish outside

(0, T ), gives

Y*
x�coh ¼

XM

m

X1

n¼�1

1

cj

ðð

�1

1

S
ðmÞ
T fð Þ*SðmÞX f 0ð Þe�i v�v0ð ÞnDt � ei v�v0ð Þ «0ð Þþ ivDtmdfdf 0:

ð3:1:16Þ

6 Usually,KN does not consist of independent samples, that is,KN 6¼ cjdjj0
� �

. A full treatment is given in Section3.2

et seq. and in the chapters following.
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But we can extend the limits on the summation, since the truncated series vanishes for

nj j > N. Thus, we have (for Dt¼N/T)

X

n

ei v�v
0ð ÞnDt ¼

X1

n¼�1
ei v�v

0ð ÞnDt ¼ 1

Dt
d f 0�fð Þ; � f0

2
< f ; f 0 < f0=2; or

�1
2Dt

< f ; f 0 <
1

2Dt
;

ð3:1:17Þ

refer toProblem4.2,Eq. (4.8) of [1],whereDt¼ T0 ¼ N=T ¼ 1=f0 and2B ¼ 1=NDt¼ 1=Tð Þ,
the bandwidth of S

ðmÞ
T fð Þ; SðmÞX fð Þ. Consequently, (3.1.16) reduces to

Y*
x�coh6

XM

m

N

Tcm

ð1

�1
S
ðmÞ
T fð Þ*SðmÞX fð ÞeivDtmdf ¼

XM

m

N

Tcm

ðTþ

0�
S
ðmÞ
T tð ÞXðmÞT tþDtmð Þdt

9
=

;
;

ð3:1:18aÞ

which becomes

¼
XM

m

N

Tcm

ðTþDtm

Dtm

S
ðmÞ
T t�Dtmð ÞXðmÞ tð Þdt¼

XM

m

NA

Tcm

ðTþDtm

Dtm

h
ðmÞ
T T�tþDtmð ÞXðmÞ tð Þdt:

ð3:1:18bÞ

We note that the term “line array” used here is distinct from “linear array.” The former refers

to the geometrical arrangement of the sensors in space, while the latter describes the

connectivity of the sensors in forming a beam. This last term is the matched filter form, for

each sensor, m¼ 1; . . . ;Mð Þ, that is, hðmÞT ¼ h
ðmÞ
T T�tþDtnð Þ ¼ h

ðmÞ
T Tð Þ; t¼ Dtm. As noted

at the beginning of this section, beam forming is the process of adding the various

appropriately delayed sensor outputs, as indicated by the summation over the M sensors.

We can further simplify the results (3.1.18a) and (3.1.18b) by using a variant of cJ :
This requires replacing the often unavailable ensemble values cj by the practical time

averages:

cm6c0m ¼ T�1
ðT

0

XðmÞ tð Þ2dt; so that c ¼ c0m ¼ M�1
X

m

c0m ð3:1:18cÞ

obtained from the inputwhen there is no signal accompanying thenoise.Renormalizing each

sensor output, that is, those m for which XðmÞ 6¼ 0 in (0, T), namely, the sensors for which

there is an output in (0,T), is achieved by multiplying it with each time average ratio

cm=cM6c0m=c
0
M where c0m ¼ M�1

P
mcm. We thus eliminate the dependence of sensor

output on the sensor number (m) to get the still simpler result:

Y*
x�coh6

NA

Tcm

X

m

ðT þDtm

Dtm

h
ðmÞ
T T�tþDtmð ÞXðmÞ tð Þdt: ð3:1:18dÞ
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(Thematchedfilter form (3.1.18b) and (3.1.18d) nowhascm replaced byc0m.)Of course, care
must be taken to normalize X for only those sensors (m) for which there is an output

c0m > 0
� �

.

To proceed further, we must next introduce some explicit sensor geometry relative to the

incoming signal field. We do this with the additional assumption here that the medium is

“ideal,” in that in the vicinity of the receiving array the medium is essentially homogeneous

and stationary.Accordingly, a typical sensor at rm is shown in Fig. 3.3, withwave front delay

î0 � rm=c0 at A and a steering vector�îOR
� rm=c0, directed from the reference point OR to an

element of the received steered beam, for which a delay (referred to OR) is

Dtm 	 î0�îOR

� �
� rm=c0 ¼ D̂iOR

� rm=c0: ð3:1:19Þ

Here, c0 is the speed of the incoming wave front and î0; îOR
are unit vectors, as shown in

Fig. 3.3.

As an example, let us consider a symmetrical vertical line array7 about OR, where now

Dtm ¼ mDl cos u0�cos uOR
ð Þ, with directional steering, in which �M0; . . . ;M0

¼2M0þ 1 ¼ MÞð is the total number of sensors. Using (3.1.19) in (3.1.18a), we obtain

explicitly

Y*
x�coh6

N

Tc0M

XM0

�M0

ð1

�1
S

�
mj j
�

T fð Þ*S mj jð Þ
X fð ÞeivmDlDuOR =c0df DuOR

	 cos u0�cos uOR
ð Þ;

ð3:1:20Þ

–M0

O0
φ

R

x

y

z

θ
θ0

rm = m

θ
OR

∆l
L1 2

îz î0

î0

îz∆l î
OR R

OR

A

}

FIGURE 3.3 Schema of a section of a wave front of direction î0 impinging on the mth sensor in a

vertical line array ð�îzL=2; îzL=2Þ.

7 We repeat that the term “line array” used here is distinct from “linear array.”
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where Dtm ¼ mDl DuOR
=c0. In terms of wave numbers, Yx�coh is equivalently (since

kc0 ¼ 2pf )

Y*
x�coh6

Nc0

2pc0MT

XM0

�M0

ð1

�1
S

mj jð Þ
T

kc0

2p

	 
*

S
mj jð Þ

X

kc0

2p

	 

eikmDl DuOR dk: ð3:1:21Þ

When the signal replica is narrowband and S(t) and X(t) are the same from each sensor,

Eq. (3.1.21) becomes

Y*
x�coh6

Nc0

2pc0TM
1þ2

XM

m¼0
cos mk0DlDuR½ �

( ) ð1

�1
ST

k0c0
2p

	 
*

SX
k0c0
2p

	 

dk0; k0 ¼ v0=c0:

ð3:1:22Þ

On summing the cosine series
P

m

� �
with the aid of the geometric series

PM
m¼1 r

m ¼ 1�rMþ1ð Þ= 1�rð Þ, Y*
x�coh reduces to

Y*
x�coh6

Nc0

2pc0TM
cosMD0þ sinMD0 � sinD0

1�cosD0

	 
� � ð1

�1
ST

k0c0
2p

	 
*

SX
k0c0
2p

	 

dk0;

ð3:1:23Þ

where now

cosMD0þ sinD0

1�cosD0

	 

sinMD0 	 A*

R Du; f0ð Þ ð3:1:24Þ

is the beampattern, withD0 	 k0DlDu0 ¼ k0Dl cosu0�cos uOR
ð Þ.When the beam is directed

toward the source of the incoming signal, then D0 ¼ 0 and the beam pattern AR � 2M0þ1ð Þ
is maximal, proportional to the number of sensors. Accordingly, the maximum available

aperture is8 AR ¼ 2M0þ1ð ÞDl:
Finally, similar to the results above for Yx�coh, Eqs. (3.1.15) et seq., we see that the

detection parameter s*2

0�coh ¼ Y*
s�coh, (3.1.9a), can be represented in more detail by

s*2

0�coh ¼ Y*
s�coh ¼

N

Tc0M

X

m

ð1

�1
S
ðmÞ
T tð ÞSðmÞT tþDtmð Þdt

¼ N

c0M

X

m

ðT

Dtm

SðmÞ tþDtmð ÞSðmÞ tð Þdt=T6 N

c0M

X

m

ðT

Dtm

A
ðmÞ
0 tð Þ2cos v0Dtndt=2T


nb

9
>>>>>>>=

>>>>>>>;

;

ð3:1:25Þ

8 For a more extensive discussion of arrays, apertures, beam forming, and so on, see Section 3.4.

OPTIMUM DETECTION I: SELECTED GAUSSIAN PROTOTYPES—COHERENT RECEPTION 153



this last in the narrowband cases. When the beam is directed at a signal source, that is,

îOR
¼ î0; then Dtm ¼ 0, and we see that9

s*2

0�cohjmax ¼
N

c0M

X

m

ðT

0

SðmÞ tð Þ2dt=T ¼ N

c0M

X

m

EðmÞs�max;

where

E
ðmÞ
s�max ¼

ðT

0

SðmÞ tð Þ2dt=T ¼
ðT

0

A
ðmÞ
0 tð Þ2=2T

nb

ð3:1:25aÞ

is the maximum average signal power in the output of themth sensor in the receiving array.

Writing �Es�max ¼ M�1
P

mE
ðmÞ
max, we can put (3.2.25a) into an equivalent form more useful

for later use, namely,

s*2

0�cohjmax ¼ MN�Es�max=c
0
M ð3:1:26Þ

3.2 OPTIMUM DETECTION II: SELECTED GAUSSIAN PROTOTYPES—

INCOHERENT RECEPTION

When reception is incoherent (in the sense of Section 1.2), we have generally a more

difficult situation than in the case of coherent reception of completely known signals

(Section 3.1), even with an additive normal noise background. For broadband signals,

where signal bandwidth (in frequency and wave number) is a large fraction of the mean

wave number–frequency, exact solutions are not usually possible, although canonical

approximations can be obtained in threshold reception. This is also the case for narrow-

band signals. However, for the latter, if RF epoch («) is the only random signal parameter,

exact results can be obtained with normal noise, as the relations below demonstrate.

(These are also important in the more general cases of threshold reception in non-

Gaussian noise.) As in Section 3.1, we can carry out the analysis in the general situation of

normal, inhomogeneous–nonstationary noise.

3.2.1 Incoherent Detection: I. Narrowband Deterministic Signals10

Here, we start again with Gaussian statistics where �x ¼ 0, but since there is usually no a

priori preferred distribution of epoch « we choose (a1=a Occam’s razor) a uniform

distribution of signal waveform over one cycle of the high-frequency center frequency f0
of the narrowband signal: w «ð Þ ¼ 1=D; D ¼ f�10 (and zero outside this interval). Accord-

ingly, we now consider the following results.

9 Here, Sj ¼ S rm; tnð Þ ¼ SðmÞ tnð Þ ¼ A
ðmÞ
on s

ðmÞ
n =

ffiffiffi
2
p ! SðmÞ t ¼ nDtð Þ ¼ A

ðmÞ
0 tð ÞsðmÞ tð Þ= ffiffiffi

2
ph i

ct¼tn
.

10 For a definition of incoherent reception, see Section 1.2.1.4.
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3.2.1.1 IncoherentDetector Structures, Statistical Tests, andMatchedFilters Wenow

specifically have for the likelihood ratio

L xð Þ Gauss

inc

nb

¼ m e�
1
2
~ask�1N asþ ~xk�1N as

D E

«
¼ m e�

1
2
Y*

s�inc þY*
x�inc

D E

«



ð3:2:1Þ

where x ¼ x rm; tnð Þ½ � ¼ Xj=
ffiffiffiffiffi
cj

ph i
: We next define the following narrowband signal

vectors by

a ¼ AðmÞon =
ffiffiffiffiffi
cj

q� �
cosv0 tn�fðmÞn

� �h i
; b ¼ AðmÞon =

ffiffiffiffiffi
cj

q� �
sin v0tn�fðmÞn

� �h i
; j ¼ mn;

ð3:2:2Þ

where, as required for these space–time samples, j (¼mn) is a double index. The phasefðmÞn

contains spatial information for both propagation and location, which in more detail can be

written

fðmÞn 	 k0�kOR
ð Þ � rmþcðmÞn ; and Fj 	 v0tn�fðmÞn : ð3:2:2aÞ

Then, a and b become11

a ¼ aj
� � ¼ Aj cosFj

� �
; b ¼ bj

� � ¼ Aj sinFj

� �
: ð3:2:2bÞ

Accordingly, we have for the input signal (as)

â ¼ Aj cosFj cos v0«þAj sinFj sin v0«
� � ¼ Aj cos Fj�v0«

� �� �

¼ A
ðmÞ
0nffiffiffiffiffiffiffi
2cj

p
ffiffiffi
2
p

cos v0 tn�«ð Þ�fðmÞn

� �
2

4

3

5

¼ a cosv0«þ b sinv0«

9
>>>>>>=

>>>>>>;

;

ð3:2:3Þ

with Aj ¼ A
ðmÞ
0n

=
ffiffiffiffiffi
cj

q
: ð3:2:3aÞ

We note that Fj is independent of « and that A
ðmÞ
0n

and fðmÞn are slowly varying vis-à-vis

v0 tn�«ð Þ.

11 Note thatAj ¼ A
ðmÞ
on =

ffiffiffiffiffiffiffi
2cj

p 6¼ A0j ¼ A
ðmÞ
on

� �
, without the normalizationused in Section 3.1.1;a; â;b are of course

functions of rm and tn here and throughout, as are the covariances.
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Since as¼ â, we have for the detection performance parameter (DPP) (3.1.9a)

Y*
s�inc 	 ~as k�1N as ¼ ~̂ak�1N â ð3:2:4Þ

¼
X

jj 0
k�1N

� �
jj 0âj âj 0 ¼

X

jj 0
k�1N

� �
jj0 aj cos v0«þ bj sin v0«
� �

aj0cos v0«þ bj0sin v0«
� �

;

ð3:2:4aÞ
with

âj âj0 ¼ ajaj0 cos
2v0«þ bjbj0 sin

2v0«þ ajbj0 þ aj0bj
� �

sin v0« cos v0«

¼ AjAj0 cosFj cosFj0 cos
2v0«þ sinFj sinFj0 sin

2v0«
� �

þ 1

2
AjAj0 þAj0Aj

� �
cosFj sinFj0 þ sinFj cosFj0
� �

sin2v0«

9
>>>>=

>>>>;

: ð3:2:4bÞ

Now we see that since

cosFj cosFj0 ¼ 1

2
cos Fj þFj0
� �þ 1

2
cos Fj�Fj0
� �

6
1

2
cos Fj�Fj0
� �8

>><

>>: sinFj sinFj0 ¼ 1

2
cos Fj�Fj0
� �� 1

2
cos Fj þFj0
� �

6
1

2
cos Fj�Fj0
� �

cosFj sinFj0 ¼ 1

2
sin Fj0 þFj

� �þ 1

2
sin Fj0�Fj

� �
6

1

2
sin Fj0�Fj

� �

sinFj cosFj0 ¼ 1

2
sin Fj0 þFj

� �� 1

2
sin Fj0�Fj

� �
6� 1

2
sin Fj0�Fj

� � ¼ 0;
ð3:2:4cÞ

which exhibits the narrowband condition, wherein the rapidly oscillating terms

cos Fj þFj0
� �

; sin Fj þ Fj0
� �

, involving the argument v0 tnþ tn0ð Þ, are clearly negligible.

Thus, (3.2.4) and (3.2.4a) reduce to

âj âj0 ¼ ajaj06
1

2
AjAj0cos Fj�Fj0

� �
and ) ~̂ak�1N â6

1

2

X

jj0
AjAj0 k

�1
N

� �
jj0cos Fj�Fj0

� �
2

4

3

5

: ð3:2:4dÞ

6
1

2
~ak�1N aþ~bk�1N b
� �

Thus, Y*
s�inc > 0ð Þ and the DPP (3.2.4) finally becomes

Y*
s�inc¼ ~ask�1N as6

1

2
~ak�1N aþ~bk�1N b
� �¼ ~ak�1N a¼ ~bk�1N b; refer to Eq: ð3:2:4Þ; ð3:2:5Þ

which no longer depends on « in the narrowband approximation here. Then,

exp �Y*
s�inc=2

� �� �
«
¼ exp �Y*

s�inc=2
� � ð3:2:5aÞ

9
>>>>>=

>>>>>;

9
>>>=

>>>;

8
>>><

>>>:
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sinceY*
s�inc is now independent of«. (Note thatY*

s�inc maybeexpressed either as~ak�1N aor as
~bk�1N b, aswell as by the symmetric form ~akNaþ~bkNb

� �
=2, that since kjj ¼ ~kjj ;Y*

s�inc can be
regarded here as a kind of generalized signal-to-noise (intensity) ratio, since (3.2.5) can be

writtenY*
s ¼
P

ij kSð Þij �k�1N

� �
ij
, Note also the formal similarity of Eqs. (3.2.4) and (3.2.5),

that is,Y*
s�incjnb ¼ âk�1N â

� �
, to the earlier detection parameterY*

s�coh¼ ŝk�1N ŝ [Eq. (3.1.3a)],

which applies for both broad- and narrowband signals.

In a similar fashion, using thevarious narrowbandapproximations in (3.2.4b),we can also

show that

~ak�1N a

~bk�1N b

 !

¼
X

jj0
AjAj0 k

�1
N

� �
jj0

cosFj cosFj0

sinFj sinFj0
6

1

2
cos Fj�Fj0
� �	 


ð3:2:6aÞ

so that

) ~ak�1N a ¼ ~bk�1N b ¼ Y*
s�inc: ð3:2:6bÞ

Furthermore, remembering kN and ) k�1N

� �
are symmetric, on using (3.2.4c) again one can

write for the “cross-terms”

C 	 ~ak�1N b ¼Pjj 0 AjAj 0

	
cosFj sinFj 06

1

2
sin Fj 0�Fj

� �



D 	 ~bk�1N a ¼Pjj 0 AjAj 0

	
sinFj cosFj 06� 1

2
sin Fj0�Fj

� �


9
>>>>=

>>>>;

; ð3:2:7Þ

and interchanging j and j 0 in D gives at once C6D. Since CþD60, or C6�D, it follows
that ~ak�1N b6~bk�1N a60 in these narrowband cases. Finally, a number of alternative,

compact forms for Y*
s�inc; (3.2.5) are available. Again, letting c ¼ k�1N a; d ¼ k�1N b so

that ~ak�1N a ¼ ~ac ¼ ~bk�1N b ¼ ~bd, we can therefore write

Y*
s�inc6~ac ¼ ~bd ¼ 1

2
~acþ ~bd
� � ¼ 1

2
Re ~Aĥ

*
eiF ¼ 1

2

X

j

Re AjĤ
*

j e
iFj ; ĥ

*

j ¼ cj�idj;

ð3:2:7aÞ
where Ĥ represents a complex matched filter response, refer to discussion following

Eq. (3.2.13a).

Next, for the test statistic Y*
x�inc x; «ð Þ 	 ~xk�1N as ¼ ~xk�1N a cos v0«þ b sin v0«ð Þ in

(3.2.1), we can write equivalently

Y*
x�inc x; «ð Þinc ¼ ~xk�1N a

� �2þ ~xk�1N b
� �2h i1=2

cos v0«�F xð Þð Þ; F xð Þ ¼ tan�1 ~xk�1N b=~xk�1N a
� �

;

ð3:2:8Þ
so that in (3.2.1) we get

exp Y*
x x; «ð Þinc

� �� �
«
¼ exp F xð Þcos v0«�F xð Þ½ �f gh i« ¼

X1

n¼0
«nIn F xð Þð Þ cos n v0«�Fð Þh i«;

ð3:2:8aÞ
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F(x) is also independent of « in the present narrowband approximation, refer to Eq. (3.2.2,

2a), for example,

F xð Þ 	 Y*
x�inc ¼ ~xk�1N a

� �2þ ~xk�1N b
� �2 ¼ ~xk�1N a~aþ b~b

� �
k�1N x: ð3:2:8bÞ

Here in (3.2.8a), In is a modified Bessel function of order n, and «n is the Kronecker symbol,

with «n ¼ 1; «n ¼ 2; n � 2 in the usual way. For the uniform pdf w1 «ð Þ ¼ 1=D; D ¼ f�10

discussed above, only the term n¼ 0 is nonvanishing, with the result that

exp Y*
x x;«ð Þinc

� �� �
«
¼ I0 ~xk�1N a

� �2þ ~xk�1N b
� �2h i1=2	 


: ð3:2:9Þ

(Unlike the DPPY*
s�inc; the test statisticY

*
x�inc must employ both terms a and b involving

the signal, refer to Eq. (3.2.8))

Accordingly, for the narrowband (Bayes) optimum incoherent detector, the complete test

statistic12 is

U xð Þ* 	 logL xð Þ ¼ logm� 1

2
Y*

s�incþ log I0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

x�inc

q	 

; ð3:2:10Þ

where I0 is amodifiedBessel functionof thefirst kind andY*
s�inc is generallygivenby (3.2.5).

The resulting decision process is

DecideH1: SþN if U xð Þ* � logKinc or DecideH0: N if U xð Þ* < logKinc:

ð3:2:11Þ

However, for determining detection performance, the complete test statistic (3.2.10) does

not provide analytically tractable pdf values underH0 andH1. Consequently, at this point, it

is necessary to replace the original test statisticU xð Þ, (3.2.10), by a much simpler optimum

monotonic function of the data13 than I0 F xð Þ1=2
� �

and by the corresponding new threshold

KT�inc. This is possible, and optimality is preserved because the new, simpler monotonic

functional (ofx) is also a sufficient statistic.14Theoptimumtest statistic anddecisionprocess

are accordingly chosen to be

Z 	 Y*
x�inc

¼ ~xk�1N a
� �2þ ~xk�1N b

� �2
;

¼ xk�1N a~aþ b~b
� �

k�1N x

(

where we DecideH1: SþN if Y*
x�inc � KT�inc

DecideH0 : N if Y*
x�inc < KT�inc

( )

: ð3:2:12Þ

12 Henceforthwe shall use the term “test statistic” loosely tomeanY*
x or some function ofY*

x. Themeaning should

be evident from the analytical context.
13 See the remarks in Section 1.6.
14 See Section 1.9 for details.
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Here, the new threshold KT�inc is related to the original threshold Kinc specifically by

KT�inc Kincð Þ ¼ I
ð�1Þ
0

Kinc

m
eY

*
s�inc
�
2

	 
2
" #

> 0; ð3:2:12aÞ

where I�10 is the inverse Bessel function.15 In terms of genericmatched filter [(3.1.6) et seq.

and Sections 3.4, 3.4.4, and 3.4.7],HðaÞ ¼ k�1N a; HðbÞ ¼ k�1N b here, Eq. (3.2.12) is alterna-

tively represented by

Z ¼ Y*
x�inc ¼ ~xHðaÞ

� �2
þ ~xHðbÞ
� �2

: ð3:2:12bÞ

Figure 3.4 illustrates the detection algorithm.

The new test statistic has a variety of equivalent representations besides (3.2.9) and

(3.2.12b):

Z ¼Y*
x�inc ¼ ~xk�1N a~aþb~b

� �
k�1N x¼ ~xk�1N C*

ssk
�1
N x; with C*

ss 	 a~aþb~b¼ AjAj0cos Fj�Fj0
� �� �

:

ð3:2:13Þ

(Note that bothY*
s�inc andY

*
x�inc are ðJ� JÞ positive definite, symmetrical quadratic forms,

a fact that will prove useful in the analysis of array processing in Section 3.2.1.4. If we let

~y¼ ~xk�1N or y¼ k�1N x
� �

where kN and)k�1N

� �
are symmetric as well as positive definite, we

can express the test statistic even more compactly as

Z ¼Y*
x�inc ¼ ~yC*

ssy; with y¼ k�1N x and ) x¼ kNy¼
X

j0
kNð Þjj0yj0 : ð3:2:13aÞ

x

x
H
~ (a) ( )2

( )2

Z =Ψx
*

– inc

Decide S+N: if Ψx
*
–inc ≥ KT– inc

Decide N: if Ψx–inc < KT– inc

H
~ (a) x)2

(H
~ (a)

x)2
(H

~ (b)xH
~ (b)H

~ (b)

+ or

FIGURE 3.4 The generic detection algorithm, Eqs. (3.2.12) and (3.2.12b), for the incoherent

reception of narrowband signals in additive normal noise, with quadratic array processing, which are

part of ~Hx
� �2

, cf. Fig. 3.7 ff.

15 It is not even necessary to use the original threshold. The final one (hereKT�inc) will suffice. (However, (3.2.12a)
is needed to determine the limiting forms b* when Y*

s�inc!1, or 0 [(3.2.20a) ff.)].
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Thus,y is a newdatavector, obtained linearly from theoriginal receiveddatavectorx¼ xj
� �

.

Letting c¼ k�1N a; d¼ k�1N b, with Ĥ¼ cþ id, we see that the test statisticYx�inc can also be
compactly expressed as

Y*
x�inc ¼ ~xcð Þ2þ ~xdð Þ2 ¼ ~x cþ idð Þj j2 ¼ ~xĤ

 2; with Ĥ¼ cþ id; and Ĥ¼
X

j0
k�1N

� �
jj0Aj0e

iFj0
" #

;

ð3:2:13bÞ
(c, d, and Ĥ are all columnvectors of J elements.) Also, in terms of the real component parts

of Ĥð¼ cþ idÞ, we can equally well write

Y*
x�inc ¼ ~cxð Þ2þ ~dx

� �2 ¼ ~xĤ ~̂
H

*

x¼ Ĥ
ðaÞ
x

� �2
þ Ĥ

ðbÞ
x

� �2
; with Ĥ¼ Ĥ

ðaÞ þ iĤ
ðbÞ
;

ð3:2:13cÞ

so that the test statisticY*
x�inc can be represented by structures like those shown in Figs. 3.2–

3.7 ff. In (3.2.13) or (3.2.13c),Y*
x�inc embodies a generalized or matrix autocorrelation of

the received data x (or y) with the (matrix) autocorrelation of the (sum of the) in-phase and

out-of-phase autocorrelation components of the signal replica matrix C*
ss 6C*

ss�Rec
� �

, as

shown in (3.2.13a). (Note also that Y*
x�inc, Eq. (3.2.8b), and Y*

s�inc, Eq. (3.2.5), are
approximate under the present narrowband condition.) The quantityY*

s�inc (3.2.5), appear-
ing in the thresholdKT�inc, (3.2.12a), has a number of important and related interpretations,

which we shall discuss in Section 3.2.1.2.

3.2.1.2 Performance: ProbabilityDistributions andDetectionProbabilities In order to

evaluate performance, we must first obtain the pdf values w1 Z H0j Þ; w1 Z H1j Þðð , where Z is

the test statistic (3.2.12) and (3.2.13), namely, Z ¼ Y*
x�inc. We must then apply these pdf

values accordingly to the procedures of Section 1.6 to find the various error probabilities

and probabilities of correct decisions for these On–Off binary, incoherent, narrowband,

Gaussian detection scenarios.

Accordingly, for (3.2.12), we seek the respective pdf values of the normalized square

envelope E2 ¼ Z, where E2 ¼ ~xk�1N a
� �2þ ~xk�1N b

� �2 ¼ Z ¼ u2þ v2: Here, u 	 ~xk�1N a;
v 	 ~xk�1N b, and we are, of course, dealing with narrowband fields, so that it is meaningful

to consider the existence of the envelope. We begin by observing that u and v are Gaussian

random variables, with the second-order pdf �u ¼ �v ¼ 0ð Þ

w2 u; vð Þ ¼ e� u2 þ v2�2uvrð Þ=2 1�r2ð Þc0

2p 1�r2ð Þc0

; c0 ¼ u2 ¼ v2 ; r0 ¼ uv=c0; ð3:2:14Þ

and characteristic function (cf) here

F w2f g ¼ F2 ij1; ij2ð Þu;v ¼ exp � 1

2
j21þ j22�2j1j2r
� �

c0

� �
: ð3:2:14aÞ

It is readily seen that (since kN ¼ ~kN)

�u2 ¼ ~ak�1N �x�~xk�1N a ¼ ~ak�1N a ¼ c0a; �v2 ¼ ~bk�1N b ¼ c0b; �u�v ¼ ~ak�1N b ¼ ~bk�1N a60

ð3:2:14bÞ
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from (3.2.6a)–(3.2.7), with �u2 ¼ �v2 ¼ c0, cf. (3.2.14b). Accordingly, u and v are uncorre-

lated, so that now

w2 u; vð Þ ¼ w1 uð Þw1 vð Þ ¼ e�u
2=2c0

ffiffiffiffiffiffiffiffiffiffi
2pc0

p � e
�v2=2c0

ffiffiffiffiffiffiffiffiffiffi
2pc0

p ; F2 ¼ e�ð1=2Þj
2
1c0 � e�ð1=2Þj22c0 : ð3:2:15Þ

Also, we note from (3.2.6a) and (3.2.6b) that

c0 ¼ ~ak�1N aþ ~bk�1N b
� �

=2 ¼
X

jj0
AjAj0 k

�1
N

� �
jj0cos Fj0�Fj

� � ¼ Y*
s�inc: ð3:2:16Þ

Next, we employ the well-known results for the pdf values of the (normalized) envelope E

under H0 and H1 (see Sections 9.2 and 9.2.1 of Ref. [1]), namely,

w1

�
E
H0

� ¼ E

c0

e�E
2=2c0 ; w1

�
E H1j Þ ¼ E

c0

e� E2 þ b2
0ð Þ=2c0I0 Eb0=c0ð Þ; E � 0;

ð3:2:17Þ

where b0 is a (normalized) signal envelope. In the present case, b0 ¼ Y*
s�inc, which is now

quadratic in a (or b), refer to Eq. (3.2.16). Thus, we see that (3.2.17) becomes

w1

�
E H0j Þ ¼ E

Y*
s�inc

e�E
2=2Y*

inc ; w1

�
E H1j Þ ¼ E

Y*
s�inc

e�E
2=2Y*

s�inc�Y*
s�inc=2I0 Eð Þ; E � 0:

ð3:2:17aÞ

Finally, sincewe need these pdf values forZ ¼ E2, we readily observe that (3.2.17a) reduces

directly to (see Fig. 3.5)

w1

�
Z H0j Þ ¼ 2Y*

s�inc
� ��1

e�Z=2Y
*
inc ;

w1

�
Z H1j Þ ¼ 2Y*

s�inc
� ��1

e�Z=2Y
*
s�inc�Y*

s�inc=2I0
ffiffiffi
Z
p� �

; Z � 0: ð3:2:18Þ

The associated cfs are easily shown to be 4½ �; p: 718; 4; v ¼ 0; b ¼ 1;ð
a ¼ 1=2ð ÞY*

s�inc�ijÞ :

F1

�
ij H0j ÞZ ¼

ð1

0

eijZw1

�
Z H0j ÞdZ ¼ 1�2ijY*

s�inc
� ��1 ð3:2:18aÞ

F1

�
ij H1j ÞZ ¼

ð1

0

eijZw1

�
Z H1j ÞdZ ¼ eijY

*
s�inc= 1�2ijY*

s�incð Þ
1�2ijY*

s�inc
: ð3:2:18bÞ

The inversion of the cfs yields as expected the corresponding pdf values (3.2.18) (as can be

verified from Ref. [2], No. 655.1, p. 79.)
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The false alarm probability is now readily determined with the help of (3.2.18), namely,

a*
F ¼

ð1

KT ðKÞinc

w1

�
Z H0j ÞdZ ¼

ð1

KT�inc

e�Z=2Y
*
s�inc

dZ

2Y*
s�inc

¼ e�KT�inc=2Y*
s�inc : ð3:2:19aÞ

The false “rest” or rejection probabilityb* (of an actual signal) is similarly obtainedwith the

help of (3.2.8):

b* ¼
ðKT�inc

0

w1

�
Z H1j ÞdZ ¼ 1�Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT�inc=Y*

s�inc

q	 

¼ 1�Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2loga*

F

q	 

;

ð3:2:19bÞ

withKT�inc ¼ �2Y*
s�incloga

*
F

� �
given by (3.2.12a) in terms of the original thresholdKinc, cf.

(3.2.11).16

The (tabulated) Q-function is defined by Ref. [3]:

Q a;bð Þ 	
ð1

b� 0

e�a
2=2�l2=2lI0 alð Þdl; ð3:2:20Þ

with

Q a; 0ð Þ ¼ Q 0; 0ð Þ ¼ Q 1; 0ð Þ ¼ 1; Q 0;1ð Þ ¼ Q a;1ð Þ ¼ 0; Q 0;bð Þ ¼ e�b
2=2:

ð3:2:20aÞ

Expanding the Bessel function in (3.2.20) and integrating gives

Q a;bð Þ ¼ e�a
2=2
X1

n¼0

a2

2

	 
n
1

n!2
G nþ 1;b2=2
� �

; where G mþ 1; zð Þ 	
ð1

z

tme�tdt

ð3:2:21aÞ

is the incomplete G-function, with G mþ 1; zð Þ ¼ G mþ 1ð Þ�G mþ 1; zð Þ ([4], Section 8.35
and [5], Section 6.5, includingTables).Of particular interest in establishing the resultp*D ¼ 1

below, for sufficiently large input signals, we have

lim
a!1Q a;a«ð Þ ¼ 1; 0 � « < 1½ �; ð3:2:21bÞ

which is simply a statement that for a ! 1, the concentration of the integrand growsmore

rapidly to the larger values of l than does the lower limit b ¼ a«ð Þ. The reverse is the case
whena ! 0, which accounts forQ¼ 0 values in this limit. For the probability p*D of correct

16 Henceforth,we omit the designation jZ , refer to Section 1.7, for example, since it should be clear from the context

which sufficient statistic is being used for the GLR.
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detection, we have

p*D ¼ 1�b* ¼
ð1

KT

w1

�
Z H1j ÞdZ ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT�inc=Y*

s�inc

q	 


¼ e�Y
*
s�inc=2

X1

n¼0
Y*

s�inc=2
� �n 1

n!2
G nþ 1;KT�inc=2Y*

s�inc
� �

ð3:2:22Þ
or

¼ e�Y
*
s�inc=2

X1

n¼0

Y*
s�inc
2

	 
n
1

n!2
G nþ 1;�log a*

F

� �
: ð3:2:22aÞ

Note that

Q 0;bð Þ ¼ Q KT=Y*
s�inc

� �1=2� �
¼ exp �KT�inc=2Y*

s�inc
� � ¼ a*

F: ð3:2:22bÞ

The detection probabilities a*
F;b

*; p*D, etc. are “exact” for all levels of input signal as
long as the narrowband conditions (3.2.4a), (3.2.6a,b, 7) hold. As we shall see presently,

Y*
s�inc, (cf. Eqs. (3.2.5) and (3.2.22c), and subsequently through Chapter 3), like Y*

s�coh
(3.1.9a)17, is the relevant detection parameter, here designated by s*2

0�inc:

s*2

0�inc ¼ Y*
s�inc ¼ ~ak�1N aþ ~bk�1N b

� �.
2 ¼ ~ak�1N a ¼ ~bk�1N b; ð3:2:22cÞ

for those cases where an “exact” treatment for all signal levels (in Gauss noise) is possible.

Figure 3.6 shows a*
F vs. b

* withY*
s�incð¼ ŝ*2

s�incÞ as parameter. Note that asY*
s�inc becomes

larger, both a*
F and b

* become smaller, consistent with a*
F! 0 and p*D! 1 as Y*

s�inc!1
with this increasing signal input and consequent increasing output signal-to-noise ratios.

When considering threshold reception, however, we shall see that the detection parameter

ðs*2

0�incÞ for incoherent reception takes a different form. This is a consequence of the

canonical form of the weak signal development of the likelihood ratio (log L).

Finally, it is important to observe that although we can use (3.2.12a) to establish the

quantitative connection here between the original threshold Kinc and the new threshold

KT�inc for the new, statistically equivalent test statistic Z, (3.2.12), practically it is simpler to

useKT�inc itself. Its value can be readily found fromour choice of false alarm probabilitya*
F,

conditioned on theminimumprobability of detection p*D thatwe demand for the task at hand.

Again, this is possible because of the sufficiency and monotonicity of the new test statistic

Y*
x�inc, as explained in Section 3.2.1.1. The new threshold KT�inc then also guarantees the

17 See the comment following Eq. (3.2.5a) above.
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desired limiting behavior as the signal becomes very large or vanishes. However,we observe

that KT�inc ¼ 0 Y1þ «
s�inc

� �
; 0 < « < 1, for all 0 � Ys � 1. (This can be readily estab-

lished by inverting (3.2.12a).)

3.2.1.3 Neyman–Pearson and Ideal Observers Here, we use the previous results of

Section 1.8.1 where the thresholdK ( 6¼1 generally) is given by (3.2.12a), to describe first the
Neyman–Pearson or CFAR detector (prechosen a*

F > 0) explicitly. We have for correct

decisions

NP Detector : DecideH1 : SþN; if Y*
x�inc � KT�inc; or Decide H0 : N; if Y*

x�inc < KT�inc;

ð3:2:23Þ

where Z ¼Y*
x�inc is described by (3.2.12) above. The performance p*D ¼ 1�b*;a*

F

� �

[Eq. (3.2.19a) and (3.2.19b)], is given by (3.2.22b), with P*
D ¼ pp*D as before. Figure 3.4

also shows the procedure, whereKT�inc is determined from (3.2.19a) by a suitable choice of

false alarm probability. The thresholdKT�inc is related to the original threshold by (3.2.12a).
Note that b* vanishes as Y*

s�inc!1, as required, with a*
F > 0 and fixed (cf. 3.2-21b).

For the Ideal Observer, refer to (1.8.2), we can use the new thresholdKT ¼ 0 Y*ð1þ «Þ
s�inc

� �
;

0 < « < 1, andm (¼ p/q) can be different from unity, (i.e., the “unsymmetrical” channel).

In any case, the (minimum or) Bayes probability of error P*
e is qa

*
I þ pb*

I , where a
*
I and b

*
I

are jointly minimized, so that for these narrowband Bayesian incoherent systems in additive

normal noise, one has directly from (3.2.19a) and (3.2.19b),
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FIGURE 3.5 The pdf’s (3.2.18) of Z (3.2.12), the optimum detector structure incoherent detection.
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IO : P*
e�inc ¼ qe�KI�inc=2Y*

s�inc þ p 1�Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI�inc=Y*

s�inc

q	 
� �
; ð3:2:24aÞ

¼ qa*I þ p 1�Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 loga*

I

q	 
� �
¼ qa*

I þ pb*
I ð3:2:24bÞ

and comments following Eq. (3.2.22b) above. Thus, we decide

or
SþN : if Y*

x�inc � 1

N : if Y*
x�inc < 1

)

; ð3:2:25Þ

and in each casePe is given by (3.2.24). (See Sections 1.8.1, and 1.8.2 for the derivations and

discussions of the NP and IO classes of optimum binary (here On–Off) detectors.) In all

instances, the error probability P*
e becomes smaller as Ys�inc becomes larger. For Q in the

above, we may also use (3.2.22a). Again, we have, as expected from (3.2.21b), Pe! 0 as

Y*
s�inc!1, whilePe! pwhenY*

s�inc! 0. Figure 3.4 also illustrates the decision process,

however with KT�inc replaced by K*
I�inc.

3.2.1.4 Array Processing (Quadratic Arrays) Unlike the linear arrays of the optimum

coherent detector in the Gaussian regimes exemplified in Section 3.1.3, the space–time

optimum Gaussian incoherent narrowband detectors of Section 3.2.1 embody quadratic

array structures. This is shown in Fig. 3.7, along with the linear arrays of the coherent

cases above.
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FIGURE 3.6 Error probabilities for incoherent detection of narrowband deterministic signals of

known amplitude, a*
F ¼ a*

FNP
fixed, and given by (3.2.19a), b* ¼ b*

NP (3.2.19b) for the Neyman–

Pearson or CFAR Detectors. For the Ideal Observer, Pe is obtained from (3.2.24a) and (3.2.24b),

a* ¼ a*
I ; b

* ¼ b*
I .
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The latter employ a linear combination �Pmð Þm
� �

of suitably delayed sensor

outputs, while the former use a product of such linear combinations �Pmm0 ð Þmm0
� �

.

The linear character in the received data x of coherent reception dictates the linear array

structure. Correspondingly, it is the quadratic dependence of incoherent reception here

that ensures the press of quadratic array processing, however dynamically weighted

�Pmm0 ð Þmm0 �
P

nn0 ð Þnn0
� �

each sensor output may be.

To see this analytically, let us consider the optimum space–time processor Z ¼ Y*
x�inc

[(3.2.12) and (3.2.13)], first renormalizing the output noises cj;cj0of the m;m0ð Þ
sensors by the procedure described above18 in (3.1.18c). This entails multiplying the

various elements xjxj0Cjj0 of Yx�inc, (3.2.13), by gjj0kl, where

gjj0kl 	
ffiffiffiffiffiffiffiffiffiffi
cjcj0

p

c0M
�
ffiffiffiffiffiffiffiffiffiffi
ckcl

p
c0M

ð3:2:26Þ

andwhere, of course, ensemble averages have been replaced by time averages, in themanner

of (3.1.18c), which also defines c0M . The result is explicitly for (3.2.12) and (3.2.13) now

Y*
x�inc!Y*0

x�inc 	 ~̂xĈx̂ ¼
X

jj0
x̂j x̂j0Ĉjj0 ; ð3:2:27Þ

with x̂j ¼ Xj=
ffiffiffiffiffiffiffiffi
c0M

p
¼ xjĥj , and so on. The symmetric matrix Ĉ is represented in detail by

Ĉ ¼ ~̂
C ¼ Cjj0 ¼

X

ke

k�1N

� �
jk

â0k â0l þ b̂0k b̂0l

� �
k�1N

� �
lj0

" #

; ð3:2:27aÞ

and the renormalized signal components in (3.2.27) are now typically

â0k

b̂0k

)

	 A0k=
ffiffiffiffiffiffiffiffi
c0M

p

B0k=
ffiffiffiffiffiffiffiffi
c0M

p

)

	
A
ðk0Þ
0k00

=
ffiffiffiffiffiffiffiffi
c0M

p� �
cos v0tk00�fðk

0Þ
k00

h i

B
ðk0Þ
0k00

=
ffiffiffiffiffiffiffiffi
c0M

p� �
sin v0tk00�fðk

0Þ
k00

h i

9
>=

>;
; ð3:2:27bÞ

x = [xmn]
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FIGURE 3.7 Spatial (and temporal) processing for optimum narrowband incoherent detection of

deterministic signals in Gaussian noise: quadratic (product) arrays.

18 We introduce this alternative renormalization for (most) practical applications, usually because of the

noncomputability of noise power ensemble averages. However, renormalization itself is not necessary to

demonstrate the presence of the quadratic operations.
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with k! l for â0l ; b̂0l , refer to (3.2.27a) and (3.2.27b). (In the above, j � � � j0ð Þ are the usual
double indexes, that is, j ¼ mn; j0 ¼ m0n0, and similarly, k ¼ k0k00; l ¼ l0l00, where the first
index represents “space” m;m0; k0; l0ð Þ, that is, the sensor “number,” associated with sensor

location in space, while the second index n; n0; k00; l00ð Þ indicates the “time” at which the

received field at a particular point is sampled.) As before, refer to (3.1.18c), only those (m)

sensors producing an output (noise) cm > 0ð Þ are to be used in normalization. Also as

before, Ĥ
ðaÞ
; Ĥ

ðbÞ
obtained from kNĤ

ðaÞ ¼ â0 and kNĤ
ðbÞ ¼ b̂0 are discrete space–time

matched filters, refer to (3.2.13b) and (3.2.13c) above, consisting both slowly varying and

rapidly varying components. Finally, we observe from (3.2.8b) and (3.2.12) and more

directly from (3.2.29), as expected, that the test statistic Y*
x�inc is represented by the

autocorrelation of the received data with themselves, a characteristic of incoherent

reception. This is to be compared with the coherent case (Section 3.1.1), where the signal

and data appear as a cross-correlation (Section 3.1.3).

Example 3.1 In many applications, considerable simplification of processing, often

with small loss in performance, can be achieved by using effectively independent noise

samples, that is, kN ¼ djj0
� �

.19 Then the renormalized test statistic (3.2.27), Y*0
x�inc

reduces to

Y*0
x�inc6

X

jj0
x̂j x̂j0

A
ðmÞ
0n

A
ðm0Þ
0n0

c0M
Re exp iv0 tn�t0nð Þ�iv0 �Dtmm0=c0�iDf m;m0ð Þ

nn0

h i� �
( )

ð3:2:28Þ

with x̂j ¼ Xj=
ffiffiffiffiffiffiffiffi
c0M

p
and so on. Now for these quadratic arrays, the steered beam (using îOR

)

involves the difference of path delays along rm and rm0 , namely, Dtm�Dtm0 	 Dtmm0 , or in

more detail

Dtmm0 	 î0�îOR

� �
�rm=c0� î0�îOR

� �
�rm0=c0 ¼ î0�îOR

� �
� rm�rm0ð Þ=c0 	 D̂i0 �Drmm0=c0;

ð3:2:28aÞ
vide Fig. 3.3 and (3.1.19) above, on inserting the required path delaysDtm;Dtm0 ; in addition,
we use the abbreviations Df̂jj0 ¼ Df

m;m0ð Þ
n;n0 	 fðmÞn �fðm

0Þ
n0 ; tnn0 	 tn�tn0 .

Example 3.2 A still simpler and often useful result here arises when Df̂ ¼ 0 and

A
ðmÞ
0n
¼ A

ðm0Þ
0n0
¼ A0n , with cj ¼ c, all j for cw uniform signal and noise fields over the

receiving array. Then, (3.2.28) reduces directly to an expression that clearly exhibits

the product nature of this simplified test statistic, namely, the rather elegant result

Y*0
x�incjcw6

A2
0

c

XJ¼MN

mn

x̂mne
�iv0tne�iv0 î0�îORð Þ � rm=c0





2

; kN ¼ djj0
� �

; ð3:2:29Þ

for (truncated) uniform space–time cw fields. Equations (3.2.28) and (3.2.29) are examples

of adaptive beam forming since the components of the array elements depend on the

19 djj0 ¼ dmm0dnn0 : from physical consideration, since “space” is compared to “space,” and “time” to “time.”
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particular space–time receiveddata x̂.Moreover, the resulting beam formation is theproduct

of two array structure outputs � P
mð Þ

 2
� �

. Note that this test statistic is maximizedwhen

îOR
¼ î0, that is, when (underH1) each linear array output is itselfmaximized. Thus,we have

Y*0
x�inc

 cw
îOR
¼ î0

6
A2
0

c

XJ

mn

x̂mn

 !2

¼ A2
0

c

X

jj0
x̂j x̂j0 ; �̂xj ¼ 0: ð3:2:30Þ

This result is seen to be a discrete autocorrelation of the received data with themselves.

(Equations (3.2.29) and (3.2.30), in addition, must obey the simplifying condition

cited above at the beginning of this paragraph, where, in addition, the discrete matched

filters are now simply the vectors Ĥ
ðaÞ ¼ â0 ¼ A0=

ffiffiffi
c
pð Þcos v0tn�f0ð Þ½ � and Ĥ

ðbÞ ¼ b̂0 ¼
A0=

ffiffiffi
c
pð Þsin v0tn�f0ð Þ½ �.

Example 3.3 Similar observations apply for the key parameterY*
s�inc of the pdf values

W1 Z H0;H1j Þð governing the error probabilities of detection. Renormalizing the sensor

outputs according to (3.1.18c) et seq. from (3.2.5) to (3.2.7a), we can write explicitly,

showing the array structure:

Y*
s�inc ¼

1

2
~ak�1N aþ ~bk�1N b
� � ¼ 1

2

X

jj0
k�1N

� �
jj0
A
ðmÞ
0n

A
ðm0Þ
0n0

c0M
Re eiv0 tnn0�Dî0 � Drmm0=c0½ ��iDfjj0
n o

:

ð3:2:31Þ

Since kN ¼ ~kN, det kN > 0ð Þ, it is possible to find an orthogonal J � Jð Þ matrix Q,

Q~Q ¼ ~QQ ¼ I to diagonalize kN in terms of its eigenvalues20 and so express Y*
s�inc

Y*
s�inc ¼

1

2

X

j

u2j þ n2j

� �
lj6 1=2ð Þ

X

j

A
ðmÞ2
0n

c0M

þ 1

2

X0

jj0

A
ðmÞ
0n

A
ðm0Þ
0n0

c0M
Re eiv0F̂jj0
n o

9
>>>>>=

>>>>>;

; ð3:2:32Þ

where F̂jj0 	 Dtnn0�D̂i0 �Drmm0=c0�Dfjj0

� �
and where S0jj0 denotes a sum in which the

terms j ¼ j0ð Þ are omitted. The first terms of (3.2.7) are always positive here, since kN is

positive definite, and thus the eigenvalue l (or diagonal terms) of ~Q
�1
kNQ ¼ ljdjj0

� � ¼ L
are also positive. The second set of terms � S0jj0

� �
yields an oscillating component that

perforce, if negative, must always be smaller than the (positive) diagonal j ¼ j0ð Þ contribu-
tion in the right number of the second equation. In fact, because of the oscillating nature of

the off-diagonal terms � S0jj0
� �

, we expect them to be small and even negligible

20 Thus, let u; vð Þ be vectors, such thatQu ¼ a; Qv ¼ b; ) ~ak�1N a ¼ ~u~Q
�1
k�1N Qu, withQ ¼ ~Q

�1
an orthogonal

matrix such that ~Q
�1
k�1N Q ¼ l�1a and ) ~ak�1N a ¼Pju

2
j l
�1
j > 0ð Þ since all eigenvalues lj

� �
of k�1N are positive as

is ~ak�1N a, which is also positive definite, with Q ¼ ~Q, and ) ~Q
�1
kNQ ¼ ljdjj0

� �
. The same result applies for

~bk�1N b ¼Pjv
2
j l
�1
j � 0ð Þjj0
� �

. Here, u; vð Þ are the eigenvectors associated with a;bð Þ, with respect to the kernel

kN; ljdjj0
� �

is the (square) matrix of eigenvalues. For further discussion see Section 7.3.1 of Ref. [1] and Appendix

A1 of this book.
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vis-à-vis the diagonal term. When D̂i0 ¼ 0, that is, when the (quadratic) array is directed

toward the signal source, we see that

C*
s�inc6

1

2

X

mn

AðmÞ
2

on

.
c0M
 1

2
C*

s�inc max;j ð3:2:32aÞ

as expected.

Again, from (3.2.19)–(3.2.22), it is also evident that Y*
s�inc plays the rôle of detection

parameter s*2

0�inc ¼ Y*
s�inc

� �
in this now incoherent detection situation, similar to the

coherent case of Section 3.1 above. To emphasize this point, we rewrite (3.2.19a) as

a*
F ¼ e�KT=2s

*2

0�inc ; p*D ¼ Q s*
0�inc; KT=s

*2

0�inc
h i1=2	 


¼ 1�b*: ð3:2:33Þ

Accordingly, the larger s*
0�inc, the smaller the false alarm probability a*

F and the larger the

(conditional) probability of detection, as expected. From (3.2.31), it also follows as expected

thatY*
s�inc and) s*2

0�inc aremaximized for anyfixedsizeof space–time sample J¼MNwhen

in the process of beam formation one sets îOR
¼ î0: the receiving beam is pointed in the

direction of the signal source.

3.2.2 Incoherent Detection II. Deterministic Narrowband Signals with Slow

Rayleigh Fading21

Here, we introduce a dimensionless amplitude factor â0 in Y*
x�inc (3.2.5) and in Y*

x�inc
(3.2.12) and (3.2.13), so thatY*

s�inc! â20Y
*
s�inc; Y

*
x�inc! â20Y

*
x�inc with the result that the

likelihood ratio (3.2.1) can be written explicitly

L xð Þ ¼ m exp � 1

2
â20Y

*
s�incþ â0Y*

x�inc

	 
� �

«;â0

; m 	 p=q: ð3:2:34Þ

Again,« is uniformlydistributedover a cycle of the high-frequency “carrier” f0 ¼ v0=2pð Þ.22
The scale or amplitude factor â0, whose value does not change during the reception interval

(i.e., “slow fading”), is assumed to obey a Rayleigh pdf, namely,

w1 â0ð Þ ¼ â0e
�â20=2s2

R

s2
R

; â0 � 0; with s2
R ¼ â20

� �� â0h i2 > 0: ð3:2:35Þ

Since physically fading may usually be regarded as a sum of a large number of independent

unresolvable multipath components of propagation in the medium in question, by a Central

Limit Theorem (CLT) argument its envelope statistics have the Rayleigh form (3.2.35).

Then, using the result expU xð Þ*, (3.2.10), which is the result of the average over the epochs

21 See Ref. [6] for an extensive treatment of fading; see also the earlier work [7].
22 See the remarks on p. 154 and Eq. (3.2.5a) et seq.
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{«}, for example, h i«, we next obtain the average h iâ0 over the amplitude scale factor â0:

L xð ÞR ¼ L x; â0ð Þh iâ0 ¼
m

s2
R

ð1

0

e�
1
2
Y*

s�inc þs�2Rð Þy2y I0 y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

x�inc

q	 

dy ð3:2:36aÞ

¼ m

1þs2
RY

*
s�inc

es
2
RY

*
x�inc=2 1þs2

RY
*
s�incð Þ ð3:2:36bÞ

with the help of Hankel’s first exponential integral ((A1.49), [1])

ð1

0

Jn azð Þzm�1e�b2z2dz ¼
G
	
nþm

2




2bmG nþ 1ð Þ
	

a

2b


n

1F1

nþm

2
; nþ 1;�a2=4b2

0

@

1

A;

Re mþ nð Þ > 0; arg bj j < p=4:

ð3:2:36cÞ

Thus, the detector structure now becomes explicitly the simple relation

U xð Þ*R 	 ZR ¼ logL xð ÞR ¼ BRþCRY*
x�inc; ð3:2:37Þ

where

BR 	 log m�log 1þs2
RY

*
s�inc

� � ¼ log m= 1þs2
RY

*
s�inc

� �� �
; CR 	 s2

R=2 1þs2
RY

*
s�inc

� �
:

ð3:2:38Þ

Since the original decision process uses the threshold logK, refer to Eq. (3.2.11), we see

for U xð Þ*R that the decision process (for correct decisions) here is

or
DecideH1: SþN if: U xð Þ*R � logKinc; or Y*

x�inc � logKinc�BRð Þ=CR 	 KR

DecideH0: N if: U xð Þ*R < logKinc; or Y*
x�inc < logKinc�BRð Þ=CR 	 KR

)

;

ð3:2:39Þ

where the new threshold KR is given by

KR ¼ 2l2R
s2
R

log
Kinc

m
l2R

	 


 > 0; l2R 	 1þs2
RY

*
s�inc: ð3:2:39aÞ

This is to be contrasted with KT�inc ¼ I
ð�1Þ
0 ðKinc=mÞexp Y*

s�inc=2
� �� �n o2

> 0ð Þ,
Eq. (3.2.12a), when there is no Rayleigh fading. In any case, as mentioned earlier (refer

to Section 3.2.1.2 et seq.), it is much easier to obtain the new thresholdKR directly from our

choice of false alarm probability, a*
FjR, (3.2.40) ff.

In addition, the test statistic Y*
x�inc remains unchanged (cf. (3.2.13)) from the original

narrowband optimal incoherent cases of Section 3.2.1. This also means that Y*
x�inc has the

same representation in terms of the matched filters HðaÞ; HðbÞ, namely, Eq. (3.2.12b). The
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results of this section accordingly apply directly here, provided that the old thresholdKT�inc
is replaced byKR above (3.2.39a). Thus, the pdf valuesw1 ZRjH0;H1ð Þ are given by (3.2.18)
with Z replaced by ZR here, with the cf’s F1 ijjZ! ZRð ÞH0;H1

(3.2.18a) and (3.2.18b). The

error probabilities a*F;b
*

� �
and the probability of correct detection p*D are also given by

(3.2.19a) (3.2.19b), and (3.2.22) with (3.2.39a) now, namely23 KT�inc!KR.

a*
FjR¼e�KR=2Y*

s�inc ; b*
R¼1�Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KR=Y*

s�inc

q	 

¼1�Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2log a*

FjRð Þ
q	 


;

ð3:2:40Þ

and

p*DjR¼Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KR=Y*

s�inc

q	 

; KR=Ys�inc¼�2log a*

FjR
� �

; ð3:2:41Þ

Furthermore, Figure 3.6 applies here also for the detection parameter, and Y*
s�inc¼s*2

0�inc
as before. The discussion of array processing in Section 3.2.2 carries over in a similar way

and is directly applicable to these “slow” Rayleigh amplitude cases, including Fig. 3.7 and

Eqs. (3.2.23)–(3.2.32a).

The decision process (3.2.39) above also represents a Neyman–Pearson test of the

hypotheses. For the Ideal Observer, Eq. (3.2.24) now applies, with KR�I=Y*
s�inc given by

�2 log a*
R�I:

IO : P*
e�R ¼ qe�KR�I=2Y*

s�inc þ p 1�Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

s�inc

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KR�I=Y*

s�inc

q	 
� �
ð3:2:42aÞ

¼ qa*
R�I þ p 1�Q

ffiffiffiffiffiffiffiffiffiffiffiffi
c*
s�inc

q
;�2 log a*

R�I

	 
	 

ð3:2:42bÞ

(Equation (3.2.39a) ensures thatP*
e�R is properly bounded, that is, 0 � P*

e � 1.) Again, we

have for the decision process from (3.2.39):

DecideH1: SþN; if Y*
x�inc � KRjKinc¼1 ¼ �BR=CRð Þ

DecideH0: N; if Y*
x�inc < KRjKinc¼1

( )

: ð3:2:43Þ

Figures 3.6 and 3.7 also illustrate this decision process, with the threshold now given by

KR�I jKinc
¼ 1. We observe once more as Y*

s�inc!1, with the help of (3.2.21b) that

P*
e�R! 0. Thus, when indefinitely large output signals occur, perfect detection is

theoretically possible: there is no error on the average, and the signal is truly received.

At the other extreme of Y*
s�inc! 0, we have Pe�R ¼ q, also as before, refer to Section

3.2.1.3, which ! 0, refer to Eqs. (3.2.20) and (3.2.20a). (As before, we may use

(3.2.19b) and (3.2.20a) in (3.2.40) and (3.2.42), appropriately modified for slow

Rayleigh fading.)

23 Unfortunately, the results for H1 in case (2) of Ref. [8], pp. 41–45, are incorrect.
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3.2.3 Incoherent Detection III: Narrowband Equivalent Envelope

Inputs—Representations

In the analyses of Sections (3.2.1) and (3.2.1.2), the signal and noise field components are

expressed in terms of their narrowband, high-frequency elements, namely, a, b,

cosFj; sinFj0 , vide (3.2.2) and (3.2.3). In particular, this is also the case for the detection

parameter Y*
s�inc, (3.2.5) and (3.2.7b), and the test statistic Y*

x�inc (3.2.8b) and (3.2.12).

Since it is also sometimes required to employ explicitly the slowly varying or envelope

components of these narrowband fields, we shall also derive them here and include them

alternatively inY*
s�inc andY

*
x�inc. Equation (3.2.31) suggests that we canwrite in the form

24

(with Fj ¼ F̂j�fj as before):

Y*
s�inc ¼

~ak�1N aþ ~bk�1N b

2
¼ gcos FCðcÞs cosFþfsin FCðsÞs sinF
n o

inc
or

¼
X

jj0
CðcÞs
� �

jj0
cosFj cosFj0 þ CðsÞs

� �

jj0
sinFjsinFj0

� �

inc

;

ð3:2:44Þ

whereCðcÞs ; CðsÞc are the envelope or slowly varying components of the “carrier” or rapidly

varying terms.Similarly,Eqs. (3.2.27a) and (3.2.27b) also suggest that the test statistic canbe

represented by24

Y*
x�inc ¼ ~xk�1N a

� �2þ ~xk�1N b
� �2 ¼ fcos FCðcÞx cosFþfsin FCðsÞx sinF

� �

inc

¼
X

jj0
CðcÞx
� �

jj0
cosFj cosFj0 þ CðsÞx

� �

jj0
sinFjsinFj0

� �

inc

:

ð3:2:45Þ

These coefficients of cosFj cosFj0 , and so onwill be given explicitly in Sections 3.2.3.1 and

3.2.3.3. It is important to remember that the arguments of all the components, both slowly

and rapidly varying, contain the appropriate time delays Dtj;Dtj , and so on. However, the

slowly varying elements are usually independent of the spatial delays, unless the receiving

array aperture is a sizable fraction of the (average) wavelength.

3.2.3.1 Evaluation of C
ðcÞ
s�inc; C

ðsÞ
s�inc We proceed as follows, considering first a þ b

(3.2.2b), namely,

aþ b ¼ Aj cosFj þAj sinFj

� �
; with Aj ¼ A

ðmÞ
0n

=cj; ð3:2:46Þ

24 Here we have replaced F̂j by F̂j�fj ¼ Fj of (3.2.2) and so on, in kN, where now Fj ¼ v0Dtj�f ¼ v0Dtj,

including the slowly varying phase component fj Dtj
� �

in the argument Fj . When a steering vector, kOR
, is

included, Dtj ¼ tn� k0�kOR
ð Þ � rm=v0�fj Dtj

� �
=v0. Practically, fj=v0 can be introduced as an additional time

delay (or equivalently a phase shift) in the output path from themth sensor to the chosen reference point OR in the

receiving array, refer to Fig. 3.3. By this device we are able to simplify the analysis somewhat, where now

Fj ¼ v0Dtj�fj in place of F̂j ¼ v0Dtj .
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since ~aþ ~b
� �

k�1N aþ bð Þ6~ak�1N aþ ~bk�1N b ¼ 2Y*
s�inc under the narrowband approximation

(3.2.3a). Next, we introduce a new vector:

c ¼ k�1N aþ bð Þ ¼ caþ cb; with ca ¼ k�1N a; cb ¼ k�1N b ð3:2:47aÞ

and write

c ¼ ccjcosFj þ csjsinFj

� �
; ) ca ¼ ccjcosFj

� �
; and cb ¼ csjsinFj

� � ð3:2:47bÞ

) aþ b ¼ kNc ¼ kN ccjcosFj þ csjsinFj

� � ¼ AjcosFj þAjsinFj

� �
; ð3:2:47cÞ

where ccj and csj are slowly varying vis-à-vis cosFj ; sinFj

� �
in the usual way. Using

(2.6.33a) and (2.6.33b) for kN, we can write (3.2.47c) in more detail as

Aj cosFjþ sinFj

� �¼
X

j0
r0ð Þjj0cos Fj0�Fj

� �þ l0ð Þjj0sin Fj0�Fj

� �n o
ccj0cosFj0 þcsj0sinFj0
� �

:

ð3:2:48Þ

Expanding the right-hand side of (3.2.48), invoking the narrowband conditions

cos2Fj0 ¼ sin2Fj061=2, sinFj0cosFj060, and comparing coefficient of cosFj ; sinFj

give directly the slowly varying relations

2A¼ r0ccþl0cs : 2A¼ r0cs�l0cc; A¼ A0j=
ffiffiffi
c

ph i
¼ Aj

� � 6¼ A0j

� �
: ð3:2:49Þ

Solving for cc and cs yields the desired results25

cc ¼ 2 Iþl0 r0�l0ð Þ�1 r0þlð Þ
h i�1

r�10 A; cs ¼ 2 I�r�10 l0 r0þl0ð Þ�1 r0þl0ð Þ
h i�1

r�10 A:

ð3:2:50Þ

With the help of (3.2.47b), with ca and cb, and with cc;cs given by (3.2.50), we obtain the

slowly varying components of (3.2.44) on applying the narrowband conditions to ~aca=2 and
~bcb=2, namely:

X

j0
YðcÞs�inc
� �

jj0
¼ 1

2
~acað Þj6

1

4
Ajccj;

X

j0
YðsÞs�inc
� �

jj0
¼ 1

2
~bcs
� �

j
6

1

4
Ajcsj : ð3:2:51Þ

25 This result is achieved by equating the two right members of (3.2.49), namely, r0cc þ l0cs ¼ r0cs�l0cc, with
the consequence that cc ¼ r0 þ l0ð Þ�1 r0�l0ð Þcs, and so on in the second relation followed by solving for cs.

Different, equivalent forms are obtained, for example, by starting with the first equation or the second relation, in

(3.2.49).

OPTIMUMDETECTION II: SELECTEDGAUSSIANPROTOTYPES—INCOHERENTRECEPTION 173



From (3.2.51) and (3.2.44) above, we have finally the first of the desired general results in

terms of the slowly varying components Aj; ccj; and csj:

Y*
s�incjnb ¼

1

4

X

jj0
Ajccj cosFj cosFj0 þAjcsj sinFj sinFj0
� �

¼ 1

2
~ak�1N aþ ~bk�1N b
� �¼

X

jj0
YðcÞs�jj0 cosFj cosFj0 þYðsÞjj0 sinFj sinFj0
� �

6
1

2
YðcÞ

*

s�incþYðsÞ
*

s�inc
� �

:

ð3:2:52Þ

3.2.3.2 Spectral Symmetry In the important andusual cases of spectral symmetry,where

l0 ¼ 0 (refer to Ref. [1], and Section 7.5.3), we see from (3.2.49) that

cc ¼ 2r�10 A ¼ cs l0 ¼ 0Þ;ð ð3:2:53Þ

and consequently (3.2.52) simplifies to

l0 ¼ 0 : Y*
s�incjnb ¼

1

2
Ar�10 A ¼ 1

2

X

jj0
AjAj0 r0ð Þ�1jj0 ¼

X

jj0

A
ðmÞ
0n

A
ðmÞ
0n0

2cm;n

r0ð Þjj0 ; ð3:2:54Þ

which is the “slowly varying” equivalent of (3.2.31), where again A0j ¼ A
ðmÞ
0n

Dtj
� �

, and so

on. Note that in the special case of independent noise field sampling, that is, r0 ¼ djj0
� � ¼

dmm0dnn0½ �, Eq. (3.2.54) reduces further to

r0 ¼ djj0
� �

: Y*
s�inc ¼

1

2

X
j
A2
j ¼

1

2

X
j
A
ðmÞ
0n

Dtj
� �2

2cj
; Dtj6tn� k0�kOR

ð Þ � rm=v0;

ð3:2:55Þ

which is precisely Eq. (3.2.32a) in the original narrowband or “rapidly varying” cases in

Section 3.2.1. (Generally, fj=v0 is negligible vis-à-vis the rest of Dtj .)

3.2.3.3 Evaluation of the Test Statistics C*
x�inc, C

ðcÞ
x�inc; C

ðsÞ
x�inc Determining the

slowly varying components of Y*
x�inc is a somewhat more involved process than for

Y*
s�inc in Section 3.2.3.1. We still proceed as in Section 3.2.3.1, starting with ~xk�1N a

� �2

and ~xk�1N b
� �2

and again making the appropriate narrowband reductions of the various

trigonometric terms, which remove the rapidly varying contributions as before. The result

is found to be

YðcÞx�inc
� �

jj0
6

1

4
xcjxcj0ccjccj0
� �

; YðsÞx�inc
� �

jj0
6

1

4
xsjxsj0csjcsj0
� �

; ð3:2:56Þ

whichwhen inserted into (3.2.45)yields thedesired “slowlyvarying” forms forY*
x�inc, along

with the usual rapidly-varying components � cos Fj0�Fj

� �� �
. We proceed with the

reduction:
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Y*
x�inc 6

1

8

X

jj0
~xcccð Þj ~xcccð Þj0 þ ~xscsð Þj ~xscsð Þj0

n o

inc
cos Fj0�Fj

� �

6
1

8

X

j

xcccð Þ2j þ xscsð Þ2j
h i

¼ 1

2
YðcÞ

*

x�incþYðsÞ
*

x�inc
� �

; YðcÞ;ðsÞ
*

x�inc ¼
X

jj0
CðcÞ;ðsÞx

� �

jj0
:

ð3:2:57Þ

The general vectors cc; cs are given as before by (3.2.50).

For the symmetric cases l0 ¼ 0ð Þ, (3.2.53) applies. Then, (3.2.57) reduces to the useful
result for most applications:

l0 ¼ 0ð Þ : Y*
x�inc ¼

1

2

X

jj0
~xcr
�1
0 A

� �2
jj0 þ ~xsr

�1
0 A

� �2
jj0

n o

inc
cos Fj0�Fj

� �
6

1

2

X

j

~xcjAj

� �2þ ~xsjAj

� �2h i

¼ 1

2
YðcÞ

*

x�incþYðcÞ
*

s�inc
� �

ð3:2:58Þ

which is just the equivalent form of (3.2.27) when kN ¼ ~kN. When the noise samples are

statistically independent (which for the Gaussian fields also implies strict stationarity and

homogeneity), then r0 ¼ ½djj0 � and (3.2.58) reduces to26

Y*
x�inc ¼

1

2

X

jj0
~xcA~Axc
� �

jj0 þ ~xsA~Axs
� �

jj0

n o

inc
cos Fj0�Fj

� �
6

1

2

X

j

A2
j x2cjþx2sj

� �
:

ð3:2:58aÞ

Thus,

xjxj0AjAj0 ¼ 1

2
xcjxcj0 þxsjxsj0
� �

AjAj0 ð3:2:58bÞ

in terms of the narrowband received data xj;j0 . The results (3.2.57) and (3.2.58) are again

maximized when the receiving array is directed toward the signal source, that is, when

Fj0�Fj ¼v0 Dtnn0� k0�kORÞ �ð½ rm0�rmð Þ� ¼v0Dtnn0�Dfjj0kOR ¼ k0; and Dfjj0 	fj0�
fj6fj0 Dt

0
j

� ��fj Dt0j
� �¼fðm

0Þ tn0ð Þ�fðmÞ tnð Þ, refer to Eq. (3.2.28). The amplitude factors

Aj;Aj0 likewise reduce to A
ðmÞ
0 tn�fj=v0

� �
6A

ðmÞ
0 tnð Þ, since fj=v0

  < < tn, and so on for

these slowly varying components. Similar remarks apply to xcj; xsj , namely, xcj Dt0j
� �

6
xcj Djt
� �¼ xcj tnð Þ (see footnote 24).

26 Note that the diagonal j0 ¼ jð Þ terms, refer to Eq. (3.2.58a), are
P

j x2cj þ x2sj

� �
A2
j =2, where x2cj þ x2sj

� �
=2 ¼ x2j ,

this last from the diagonal terms of x~x. If Aj ¼ A0=
ffiffiffi
c
p

, a constant all j, then

diagYx�inc ¼ A2
0

c

P
x2cj þ x2sj

� �
=2 ¼ A2

0

c

P
jx

2
j ; (i)

) diagYx�inch ix ¼ A2
0

c

P
jx

2
j ¼ A2

0

c J; since x2j ¼ 1 ¼ x2cj þ x2sj

� �
=2; x2cj ¼ x2sj ¼ 1; (ii)

as required for these normalized noise components.
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3.2.3.4 Performance Probabilities Figure 3.8 shows how the low-frequency

components may be used directly in determining the performance probabilities. From

(3.2.57), we have the following: Similarly, Y*
s�inc6ð1=2Þ YðcÞ

*

s�incþYðsÞ
*

s�inc
� �

[(3.2.44) and

(3.2.52). One simply substitutes the right-hand expression for Y*
s�inc, and for

Yx�inc6 YðcÞ
*

x�incþYðsÞ
*

x�inc
� �

=2.

3.3 OPTIMAL DETECTION III: SLOWLY FLUCTUATING NOISE

BACKGROUNDS

In Section 3.2, we presented an example of the (Bayes) optimum detection of slowly fading

narrowband signals, namely, slowRayleigh fading, refer to Eq. (3.2.35) in Gaussian noise, a

typical situation in practice.27 Here, we consider a different class of fading phenomena, in

which it is the accompanying (additive) noise background that exhibits slow fading over the

observation interval (0,T), that is, negligible fading during any one interval (0,T), but fading

from interval to interval. The fading mechanism in this instance is usually a form of

unresolvable multipath, from a variety of interfering sources that slowly and irregularly

reinforce or cancel each other or from changes in the geometry of scattering surfaces vis-à-

vis the receiver from interval to interval, which can be common events in radar and sonar

applications.

3.3.1 Coherent Detection

For such fluctuating Gaussian (and often non-Gaussian) noise fields, an excellent statistical

description is given by the gamma (G-) pdf of the fluctuating noise intensity c:

w1 cjbð ÞG ¼
c=að Þb

aG bþ 1ð Þ e
�c=a;b > �1; ¼ 0; c < 0; with a ¼ �c= bþ 1ð Þ: ð3:3:1Þ

For the present, we also assume that the field intensityc is locally wide sense homogeneous

and stationary, that is, cj ¼ cmn ¼ c over any chosen finite interval (0, T). A detailed

Low-pass 
filter

Low-pass 
filter

)( 2

)( 2

jj′
Σ x

xcj 
ccj

)(
j

Σ cos Φj = Ψx−inc

inc

(c)

xsj
csj

j
Σ sinΦ j = Ψx−  

(s )

cosΦ j

2

sin Φj

2

xcj
ccj

)( )(jj′Σ
8

xsj
csj

)( xsj′
csj′

xcj′
ccj′

)(jj′Σ
8

Ψx −inc
(c) 2

Ψx −inc
(s) 2

x−inc
(c) + x−inc

(s)
)(

2
jj′
Σ jj′

KT <

KT >

H1 : N + S

H0 : N

Decide

or
ΨΨ

FIGURE 3.8 The slowly varying equivalent of (3.2.12), where Cx�inc6ðCðcÞ
*

x�incC
ðsÞ*
x�incÞ=2

(see Figs. 3.4 and 3.7).

27 For further development of fading analysis and results, see the references, especially [6], [7].
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discussion, and justification on physical grounds, of theG pdf (3.3.1) can be given. It can also

be shown that b þ 1 is usually numerically small Ref. [9] and Appendix [<O(10)] in many

applications. However, at the other extreme of many essentially independent fluctuation

cells in (0, T), that is, b!1, one has

lim
b!1

w1 cjbð ÞG ¼ lim
b!1

e� c��cð Þ2=2�c2
bþ 1ð Þ

2p�c2
bþ 1ð Þ

h i1=2

2

64

3

75

b>>1

¼ d c��cð Þ: ð3:3:1aÞ

This in effect replaces a possible representative value c of noise intensity in (0, T) by its

ensemble average �c. [The result when applied to Gauss or Rayleigh pdf is just the original
Gauss or Rayleigh pdf, now with c ¼ �cð Þ.]

Here, as in Section 3.2.2, our effort is directed to obtaining the pdf values of the (log-)

likelihood ratio logL(x) underH0 andH1, rather than limiting our attention to the pdf values

of the noise and signal and noise fields themselves individually, as is the aim in Chapter 10.

The analytical procedures are quite different: the present approach not only requires (1) a

derivation of different pdf values subject to (3.3.1) but also (2) determining the monotonic

nature ofH1 andH0 pdf values as respective test statistics, for allb>�1. As a result of (2), it
turns out that it is greatly possible to simplify the final form for a still statistically sufficient

test statistic and to use the earlier results of Sections 3.1.1 and 3.2.2 to obtain the needed

performance probabilities a*
FjG and p*DjG ¼ 1�b*

G. This, in turn, enables us to

obtain optimum test statistics and performance for the important class of K-noise distribu-

tions [9–12], which commonly occur in radar and sonar applications.

Accordingly, we begin first with (fully) coherent reception, followed by the familiar

narrowband incoherent case.

3.3.1.1 The Detection Algorithm Since the background noise intensity c is fluctuating

slowly from interval to interval, we must “denormalize” Eq. (3.1.1) to exhibit c explicitly.

The result is

wJ X�Sð Þ ¼ exp �Q X�Sð Þ=2c½ �
2pcð ÞJ=2 det kNð Þ1=2

; withQ X�Sð Þ 	 Q1 ¼ ~X�~S� �
k�1N X�Sð Þ > 0;

ð3:3:2aÞ

and28

)wJ Xð Þ ¼ exp �Q Xð Þ=2c½ �
2pcð ÞJ=2 det kNð Þ1=2

; Q Xð Þ 	 Q0 ¼ ~Xk�1N X > 0; ð3:3:2bÞ

so that the test statistic is explicitly

logL Xð Þcoh ¼ log mþ log 2pc det kNð Þ1=J
h i�J=2

e�Q1=2c

� �

c

�log 2pc det kNð Þ1=J
h i�J=2

e�Q0=2c

� �

c

ð3:3:3Þ

28 The quantityQ used throughout Section 3.3.5 is not to be confused with the Q-function Q(a,b), (3.2.20) et seq.
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where the average h ic is to be carried out using (3.3.1).29 With the help of the relation

(Ref. [4], 4th ed., pp. 340–349)

I1 	
ð1

0

yae�y�B=ydy ¼ 2B aþ 1ð Þ=2K aþ 1j j 2
ffiffiffi
B
p� �

¼ 2�a 2
ffiffiffi
B
p� �aþ 1

K aþ 1j j 2
ffiffiffi
B
p� �

ð3:3:4Þ

where K aþ 1j j 2
ffiffiffi
B
p� �

; B > 0, is a modified Bessel function of the second kind,30 order

(a þ 1), now applied to (3.3.3). The result is

logLcoh ¼ log mF1 X; Sð Þ=F0 X; 0ð Þf g; ð3:3:5Þ

where specifically

F1 X; Sð Þ ¼ CJ=2Z
b�J=2þ 1
1 K b�J=2þ 1j j Z1ð Þ; Z1 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 bþ 1ð ÞQ1=�c

q
; b > �1 ð3:3:5aÞ

F0 X; 0ð Þ ¼ CJ=2Z
b�J=2þ 1
0 K b�J=2þ 1j j Z0ð Þ; Z0 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 bþ 1ð ÞQ0=�c

p

CJ=2 ¼ bþ 1

4p�c

0

@

1

A

J=2

2bG bþ 1ð Þ det kNð Þ1=2
n o�1

9
>>>=

>>>;

: ð3:3:5bÞ

We note again that since Q0 and Q1 are positive definite (Z0; Z1 > 0), F1; F0 are real.

Moreover, we also realize that F(X, 0) and F(X, S), (3.3.5a) and (3.3.5b), are the

(J-dimensional) amplitude pdf values, (3.3.2a) and (3.3.2b), of the well-known K-

distribution of importance in radar and sonar [9–12]. Accordingly, the decision process is

DecideH1: SþN if:

DecideH0: N if:

)

logL coh ¼ log mZg
1K gj j Z1ð Þ=Zg

0K gj j Z0ð Þ
� � �

<

)

log KT�coh;

ð3:3:6Þ

whereg ¼ b�J=2þ 1; b > �1, is real. A further condition ong is that J> 2 (b þ 1), that is

g< 0, which is needed to ensure that both numerator and denominator of logLcoh are

monotonic in their arguments.

To reduce (3.3.6) to a more manageable form, we employ the monotonic nature31 of

Q0; Q1, and so of Q0�Q1 in the received data X and use once again (Section 3.2.1 and

Eqs. (3.2.10) and (3.2.12) et seq.) the fact that Q0 and Q1 are sufficient statistics. The

monotonic character ofQ0 andQ1 maybe established as follows: First,we observe thatwhen

�g ¼ nþ 1=2 > 0ð Þ, refer to (12), p. 80 of Ref. [13],

29 Here, as in most of the preceding examples, it is assumed that the signal, if present, is a priori known at the

receiver.
30 See Section 3.61 of Ref. [13] Eqs. (5) and (6) in conjunction with (8), p. 78 therein.
31 Q0;Q1 are eachmonotonic inX, being symmetric positive definite forms. The differenceQ0�Q1 here is likewise

monotonic inX, forwhich the n. + s. condition is seen to be
P

ixi silið Þ > 0 or < 0ð Þ, where li > 0 sincek�1b is real

symmetric and the quadratic forms Q0;Q1 are positive definite and si can be specified positive a priori.
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Z� nþ 1=2ð ÞKnþ 1=2 Zð Þ ¼ Z�ne�Z
ffiffiffi
p
2

r Xn

l¼0

nþ lð Þ!
n�lð Þ!l! 2Zð Þ�l ; Z > 0 ð3:3:6aÞ

is monotonically decreasing, since d=dZð ÞPlð Þl < 0 for all Z � 0. Moreover, Kjgj is a
continuous exponentially decreasing function for all gj j, with magnitudes increasing with

the order jgj. The simple candidates here are suggested by the structure itself of Z0 and Z1, in

Kjgj. Thus, the numerator and denominator of (3.3.6) are each monotonically decreasing

functions of Z0; Z1 as they increase. This suggests that the simplest candidate formonotonic

substitution of the original likelihood ratio (3.3.5) is given by Z0; Z1 directly. Accordingly,
our choice of test statistic is the equivalent sufficient statistic32

logL0coh ¼ Z2
0�Z2

1 ¼
4 bþ 1ð Þ

�c
~Xk�1N S� 1

2
~Sk�1N S

	 

; ð3:3:6bÞ

refer to Eqs. (3.3.2a) and (3.3.2b), which is clearly monotonic in X, ~Sk�1N S being

prespecified.33 The optimal decision process (3.3.6) becomes the still simpler equivalent,

where L0coh is replaced by L
*
T�coh, that is, the common factor 4 bþ 1ð Þ=�c on the right hand

side of (3.3.6b) is eliminated, logL*
T�coh ¼ 4 bþ 1ð Þ=�c½ ��1. Thus, this logL0coh decision

process is now represented by

Decide :
H1

or

H0

8
<

:

9
=

;
: Z*

coh 	 logL*
T�coh

�
<

� �
logK*

T�coh; or �Y
*

xs�coh
�
<

� �
log

K*
T�coh
m

	 

þ 1

2
�Y*

s�coh;

ð3:3:7aÞ

refer to Eq. (3.1.5b), where in detail we define

�Y*

xs�coh 	 ~Xk�1N S=�c ¼ ~xk�1N a0s
� �

�c; �Y*

s�coh 	 ~Sk�1N S=�c ¼ a�0 sk
�1
N a0s

� �
�c 	 s2;

0

*

�coh:

ð3:3:7bÞ

It is relevant to note once more that the equivalent threshold K*
T�coh in (3.3.7b) depends on

�Y*

s�coh, which is also the detection parameter s2;
0

*

�coh, refer to Eq. (3.1.9a). In addition,

K*
T�coh also depends on �Y*

s�coh, but logarithmically here, so that (3.3.7a) is obeyed and

�Y*

s�coh=2 is then the dominant term as �Y*

s�coh!1.

Finally, as expected, �Y*

xs�coh represents the output of a (Wiener–Kolmogoroff)matched

filter refer to Section 3.4.4 ff., for

�Yxs�coh ¼ ~x k�1N S=�c
� � ¼ ~xk�1N s

� �
c
¼ ~xWð Þc ð3:3:7cÞ

where Hð Þ�c 	 Wð Þ�c 	 k�1N S=�c
1=2

and, therefore, kN Wð Þ�c ¼ S=�c
1=2

in the observation

space (and zero elsewhere).

32 Q0;Q1 are each monotonic inX, being symmetric positive definite forms. The difference of their squares here is

likewise monotonic in X, provided
P

ixi silið Þ> 0, refer to footnote 31.
33 Alternatively, k�1N S � k�1s ¼W, whereW is aWiener-Kolmogoroff filter (i.e. a Bayes matched filter (Type 1),

cf. Section 3.4.4 ff., which maximizes S=Nð Þ2out, incidentally exemplifying the monotonicity of (3.3.6b) in X.
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3.3.1.2 Coherent Detector Performance We see that for (3.3.7c) we may appropriately

modify our previous results (3.1.8)–(3.1.11). Thus, the pdf values of �Y*

s�coh are givenhere by
(3.1.9) where s*2

0�coh is replaced by �s*2

0�coh, (3.3.7b). The desired performance probabilities

follow directly from (3.1.10) and (3.1.11) with the obviousmodifications engendered by the

comparisons of K*
T�coh, (3.3.7a) and (3.1.5b). The results are as follows:

a*
F�coh

b*
F�coh

)

¼ 1

2
1�*H

ffiffiffiffi
�s
p 2*

0�coh
2
ffiffiffi
2
p � log K*

T�coh=m
� �

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

�s2*
0�coh

p

" #( )

ð3:3:8aÞ

p*D�coh ¼ 1�b*
coh ¼ 1

2
1þ*H

ffiffiffiffi
�s
p 2*

0�coh
2
ffiffiffi
2
p � log K*

T�coh=m
� �

ffiffiffi
2
p

�s2;*
0�coh

� �1=2

2

64

3

75

8
><

>:

9
>=

>;

¼ 1

2
1þ*H

ffiffiffiffi
�s
p 2*

0�cohffiffiffi
2
p �*H �1 1�2a*

F�coh
� �

2

4

3

5

8
<

:

9
=

;
;

ð3:3:8bÞ

with

log K*
T�coh ¼ log m�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�s*2
0�coh

q
=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�s*2
0�coh

q ffiffiffi
2
p *H �1 1�2a*

F�coh
� �

: ð3:3:8cÞ

The “ROC” diagrams of Figure 3.2 again apply nowwithK=m replaced therein byK*
T�coh=m

and a0F
1=2
s

ffiffiffi
2
p

by �F
*

s�coh. Similarly, the results of Section 3.1.3, regarding the array

processing embodied in �s*2

0�coh apply as well, as do the formulations in Section 3.1.2.1

for the Neyman–Pearson and Ideal Observers.

3.3.2 Narrowband Incoherent Detection Algorithms

Here, the test statistic is modified with the help of (3.2.10), after the average over the

uniformly distributed RF epoch («) to give34

logLinc ¼ log mþ log c�J=2e� Y*
xx þY*

ssð Þ
inc
=2cI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

xs�inc=c
q	 
� �

c

�log c�J=2exp �Y*
xx�inc=2c

� �� �
c
;

ð3:3:9Þ

which remains monotonic in the test statistic Y*
xs�inc. It is defined here by

Y*
xs�inc 	 ~Xk�1N A

� �2þ ~Xk�1N B
� �2 ¼ ~Xk�1N A~AþB~B

� �
k�1N X: ð3:3:9aÞ

34 Since h i« is uniform over an RF cycle, refer to (3.2.8a) et seq., it may equally well be regarded as being uniform

over all (integral) RF cycles 0!1ð Þ, which still preserves the value and monotonicity of the resulting average

(3.3.9). One obtains the same result for h i«;c as for h ic;«, where the monotonicity of I0 is again preserved.
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Similarly, we define

Y*
ss�inc 	 ~Ak�1N Aþ ~Bk�1N B

� �
=2; withA 	 ffiffiffi

c
p

Aj cosFj

� �

B 	 ffiffiffi
c
p

Aj sinFj

� �

)

Eq:ð3:2:5Þ

Y*
xx�inc 	 ~Xk�1N X; andFj 	 Dtj�fðmÞ tnð Þ; Aj ¼ A

ðmÞ
0n

tnð Þ;Eqs: ð3:2:2aÞ and ð3:2:3Þ

9
>>>=

>>>;

;

ð3:3:9bÞ

and in summary again we have

Dtj 	 tn�k0 � rm=v0; Dt0j 	 tn�k0 � rm=v0�fj=v0

Dtj 	 tn� k0�kOR
ð Þ � rm=v0; Dt0j 	 tn� k0�kOR

ð Þ � rm=v0�fj=v0;
ð3:3:9cÞ

these last relations including a steering vectorkOR
, refer to Eq. (3.2.28a) et seq. Thematched

filters here are now given by the W–K filters HðaÞ ¼ k�1N A; HðbÞ ¼ k�1N B; (Section 3.4.4)

with

�Y*

xs�inc
� �1=2

¼ ~XHðaÞ
� �2

þ ~XHðbÞ
� �2� �1=2

: ð3:3:9dÞ

Since I0 is monotonic in its argument, the form of the second term of (3.3.9) suggests a

simpler monotonic function, namely, I0! exp Yss=2cð Þ. Then, carrying out the averages

overc in (3.3.9) with the help of (3.3.1) and (3.3.4), and following the procedures of (3.3.5)–

(3.3.6b), we obtain finally the result:

Decide :
H1

or

H0

8
<

:

9
=

;
: Y*

inc	 logL*
T�inc

�
<

� �
logK*

T�inc or �Y*

xs�inc
�
<

� �
log K*

T�inc=m
� �þ �Y*

ss

ð3:3:10Þ

where Y*
inc¼ Y*

0�Y*
1 and

Y*
0 ¼ �Y*

xx

� �

inc
; Y*

1 ¼ �Y*

xxþ �Yss� �Y*

xs

� �

inc
; with �Y*

xs�inc¼ �Y*

xx�inc
D E

c

and �Y*

ss�inc¼ �Yss�inc
� �¼ s*2

0�inc
D E ð3:3:11Þ

(with the averages of the test statistic obtained from (3.3.9a) on dividing by �c). This result is

similar to (3.3.7a) and (3.3.7b), except that the factor 2 is missing in �Y*

ss�inc, although the

form of �Y*

s�inc is similar to �Y*

s�coh, and �Y*

xs�inc is quite different from �Y*

xs�coh, refer to
Eq. (3.3.9a) versus (3.3.7b).

3.3.2.1 Incoherent Detector Performance Wenote that the test statistic is now formally
�Y*

xs�inc. Accordingly, we can use the previously determined performance probabilities

OPTIMAL DETECTION III: SLOWLY FLUCTUATING NOISE BACKGROUNDS 181



(3.2.19a) and (3.2.19b), with Y*
s�inc replaced by �Y*

ss�inc and KT�inc by K*
T�inc. The explicit

results are

a*
F ¼ e�K

*
T�inc=2�Y

*
ss�inc 1�b* ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Y*

ss�inc

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 log a*

F

q	 

ð3:3:12Þ

which also gives the false rejection probability b*. When �Y*

ss�inc!1; K*
T�inc!

�Y*

ss�inc=2!1, and thus p*D ¼ Q a; c log að Þ! 1; 0< c< 1, as a!1 (3.2.20a). Also,

a*
F! 0 as required, since K*

T�inc
� �2

=b~�Y**

ss�inc=2!1 in (3.3.12). Figures 3.6 and 3.8 are

appropriate here with the relevant changes of parameters, that is,Y*
s�inc! �Y*

ss�inc; a
*
F; b

*

are now represented by (3.3.12). Finally, observe that in the generic narrowband

incoherent formulations of Section 3.2.2, the relevant threshold KT�inc appears as the

square root for b* in the Q-function (3.2.19b) et seq. and in the first power in the exponent

of a*
F, (3.2.19a).

3.3.2.2 Neyman–Pearson (i.e., CFAR) and Ideal Observers Here (3.3.11) represents

the decision process when �Y*

xs�inc is the test statistic, with threshold K*
T�inc �Y*

ss�inc
� �

, for

Neyman-Pearson detectors for which a*
F (3.3.12) is a priori chosen (refer to remarks

preceding Section 3.2.1.3). Again, Figs. 3.6 and 3.8, with suitably modified parameters,

are representative of performance.

The Ideal Observer (Section 1.8.2) requires the joint minimization of

qaI þ pbI! qa*
I þ pb*

I . The result for these incoherent cases is from (3.3.12) the signal

(symbol) error probability:

P*
e�inc ¼ qe�K

*
I�inc=2�Y

*
ss�inc þ p 1�Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Y*

ss�inc

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 log a*

F

q	 
� �
: ð3:3:13Þ

The threshold K*
I�inc in Eq. (3.12) is most easily found by choosing a priori an acceptable

symbol error probability P*
e�inc, given the maximum value of �Y*

ss�inc available. With a

symmetrical channel, that is, p ¼ q ¼ 1=2, and �Y*

ss�inc!1; Q! 1 (refer to remarks

subsequent to (3.3.12) and footnote 34),wehave P*
e�inc

� �
sym
¼ 0 aswell asP*

e�incjp 6¼1=2 ¼ 0,

as expected. With sufficiently strong signals vis-à-vis the accompanying (Gaussian) noise

the symbol error probability vanishes. On the other hand, when �Y*

ss�inc! 0; P*
e�inc ¼ p,

since35 Q 0;1ð Þ ¼ 0: all decisions are in error by an amount p. In general, the decision

process here is once more the following (3.2.25):

DecideH1 : SþN;
IO : or

if �Y*

sx�inc
� �

� 1

DecideH0 : N; if �Y*

sx�inc
� �

< 1

9
>=

>;
; ð3:3:14Þ

with P**
e given by (3.3.13). (The series form of Q, [Eqs. (3.2.22a) and (3.2.22b)], may also

be used here to calculate P*
e�inc from (3.3.13).).

35 Also see Section 3.2.1.
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3.3.3 Incoherent Detection of Broadband Signals in Normal Noise

In Sections 3.2.1–3.2.3, it was shown that optimal narrowband incoherent detection has

closed form solutions under a variety of a priori conditions. However, for broadband

signals36 in Gaussian noise, the incoherent case presents difficulties. This is mainly because

the (time) epoch is no longer over an RF cycle, butmay extend over a sizable function of the

signal’s duration, because the explicit formof the signal ŝðmÞn

n o
does not separate into slowly

varying and rapidly varying components, such as A
ðmÞ
0 tnð Þ

ffiffiffi
2
p

cos v0 t�«ð Þ�fðmÞn

h i
, refer to

Eq. (3.2.3). This makes the evaluation of the generic form of the likelihood ratio impossible

to evaluate in any useful exact form:

logL xð Þ ¼ m exp � 1

2
as
�
k�1N asþ as

�
k�1N x

� �� �

«;s

¼ m exp � 1

2
Y*

s�incþY*
x�inc

� �� �

«;s

:

ð3:3:15Þ

However, in the threshold signal cases, a complete canonical theory is possible asymptoti-

cally, when the effective number of independent samples is large. This, in turn, can serve as a

starting point for a class of generally suboptimum approximation, logG xð Þ ¼ g xð Þ, at
stronger signals, levels that are the canonical forms for the threshold signals. In Section

3.3.3.1, below we describe how this is accomplished.

3.3.3.1 OptimumThreshold Detection in GaussianNoise37 These structures, extended

from Sections 20.1.1 and 20.3.1 and (2) of Ref. [1] to include spatial processing, are found

with some obvious modifications to be

logL xð Þ6g xð Þ*inc ¼ log mþ Bð2Þ þBð4Þ
h i

þ �Y*

x�inc xð Þ; �x ¼ 0; ð3:3:16Þ

where Bð2Þ þBð4Þ
� �

are “bias” terms, necessary to ensure the local asymptotic normality

(LAN) of the test statistic �Y*

x�inc. Specifically, refer to Eqs. (20.11a)–(20.11c) of

Ref. [1], the components of g xð Þ* are as follows, since ks ¼ ~ks; kN ¼ ~kN, and where

J¼ J(S):

Bð2Þ 	 �1
2
~̂sk�1N ŝ ¼ � 1

2
trace kNJ ¼ � 1

2
trace kŝk

�1
N ; J 	 k�1N ŝ~̂s

D E
k�1N ¼ k�1N kŝk

�1
N

Bð4Þ 	 � 1

4
trace kNJð Þ2; trace kNJð Þ2 ¼ trace ŝ~̂sk�1N

� �
¼ trace kŝk

�1
N

� �2 ¼ trace ~̂sk�1N ŝ
D E� �2

9
>>>=

>>>;

ð3:3:16aÞ

and

�Y*

x�inc xð Þ ¼ ~x k�1N ŝ~̂s
D E

k�1N

� �
x ¼ ~xJx; x ¼ xj

� �
; ŝ ¼ AðmÞon tnð ÞsðmÞ tnð Þ=

ffiffiffiffiffiffiffi
2cj

q

ð3:3:16bÞ
36 These signals may be deterministic or random.
37 The full threshold treatment of signal detection and extraction was to be given in Part 3—Ed.
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refer to Eq. (3.1.3a),withkŝ ¼ a20kS ¼ a20k
�1
N kSk

�1
N . In condensed form, (3.3.16) is finally

logL xð Þ6g xð Þ*inc ¼ log mþAJ þ ~xJx; AJ ¼ �Bð2Þ�Bð4Þ; x ¼ 0: ð3:3:16cÞ

This suggests for detection of general broadband signals in normal noise, which are

threshold optimum (and thus suboptimum in the stronger signal regimes) that we can

employ:

g xð Þð*Þinc ¼ log mþAJ þ ~xJx; and generally; g xð Þ ¼ A0J þ ~xJ0x; J0 ¼ arbitrary:

ð3:3:17Þ

The quantityA0J may be adjusted to provide at least consistency of detector performance,

that is, limJ!1 aF! 0; limJ!1 pD! 1. Accordingly, we shall briefly examine the

threshold results for (3.3.17) and consider en passant the results for the incoherent

prototype � ~xJ0xð Þ at all signal levels.
Because the test statistic is also asymptotically normal for large samples (when they also

contain a sufficient number of effectively independent samples),we canwrite the false alarm

probability a*
F and probability of detection p

*
D ¼ 1�b* in the broadband (and narrowband)

threshold r�egimes as

a*
FD

1

2
1�*H

trace
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

�̂s�inc
q� �1=2

4
þ log K=mð Þ

trace
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

�̂s�inc
q� �1=2

2

664

3

775

8
>><

>>:

9
>>=

>>;
; ð3:3:18aÞ

where trace kŝk
�1
N

� �2 	 Y*
�̂s�inc ¼ ~̂sk�1N kŝk

�1
N ŝ

D E
¼ kŝk

�1
N

� �2
; and

p*D ¼ 1�b*D
1

2
1þ*H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

�̂s�inc
q� �1=2

4
� log K=mð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

�̂s�inc

q� �1=2

2

664

3

775

8
>><

>>:

9
>>=

>>;
; ð3:3:18bÞ

refer to Eq. (20.9.1), Section 20.3.1.2, [1], where kŝ ¼ A
ðmÞ
on A

ðmÞ
on0 ŝ

ðmÞ
n ŝðm

0Þ
n

D E.
2
ffiffiffiffiffiffiffiffiffiffi
cjcj0

ph i
,

and ks ¼ s
ðmÞ
n s

ðm0Þ
n0

D Eh i
, j; j0 ¼ mn; m0n0, refer to Eq. (3.1.3a), and kN ¼ xjxj0

� �
; xj ¼ 0 as

usual. Not only is consistency obeyed, but also a*
F and p

*
D approach these limits optimally:

this is an example of a LAN detector Eq. (3.3.16) that is AO (asymptotically optimum).

Note, also, that kŝk
�1
N is, in effect, a generalized signal-to-noise (power) ratio, spread out

over the correlation history of the signal and the noise, namely, Sj kSð Þij k�1N

� �
jk
¼ S=Nð Þ2ik,

all i, k.

3.3.3.2 Incoherent Detection (All Signal Levels) Next, let us use (3.3.16c) at all

broadband signal levels for an incoherent detector model. Although (3.3.16c) remains

optimum for weak signals, it becomes suboptimum at stronger signals. The characteristic

function for the first-order pdf underH1 (and by inclusion,H0) is given by Eq. (17.32b) [1],

where the test statistic is given by g xð Þ* ¼ AJ þ ~xJx; J ¼ k�1N kŝ~̂sk
�1
N , in keeping with the
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threshold optimal behavior of g xð Þ*. The result is explicitly

F1 ijjH1ð Þ ¼
exp ijAJ� 1

2
~̂sk�1N I� I�2ijkNJð Þ�1

h i
ŝ

n oD E

ŝ

det I�2ijkNJð Þ½ �1=2
ð3:3:19aÞ

with

F1 ij H0j Þ ¼ det I�2ijkNJð Þ½ ��1=2; kNJ ¼ kŝk
�1
N ;

�
ð3:3:19bÞ

obtained on setting ŝ ¼ 0 for the null hypothesis H0. Here, kNJ ¼ kŝk
�1
N , from (3.3.16a),

with AJ ¼ Bð2Þ þBð4Þ specifically. (Note the average over ŝ in (3.3.19a), which also usually
implies over the parameters of ŝ.)

FromAppendix A1, wemay obtain explicit evaluations of the transforms of the cf values

(3.3.19a) and (3.3.19b). As an example, let us assume that the eigenvalues of kNJ are all

positive and discrete, and are arranged in order of descending magnitude

lðþ Þ1 > lðþ Þ2 > � � � > lðþ Þk > � � � > lðþ Þk ¼ MN . (The matrix kNJ is real and not necessarily

symmetric.) The integrals in question are then the (first-order) pdf values of g xð Þ* obtained
from the transformation p ¼ �ij; z ¼ y�AJ ¼ ~xJx and are found to be

w1 zjH1ð Þ ¼ e�ð1=2Þ̂sk
�1
N ŝ

ð1

�1:

epz
YJ

k¼1

eð1=2Þck ŝð Þ2= 1þ alðþ Þ
k

pð Þ

1þ alðþ Þk p
� �1=2

dp

2pi

* +

ŝ; a ¼ real > 0;

ð3:3:20Þ

where ck ŝð Þ2 ¼Pl ŝk k�1N

� �
kl
ŝl . In addition to the multiple (single) branch points at

pk ¼ �1=alðþ Þk , there are multiple (single) essential singularities at these same points, as

exhibited by the exponential terms in (3.2.20). The result for H0 simplifies to

w1 zjH0ð Þ ¼
ð1i

�1i

epz
YJ

k¼1
1þ alðþ Þk p
� ��1=2 dp

2pi
; a ¼ real > 0: ð3:3:20aÞ

Note that the eigenvalue lðþ Þk

n o
depends only on kNJ and not on the signal. (Henceforth,

since it is assumed that all the eigenvalues are positive, we drop the superscript (þ ). Care

must be taken here because of the multiple branch points, since g ¼ 1=2ð Þ is nonintegral.
One must stay on the same branch, so that the integrated function always remains on that

branch and returns to its original value after the complex variable p makes one complete

circuit of the contour. This introduces a branch factor Bg¼1=2 ¼ exp �2pi 1�1=2ð Þ � kC2�
�

,

where kC2 ¼ k k�1ð Þ=2, namely, B1=2 ¼ exp ð�pi=2Þk k�1ð Þ½ �, which must be included.

The result is

w1 zjH1ð Þ ¼ e�ð1=2Þ̂sk
�1
N ŝ
XJ

k¼1
e�pikC2w1k zjH1ð Þ

Y0J

l¼1

ecl ð̂sÞ
2=2 1�ll=lkð Þ

1�ll=lkj j1=2
+

ŝ

*

ð3:3:21Þ
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where the prime (0) on the product indicates that l 6¼ k and where explicitly

w1k zjH1ð Þ ¼ 2lk½ �1=4
z1=4 2lk½ � e

�ck ŝð Þ2=2�z=2lk I�1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
zc2k ŝð Þ
lk

s0

@

1

A; z > 0; ¼ 0; z < 0: ð3:3:21aÞ

(For ck, see line following (3.2.20).)

For w1 z H0j Þð , Equation (3.3.21a) specializes directly to

w1 zjH0ð Þ ¼
XJ

k¼1
e�pikC2 �w1k zjH0ð Þ

Y0J

l¼1
1�ll=lkj j�1=2 ð3:3:22Þ

with

w1k zjH0ð Þ ¼ z=2lk½ ��1=2e�z=2lk
2lk

ffiffiffi
p
p ; z > 0; ¼ 0; z ¼ 0: ð3:3:22aÞ

(Note that w1k z H0;H1j Þð are probability densities, that is,
Ð1
0

w1kdz ¼ 1 and

w1k � 0; z > 0.)

The performance probabilities are facilitated by noting that the Bessel function can be

represented by

I�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zck ŝð Þ2=lk

q	 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lk

pck ŝð Þ2
s

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zck ŝð Þ2
lk

s

; ð3:3:22bÞ

so that finally, on setting z ¼ u2 ¼ zk=lk, we obtain

p
ð*Þ
kD
¼ 1�bð*Þk ¼

ð1

KT

w1k zjH1ð Þdz ¼ 23=4
ffiffiffiffiffi
ĉk
p
ffiffiffi
p
p

ð1

KT=lkð Þ1=2

cosh ĉku

ĉkuð Þ3=2
e�c

2
k
=2�u2=2du; ð3:3:23Þ

which when substituted into (3.3.21) gives us the formal solution for our problem, at all

signal levels. In this case, it remains threshold optimum, in which the alternative method of

Section 3.3.3.1 is to be preferred. The corresponding false alarm probability is found to be

(3.3.22a), with

a
ð*Þ
F

� �

k
¼
ð1

KT

w1k zjH0ð Þdz ¼ 1�G 1=2;KT=2lkð Þ; G a; xð Þ 	
ðx

0

ta�1e�tdt=G að Þ;

ð3:3:24Þ
where G a; xð Þ is one form of definition of the incomplete G-function ([4], p. 940 et seq.).

Evaluation of (3.3.21) and (3.3.23), however, must be by numerical methods. Thus, we have

for the false alarm probability, substituting (3.3.24) into (3.3.22),

a*
F ¼

XJ

k¼1
e�pikC2

Y0J

l¼1
1�ll=lkj j�1=2 1�G 1=2;KT=2lkð Þf g: ð3:3:25Þ
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Similarly, we obtain for the (conditional) probability of detection the formal (and formida-

ble) result:

pð*Þ ¼ e�
~̂sk�1N ŝ=2

XJ

k¼1
epikC2

Y0J

l¼1

ecl ŝð Þ
2=2 1�ll=lkð Þ

1�ll=lkj j1=2
� 2

3=4c
1=2
kffiffiffi
p
p

ð1

KT=lk½ �1=2

cosh cku

ckuð Þ1=2
e�c

2
k
=2�u2=2du

+

ŝ

:

*

ð3:3:26Þ

Again, we remark that these results are suboptimum for the larger signal inputs, since the test

statistic AJþ~x k�1N kŝk
�1
N

� �
x, for incoherent broadband reception, is only optimal for

threshold signals, refer to Section 3.3.3.1. Finally, revisiting (3.3.26) in the form

pð*Þ ¼ 1� e�
~̂sk�1N ŝ=2

X

k¼1
ð Þ �

ðKT=lkð Þ1=2

0

cosh cku

ckuð Þ1=2
e�c

2
k
=2�u2=2du

+

ŝ

*

ð3:3:26aÞ

shows that as ~̂sk�1N s!1; pð*Þ!1 as expected.

3.3.3.3 A Coherent Detection Problem A formally closely related problem to the

preceding is one in which the test statistic is

y ¼ logG1 xð Þ ¼ AJ þ ~xJx; J ¼ JðsÞ; ð3:3:27Þ

where J is a symmetric matrix J ¼ ~J and is otherwise arbitrary. Here, x¼ n þ s is the
input, which consists of normal, zero-mean noise and an arbitrary signal. The observation

process is coherent and the signal and data (x) are broadband, but with a quadratic test

statistic, unlike the coherent cases discussed in Section 3.1.1. However, we drop the

average (of the epoch) over ŝ, where now the epoch is assumed known. The result is

precisely (3.3.25) and (3.3.26) for (3.3.27), but without the averages h iŝ, but ultimately

still requiring a numerical integration for H1. The eigenvalues are determined from kNJ,

and, as before, are independent of signal ŝ. The characteristic functions F1 ij H1j Þ;ð
F ij H0j Þð of the associated pdf values are given by Eqs. (3.3.19a) and (3.3.19b),

without the average h iŝ. Equations (3.3.25) and (3.3.26) are exact, although the test

statistic (3.3.27) is generally suboptimum. (Equations (3.3.25) and (3.3.26) are also

the exact solutions to Example 2, Section 17.2.1 of Ref. [1], with or without the

averages over ŝ.)

3.3.3.4 Narrowband Incoherent Detection with Asymmetrical Intensity
Spectrum When ŝ is narrowband and the accompanying narrowband noise has an

asymmetrical intensity spectrum, the calculation of the pdf values under H1; H0 for the

test statistic (3.3.27) when reception is incoherent may be accomplished with the help of

(3.2.51) and (3.2.52) and the analysis of Section 3.2.3. We observe that

~̂sk�1N ŝ6
1

2
YðcÞ*s�incþYðsÞ*s�inc
h i

nb
¼ 1

4

X

j

Ajccj þAjcsj
� � ¼ Y*

s�incjnb ð3:3:28Þ
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Accordingly, we have

cj ŝ
2 	

X

j0

~̂sj k�1N

� �
jj0 ŝj0 ¼ Ajccj þAjcsj

� �
=4; ð3:3:28aÞ

and

)
X

j

cj ŝð Þ2 ¼
X

jj0

~̂sj k�1N

� �
jj0 ŝj0 ¼ ~̂sk�1N ŝ ¼ Y*

s�incjnb: ð3:3:28bÞ

In the usual case of symmetrical spectra, where (3.2.53) applies, that is, cc ¼ cs ¼
2 r�10 A; l0 ¼ 0ð Þ, the above reduces to

~̂sk�1N ŝ¼ 1

2

X

jj0
AjAj0 r0ð Þ�1jj0 ¼

X

jj0

A
ðmÞ
0n

A
ðm0Þ
0n0

2
ffiffiffiffiffiffiffiffiffiffi
cjcj0

p r0ð Þ�1jj0 ¼
X

jj0
Âj Âj0 r0ð Þ�1jj0 ; Âj ¼A

ðmÞ
0n

=
ffiffiffiffiffiffiffi
2cj

q
; and so on

ð3:3:29Þ

Thus, for the test statistic (3.3.27),where now ŝ and the noise are narrowband and reception is

incoherent, the results (3.3.25) and (3.3.26), withouth iŝ:«, apply for the false alarm

probability and probability of detection.

Other related results are discussed in Section 17.2 of Ref. [1], in particular, Examples 2

and 3, and in Section 17.2.3 of Ref. [1], the distribution of the intensity spectrum of a normal

process. Section 17.3 of Ref. [1] gives some additional examples of first-order probability

densities following a (full-wave) quadratic detector, broad- and narrowband inputs, also for

originally normal noise inputs. See, in addition, Appendix A1 for the extension to space–

time fields.

3.4 BAYES MATCHED FILTERS AND THEIR ASSOCIATED BILINEAR AND
QUADRATIC FORMS, I [14–16]38

In the preceding sections of this chapter, we have introduced the generic discrete

space–time matched filter H ¼ k�1N a (refer to Section 3.1.1.2). This is an essential

component of the optimum detector and estimator (cf. Chapters 5 and 6). Such filters

are implicitly optimized as part of the Bayes formulation (Chapter 1), which in turn

provides the general criteria of optimality employed throughout this book. Because of

its importance in signal processing, let us examine the general concept of the matched

filter39 in more detail.

We begin by first considering the general concept of the matched filter itself, extended to

space as well as time. This is needed in the analysis of system structure, which is typified by

the linear and nonlinear operations on the input data x. These are represented by the

38 See theHistoricalNote at the end of Section 3.5. For other, laterwork seeRef. [17] andRef. 3-11 therein. See also

Sections 16.2 and 16.3 of Ref. [1].
39 The terms “matching,” “matched,” and so on always represent a form of optimization here and throughout with

respect to Bayes criteria, refer to Section 1.3.3; unless otherwise indicated, it also implies the presence of (point)

sensors at each designated point in space, which in turn have path delays to a common reference point, usuallyOT or

OR, for instance, in Fig. 3.16 and also Fig. 2.14.
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following quadratic forms for the test statistic, characteristic of signals inGaussian noise and

of threshold signals in non-Gaussian noise as well, specifically

Yð1ÞJ�coh ¼ ~xAð1Þs; Yð2ÞJ�inc ¼ ~xAð2Þsx; whereAð1Þ ¼ ~A
ð1Þ
; Að2Þ sð Þ ¼ ~A

ð2Þ
sð Þ;
ð3:4:1Þ

and x ¼ ½X= ffiffiffiffiffi
cj

p �, as before, refer to (3.2.1) et seq. Here,Yð1ÞJ�coh andY
ð2Þ
J�inc are the result of

Bayes optimality procedures (Section 3.1.3), where x, s are J-component vectors and

Að1Þ; Að2Þ sð Þ in Eq. (3.4.1a) are real symmetric J � Jð Þ space–time, positive finite matrixes.

In particular we have

Að1Þ ¼ k�1N andAð2Þ sð Þ ¼ k�1N s~sk�1; k�1N a~aþ b~b
� �

k�1N ; k�1N s~s k�1N ¼ k�1N k̂Sk
�1
N ;

ð3:4:1aÞ

the basic bilinear and quadratic forms for coherent and incoherent reception. The noise

covariances embodied inAð1Þ andAð2Þ are generally not homogeneous and stationary unless

otherwise indicated. The signals (as before, Chapter 1) forwhich thematched filters are to be

used are themselves deterministic or may even be purely random.

Broadly stated, matching is a form of optimization that attempts to enhance in some

appropriate sense the reception of a desired signal in the undesired noise background.

Matched filters here, as in earlier work, are required to be linear (but not necessarily time-

invariant) and may be used in conjunction with other, subsequent zero-memory nonlinear

elements and linear integrating devices [14–17]. However, in contrast to earlier definitions,

our present definition of a matched filter is considerably more general and includes the

previous examples inChapters 2 and 3 as special cases, in addition to the extension to space–

time fields, as we shall note below.

The structure of matched filters depends on the following:

(1) Nature of the signal

(2) Statistics of the accompanying noise, and the way in which it combines with the

signal

(3) Role of space as well as time

(4) Criterion of optimality that is chosen

Since (1) and (2) are essentiallyaprioridata, it is (3) and (4), the extension to space and the

choice of criterion, that permit the generalization of the earlier definitions. Most of (4) has

been based on energy calculations, that is, on some form of maximization of signal energy

vis-à-vis that of the noise without direct reference to the actual decision process implied in

reception.Usually, thesematchedfilters havebeenobtainedbymaximizing a signal-to-noise

ratio and may for thus be called S/N-matched filters. By recognizing that reception here

implies a definite decision process, we extend thismatched filter concept to space and base it

on the Bayes decision rules considered previously in Chapters 1 and 2. When this is done,

such optimum (linear) filters are called Bayes matched filters [16] or more precisely space–

time Bayes matched filters. Their precise structure, of course, depends on the properties of

the signal and noise, as well as on the decision criterion that generates the characteristic

structural components of the types in Eq. (3.4.1).
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3.4.1 Coherent Reception: Causal40 Matched Filters (Type 1)

We consider first Yð1ÞJ�coh in Eq. (3.4.1), where the operations on the normalized data

x ¼ Xj=
ffiffiffiffiffi
cj

ph i� �
are required to be both linear and realizable (or equivalently “causal”).40

The normalized signal vector s ¼ S=
ffiffiffiffiffiffi
2c
p½ �ð Þ is assumed to be nonvanishing (on all finite

subintervals) in the observation interval rm 2 0;R½ �; tn 2 0; T½ �ð Þ so that Yð1ÞJ�coh is corre-
spondingly nonvanishing. Then, let H be a (column) vector41 such that

Að1Þs ¼ Hð1Þ; and )Yð1ÞJ�coh ¼ ~xHð1Þ ¼ ~H
ð1Þ
x ¼

XJ¼

j¼1
x rm; tnð ÞHð1Þ rm; tnð Þ; ð3:4:2Þ

which includes the spatial as well as the temporal nature of the input data x. Here Að1Þ is
positive definite and symmetrical. Next, we set the vector

Hð1Þ ¼ H
ð1Þ
j

h i
¼ Hð1Þ rm; T�tnð Þ
h i

; m; n ¼ 1; . . . ;M; 1; . . . ;Nð Þ; j ¼ mn; ð3:4:3Þ

where Hj is the weighting function of a time-invariant (i.e., nontime varying), realizable,

discrete space–time filter, with a readout at time T (¼NDt) and at positions

rm m ¼ 1; 2; . . . ;Mð Þ. For the quadratic form Yð1ÞJ�coh, (3.4.2), H
ð1Þ is the solution of the

discrete integral equationAð1Þs ¼ Hð1Þ, which can also be written in terms of the signal s as

½Að1Þ��1Hð1Þ ¼ s, refer to Eq. (3.4.4). Thus,Yð1ÞJ�coh from (3.4.2) may be considered to be the

output of this discrete linearfilter,which is aBayesmatchedfilterwhenYð1ÞJ�coh is the result of
a Bayesian optimization process. The output of this filter is a cumulative maximum at the

readout t ¼ T. Filters of this type are realized practically by a delay line with suitable

weighting and readout. These Bayesmatched filters are closely related to, and in some cases

are identical, to the space–timematched filters [14–18].We call them Bayes matched filters

of the first kind, Type 1. Figure 3.9 illustrates this filter,which is a realization of data function

Yð1ÞJ�coh, Eq. (3.4.1).
When Að1Þ ¼ k�1N , as is the case with the noise fields discussed in this chapter, we have

Hð1Þ ¼ k�1N s, where now Hð1Þ is obtained from the discrete integral equation.

kNH
ð1Þ ¼ s 6¼ 0;2 R; Tð Þ; ¼ 0; =2 R;Tð Þð Þ: ð3:4:4Þ

40 “Realizability” or “causality” refers to operations only on the past (and present) of the data, in particular, within

the data time (0, T). For these filters, it also requires for the spatial part of the data at the receiver to obey a radiation

condition, namely, the condition that only outgoing radiation from the source be propagated. Mathematically,

causality for these filters is expressed by an extension of the Paley–Wiener criterion to include these propagation

effects. Noncausal or “nonrealizable” systems are still usable, but they require the entire data sample in order to

obtain a result at any intermediate or final instant.
41 See Eq. (1.3.1) for indexing. Here, we use the time index n¼ 1, . . ., N at each spatial point (m), repeating for

different points m¼ 1, . . ., M. The result is a sample vector of length J¼MN elements.
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3.4.1.1 The “White Noise” Case In the important special casewhere the accompanying

noise is “white” in space and time, we have for the normalized covariance kN,

ð1

�1
:::

ð
ei k�k0ð Þ �rdr¼ d k�k0ð Þ and

ð1

�1
e�i v�v0ð Þtdt¼ d f�f0ð Þ; v¼ 2pf ;and so on:

ð3:4:5Þ
In the discrete cases correspondingly, we have kN ¼ djj0

� �¼ dmm0dnn0½ �. Then,Hð1Þ ¼ sh i and
Yð1ÞJ�coh become (considered as an ensemble)

Yð1ÞJ�cohjwhite ¼
X

mn

x rm; tnð Þ s rm; tnð Þh i ¼
X

mn

x rm; tnð ÞHð1Þ rm;T�tnð Þ: ð3:4:6Þ

When x¼ sh iþn;n¼ 0 and the noise samples nj are at least wide sense stationary and

homogeneous, (3.4.6) can be expressed as

Yð1ÞJ�coh
D E

n
¼
X

mn

s rm; tnð Þh i2: ð3:4:6aÞ

Note that if wewriteHð1Þ as (3.4.3) and use (3.4.5), we obtain Eq. (3.4.6b) in the continuous
form:

Hð1Þ ¼ hð1Þ rm;T�tnð ÞDrDt� �
; ) Yð1ÞJ�coh

D E

n
¼ 2

X

mn

s rm; tnð Þh i2DrDt=WvW0

! Ð
R

dr

Wv

ð1

�1

2

W0

s r; tð Þh i2dt
ð3:4:6bÞ

Now let us consider a cross-correlation receiver (detector) for coherent reception for a

typical member of the ensemble, where the observation period is large compared to the

correlation time of the noise. We have

Rxs Dr;Dtð Þ¼ ~x1s2 ¼
X

j

sh iþnð Þj sj
� �þDj6

X

j

sh i sj
� �þDj

� �
; Dj ¼DrDt

6
X

j

s rm; tnð Þh i s rmþDr;tnþDtð Þh i¼
X

j

s rm;tnð Þh i2¼Yð1ÞJ�cohjwhite

ð3:4:7Þ

when we set Dr¼ 0; that is;rM ¼R, and Dt¼ 0; that is; tN¼ T , namely, the desired

maximum at the readout time tN¼ T and place M ¼ R at the end of the data sample.

Matched filter

Readout at

Bayes Type 1

x = x rm, tn)( ][ H(1) H̃(1) x

t = Trm
Ψ J −coh

(1)

(               ),

FIGURE 3.9 Representation of C
ð1Þ
J�coh by a Bayes matched filter Hð1Þ

� �
of the first kind, Type 1

(realizable).
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Thus, in the particular case of normal noise, the correlation detector is optimum, refer to

(3.4.6a), (3.4.6b), and (3.4.7). It also maximizes the (S/N) ratio generally in non-Gaussian

noise, although this correlation receiver is now no longer optimum.

3.4.2 Incoherent Reception: Causal Matched Filters (Type 1)

In this case, the general quadratic form in question is Yð2ÞJ�inc ¼ ~xAð2Þx where the additive

noise isGaussian or non-Gaussian. Because this form is nonlinear in the data, wemay expect

that its structure in terms of a realizable (or causal) discrete linear matched filter and other

processing elements is more complex than that for Yð1ÞJ�coh in Section 3.4.1. In fact, the

matched filters here are not uniquely determined—a variety of such filters is possible, as we

shall see in Sections 3.4.2–3.5.3. Thefilters themselves are now for themost part represented

by square or triangularmatrices, embodying time-variable operations, as distinct from the

vector forms of the time-invariant cases (apart from truncation) characteristic of coherent

reception described in Section 3.4.1.

Here, Type 1 matched filter for incoherent reception involves such nonlinear devices as

zero-memory square-law detectors or multipliers, as well as ideal “integrators,” and is not

unique.

To see this, we first introduce a (real) time-varying linear, discrete filter represented by

J � Jð Þtriangular square matrix42

Hð2;1Þ ¼ H
2;1ð Þt
jj0

h i
;

with truncation, as a result offinite sample size (finite J),which as before is determinedby the

physical bounds 0; Rj jð Þ; 0; Tð Þ of the acquisition interval. We let the output of this time-

variable filter be xF ¼ Hð2;1Þx and consequently require that Yð2ÞJ be reduced to

Yð2ÞJ�inc 	 ~xAð2Þx
� �

¼ ~xF ~H
ð2;1Þ�1

Að2ÞHð2;1Þ�1xF ¼ ~xFxF ¼ Sj xFð Þ2j ; with xF ¼ Hð2;1Þx:

ð3:4:8Þ

To see this, we first choose Q, a congruent matrix, with the property that a symmetric,

positive definite quadratic form, hereAð2Þ, is (nonuniquely) reducible to the sum of squares,

that is, ~QAð2ÞQ ¼ Lb ¼ diagð. . . ;bj; . . .Þ. Then we make the transformation x ¼ Qx̂ and

) ~xAð2Þx ¼ ~̂xð~QAð2ÞQÞx̂ ¼ ~̂xLbx̂ ð¼
P

j x̂
2
j bjÞ. To reduce this further to the form (3.4.8),

that is, to obtain a pure sum of squares in the data xF, we make the further transformation

xF ¼ ½
ffiffiffiffiffi
bj

p
x̂j� ¼ Lbx̂, so that

~xAð2Þx ¼ ~̂xLbx̂ ¼ ~xF L
�1=2
b

~QAð2ÞQL
�1=2
b

� �
xF ¼ ~xF ~PAð2ÞP

� �
xF ¼ ~xFIxF; ð3:4:8aÞ

42 See Eq. (1.3.1) for alternative indexing. Here, a typical element is j ¼ mn ¼ k (single digits) and

Ajj0 ¼ Amn;m0n0 ¼ Akk0 , where k and k0 are respectively mn and ḿń. The result is a square matrix of K � K ¼
MN�MN¼ J� J elements. The time elements associatedwith each, k, ḱ or eachm, ḿ can be easily identified from

the alternative description of Eq. (1.3.1).
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where P ¼ L
�1=2
b Q. The reducing congruent matrixQ is well known to be upper triangular

(Section 10.16 of Ref. [19]). Comparing (3.4.8a) with (3.4.8b), we see for this discrete

matched filter here that

Hð2;1Þ ¼ L�1=2Q
� ��1

¼ P�1; and P�1 6¼ ~P
�1
; sinceQ 6¼ ~Q; ð3:4:8bÞ

with Q having the form

Q ¼
1 Qjj0 j < j0

1

0 . .
.

j > j0 1

2

664

3

775: ð3:4:8cÞ

The matrix P here is also upper triangular. See Section 10.16 of Ref. [19] for further details.

(Note that even though ~QAð2ÞQ ¼ Lb reducesA
ð2Þ to diagonal form,Lb does not represent

[l], the diagonal matrix of the eigenvalues, since Lj ¼ bj are not the solutions of

det A�lIð Þ ¼ 0.)

The structure ofYð2ÞJ�inc accordingly consists of the time-varyingfilterHð2;1Þ, followedbya
zero-memory square-law operation and ideal “integrator,” as shown in Fig. 3.10. Because

Að2Þ is required to be symmetrical and positive definite, like Að1Þ in (3.4.1) and (3.4.2), it

has an inverse Að2Þ�1. Because of the bounded input data sample, that is, the truncation

condition, the matrices Að2Þ ¼ 0 and Hð2;1Þ ¼ 0 when j; j0 > J; < 11ð Þ, or equivalently
m;m0ð Þ > M; < 1; n; n0ð Þ > N; < 1.

Next, we use Eqs. (3.4.8a)–(3.4.8c) and obtain

~H
ð2;1Þ�1

Að2ÞHð2;1Þ�1 ¼ I; ) Að2Þ ¼ ~H
ð2;1Þ

Hð2;1Þ 	 r̂ð2Þ ¼ ~̂r
ð2Þ
; ð3:4:9aÞ

where r̂ð2Þ, of course, is symmetric, positive definite, and is specifically here

r̂ð2Þ ¼ k�1N k̂Sk
�1
N ; k̂S ¼ s~sh i ¼ a~ah iþ b~b

� �

2
: ð3:4:9bÞ

We add ð^Þ to those covariances k̂S 6¼ kN that are normalized by cNj
; cNj0 , that is, the

normalizing factors are csj
csj

=cNj
cNj0

� �1=2
6¼ 1. See Section 3.4.5, Eq. (3.4.28a).

x (2)

Bayes 2, 
Type 1

Zero-memory 
square law

Ideal

ΨJ-cohΣ

integrator

H
(2,1)

(2,1)
H jj ′

xF
(  ) 2

x̃FxF

xFj
2

xFj
2 j

J

{     }

(rm, rm′; tn – tn′, tn)

FIGURE 3.10 Resolution of C
ð2Þ
J�coh xð Þ by a Bayes matched filter of the Second Kind, Type 1,

Eq. (3.4.8) (time-varying and realizable).
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In keeping with the realizability condition, we see from the above that H is a lower

triangularmatrix fromEqs. (3.4.8b) and (3.4.8c).Noting thatH rm; tn; rm0 ; tn0ð Þcanbewritten
equivalently as H rm; rm0 ; tn�tn0 ; tnð Þ we have

Hð2;1Þ ¼
0

Hjj

Hjj0 j> j0

2

4

3

5; that is; H
ð2;1Þ
jj0

h i
¼Hð2;1Þ rm; tn;rm0 ; tn0ð Þ ¼ Hð2;1Þ rm;rm0 ; tn�tn0 ; tnð Þ� �

¼ 0;
j0 > j; and j0; j> J; or

m;m0 >M; n0 > n; andn;n0 >N

	 

; ð3:4:9cÞ

which also vanishes for j, j0< 1, that is,m,m0< 1 and n, n0< 1, as defined by the size (J) of the

matrix, which in turn expresses the physical fact that the filter does not yet have an input.

(The diagonal in Eq. (3.4.9c) is recognized as part of a Cholesky matrix, whose diagonal

terms are eigenvalues of the Cholesky matrix, cjj
� �

, but are not the eigenvalues of

Að2Þ—Section 5.2, p. 88, of Ref. [20].)

We call the discrete filter Hð2;1Þ a (discrete) Bayes matched filter of the second kind,

Type 1. Its properties are readily summarized:

(i) Hð2;1Þ is linear and time-variable, that is,

Hð2;1Þ ¼ H2;1 rm; tn; rm0 ; tn0ð Þ½ �
¼ Hð2;1Þ rm; rm0 ; tn�tn0 ; tnð Þ� �

;

refer to Eq. (3.5.9c)

(ii) H
ð2;1Þ
jj0 ¼ 0; j0 > j, indicating that Að2Þ may be reduced to the unit matrix I (refer to

remarks preceding Eq. (3.4.9a)), with a congruent matrix P that is upper diagonal,

so thatHð2;1Þ is lower diagonal [Eq. (3.4.9c)]. This congruent matrix H
ð2Þ
jj0

h i
has the

following (refer to form p. 308 of Ref. [19]):

Hð2;1Þ ¼

H
ð2;1Þ
11

H
ð2;1Þ
21 H

ð2;1Þ
22 0

H
ð2;1Þ
31 H

ð2;1Þ
32 H

ð2;1Þ
33 j0> j

..

. ..
. . .

.

..

. ..
.

H
ð2;1Þ
jj

..

. ..
. . .

.

H
ð2;1Þ
J1 ��� ��� ��� ��� ��� H

ð2;1Þ
JJ

2

666666666666666664

3

777777777777777775

¼

L
ðAÞ1=2
1

X21 L
ðAÞ1=2
2 0

X31 X32
. .
.

..

. ..
. . .

.

..

. ..
.

L
ðAÞ1=2
j

..

. ..
. . .

.

XJ1 XJ2 ��� ��� ��� ��� LðAÞJ

2

6666666666666666664

3

7777777777777777775

�1

¼ LbQ
� ��1¼P�1

:

ð3:4:10Þ

(iii) Accordingly,Hð2;1Þ represents a realizable or causal filter, since it operates only on
the past of the data (tn0 > tn, (3.4.9c)), and is required also to obey the radiation

condition.

(iv) Note that Hð2;1Þ 6¼ ~H
ð2;1Þ

(3.4.10).
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The set of discrete nonlinear integral equations (3.4.9c) determining the elements of

Hð2;1Þ, namely, ~H
ð2;1Þ

Hð2;1Þ ¼ r̂ð2Þ, can be equivalently expressed in detail as

1 � j; j0 � Jð Þ : r̂ð2Þjj0 ¼
X

k

H
ð2;1Þ
kj H

ð2;1Þ
kj0 ¼

XM

i¼1

XN

l¼1
Hð2;1Þ ri; rm; tl�tn; tlð ÞHð2;1Þ ri; rm0 ; tl�tn0 ; tlð Þ

1 � m;m0 � M; 1 � n; n0 � N

¼ 0; n > l; n0 > l; ri; rm outside 0; Rj jð Þ:

9
>>>>>=

>>>>>;

ð3:4:11Þ

The quadratic form Yð2ÞJ�inc (3.4.8) becomes accordingly

Yð2ÞJ�inc xð Þ ¼ ~xr̂ð2Þx ¼
XJ

j¼1

X1¼j

j0¼1
H
ð2;1Þ
jj0 xj0

 !2

¼
XJ

m;n¼1

Xðm;n¼jÞ

ðm0;n0¼j0Þ¼1
H
ð2;1Þ
jj0 rm; rm0 ; tn�tn0 ; tnð Þxj0

0

@

1

A

2

¼
XJ

j¼1
x2Fj ; ð3:4:12Þ

which is one interpretation of the quadratic form Yð2ÞJ�inc, shown in Fig. 3.10.

A variant of the linear causal filter, Eqs. (3.4.8)–(3.4.9b), is to replace it with a causal

invariantfilter represented here by thevectorHð2;1aÞ, and a time-variable switch or readout at

t ¼ tn � 0, that is, Hð2;1aÞ ¼ ½Hð2;1aÞj rm; tn0�tnð Þ�, with H
ð2;1aÞ
j rm; t

0
n�tn

� � ¼ 0; tn < 0.

Equations (3.4.8)–(3.4.12) remain unchanged except that Hð2;1Þ is replaced by

Hð2;1aÞ ¼ ½Hð2;1aÞj �. Figure 3.10 remains essentially the same, except that the triangular

matrixHð2;1Þ is replaced by the vectorHð2;1aÞ plus the time-varying switch (refer to Fig. 5 of

Ref. [16]).

3.4.3 Incoherent Reception-Realizable Matched Filters; Type 2

A second equivalent resolution ofYð2ÞJ�inc yields a Bayes matched filterHð2;2Þ of the second
kind, Type 2. To see this, let us useEq. (3.4.9a) and observefirst thatwe can alsowrite for rð2Þ

rð2Þ 	 r
ð2Þ
jj0

h i
	 H

ð2;2Þ
jj0

h i
; Hð2;2Þ 6¼ Hð2;1Þ; since rð2Þ ¼ ~rð2Þ;

refer to Eqs: ð3:4:9aÞ and ð3:4:9bÞ: ð3:4:13Þ
The matrix Hð2;2Þ is, so far, not a causal time-varying filter, since Hð2;2Þ is symmetrical.

However, the constraint of noncausality can be removed by the artifice of deleting all terms

above the diagonal and doubling those below it, that is, keeping j > j0 for operations on the
“past,” where Hð2;2Þ 6¼ 0 and setting Hð2;2Þ ¼ 0 for all j0 > j for the “future” of the data

stream.We take advantage of the fact that for anysymmetricmatrixAð2Þ ¼ ~A
ð2Þ
, the quadratic

form ~xAð2Þx remains unchanged if we write it as

XJ

jj0
xjA

ð2Þ
jj0 xj0 ¼ 2

XJ

j0¼1

Xj0 � j

j0¼1
xjxj0A

ð2Þ
jj0 «

�1
jj0 ð3:4:14Þ
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and then set A
ð2Þ
jj0 ¼ 0; j0 > j. Thus, with (3.4.13) in (3.4.14), we have

Yð2ÞJ�inc ¼
XJ

jj0
xjxj0H

ð2;2Þ
jj0 ¼

XJ

j¼1
xj

Xj� j0

j0¼1
xj0H

ð2;2Þ rm; r0m; tn0�tn; t0n
� �

 !

¼
XJ

j¼1
xjx̂j;

where x̂j ¼
Xj0 � j

j0¼1;1
xj0H

ð2;2Þ
jj0 : ð3:4:15Þ

This result is interpreted as a causal time-varying filter, followed by a simple (i.e., zero-

memory) multiplier of its output with the input data, which is then integrated, as shown in

Fig. 3.11. This matched filter is given formally at once by (3.4.13). For example, in the case,

Að2Þ ¼ k�1N k̂sk
�1
N ,which arises in incoherent receptionof signals (k̂s ¼ s1ŝ2h ior k̂s is normal

noise), is simplyHð2;2Þ ¼ k�1N k̂Sk
�1
N . On the other hand, solutions forHð2;1Þ are determined

from (3.4.11) and are much more difficult to achieve, because of the nonsymmetric nature

of Hð2;1Þ.
Another variant in the resolution of Yð2ÞJ�inc can occur when Að2Þ factors into the matrix

product of two vectors, that is, Að2Þ ¼ y~y. This factorization, when possible, is closely

related and in fact identical to (S/N)matchedfilters of the earlier theory ([14, 15] and Section

16.3 of Ref. [1]). This class of filter we shall call a Bayes matched filter of the second kind,

Type 2a, which yields a time-invariant and realizable weighting function:

y 	 Hð2;2aÞ ¼ Hð2;2aÞ rm; T�tnð Þ
h i

: ð3:4:16Þ

The quantity Yð2ÞJ�incoh is now constructed according to

Yð2ÞJ�incoh ¼ ~x y~yð Þx ¼ ~xyð Þ2 ¼
XJ

j¼1
xjH

ð2;2aÞ
j

 !2

¼
X

j¼mn

xjH
ð2;2aÞ rm; T�tnð Þ

 !2

;

ð3:4:17Þ

where y ¼ Hð2;2aÞ is a vector. Here, Yð2ÞJ�inc is interpreted as a time-invariant, causal filter

followed by a ideal square-law rectifier, in the manner of Fig. 3.12. Note that unlike the

previous two cases, there is no final integration.

Once Að2Þ is factored, whenever this can be done, Hð2;2aÞ is determined from (3.4.16),

and except for possible scale factors, is unique.

×x (rm, tn)

x

x

Bayes 2,
Type 2

Multiplier

ΨJ-incoh

Σ (     )
{xj xj}

   Ideal
integrator

H(2,2)

ˆ ˆ
j

(2)

FIGURE 3.11 Resolution of C
ð2Þ
J�inc by a Bayes (time-varying and causal) matched filter of the

second kind, Type 2, Eqs. (3.4.13) and (3.4.15).
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Analytically, factoringAð2Þ into twocomponentsAð2Þ
1=2 �Að2Þ1=2 is alsopossiblewhenAð2Þ

is composed of one or more symmetrical positive definite covariance matrices of random

processes and fields [21]. A simple example is provided by the case where the signal is

deterministic and its covariance takes the form k̂S ¼ sh i ~sh i. This occurs in the situation

described is Section 3.2.1 where the signal is narrowband and depends only on a uniformly

distributed RF epoch «, Eq. (3.2.12). Then Að2Þ is typically

Að2Þ ¼ k�1N k̂Sk
�1
N ; with k̂S ¼ s~s or a~aþ b~b

� �
=2 ð3:4:18Þ

which allows us to write (since kN ¼ ~kN)

Að2Þ ¼ k�1N s
� �

~sk�1N

� � ¼ k�1N s
� �2 ¼ y~y; and so on; ð3:4:19aÞ

with

y ¼ Hð2;2aÞ; a vector; or yðaÞ ¼ Hð2;2aÞa ; yðbÞ ¼ H
ð2;2bÞ
b ; andHð2;2aÞ ¼ k�1N sh i;

ð3:4:19bÞ

and thus (3.4.16) follows. Here, Hð2;2a;bÞ are vectors.
For deterministic signalswith other random parameters, and purely random signals, we

have kS ¼ s~sh i, which is different from zero, so that

Að2Þ ¼ k�1N s~s k�1N ¼ k�1N k̂Sk
�1
N ; and ) Að2Þ ¼ k�1N k̂

1=2

S

� �2
¼ u~u ¼ ~uu: ð3:4:20Þ

Then, we can write

Hð2;2bÞ ¼ u ¼ a square ðsymmetricÞmatrix;

with Hð2;2bÞ ¼ k�1N k̂
1=2

S ; 6¼ ðHð2;2aÞða;bÞ ;H
ð2;2aÞÞ; refer to Eq: ð3:4:20Þ ð3:4:21Þ

Note that if Hð2;2aÞ ¼ k�1N sh i ¼ Hð1Þ, then Eq. (3.4.4) is a vector. This also occurs if

Að1Þ ¼ k�1N and Að2Þ ¼ k�1N s~s k�1N , that is, s~s ¼ a~aþ b~b
� �

=2, which is now the product of

two or more vectors. This is a consequence of the role of the additive Gaussian noise for the

completely deterministic narrowband signal in coherent detection, and the same signal in

incoherent detection with only a (uniformly) random RF epoch. (For non-Gaussian noise,

these matched filters are still useful as a first approximation to optimality, particularly in

threshold regimes.)

Bayes 2, 
Type 2a

x = {x(rm, tn)}

Zero-memory 
square law

H
(2,2a)

(2,2a)

y
(  )

2

Readout at t = T 

x̃ y

Hx̃ x˜

(x y)2 = ΨJ–inc
~ (2)

FIGURE 3.12 Resolution of C
ð2Þ
J�inc xð Þ by a Bayes matched filter of the second kind, Type 2a,

Eq. (3.5.16) (invariant and causal).
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Finally, from Figs. 3.7–3.12, it is seen that the matched filters here are, of course, linear

filters as required. This is the case without exception for coherent reception (Fig. 3.9).

However, for incoherent reception, one has a choice, provided a suitable zero-memory

nonlinear device is also included, refer to Figs. 3.10–3.12. Here, the matched filter can be

time-invariant (Fig. 3.12) or time-variable (Fig. 3.10), unlike the coherent cases, which are

always time-invariable adjustment always required to aid the matching process.

3.4.4 Wiener–Kolmogoroff Filters [22, 23]

As we have seen in the preceding Sections (3.4.1–3.4.3), the matched filter occurs in a

variety of forms and is an essential component of the optimum detection process. Also as

we have noted, such filters are inherently optimized as part of the Bayes or minimum

average risk procedure. They are, of course, linear and deterministic and appear in a

variety of forms: time-invariant, time-variable, causal, and noncausal, and all embody in

some way the minimization of the effects of the noise accompanying the desired signal at

the end of the observation interval (in both space and time), subject to various constraints

upon the signal.

Matched filters that have the structureHð Þ ¼ k�1N sh i are known asWiener–Kolmogoroff

filters [22, 23], after themenwho (independently) first studied them. (Refer to Section 16.3.1

of Ref. [1]; also see Ref. [24] and Chapter 16, Notes, pp. 1114 and 1115 of Ref. [1]). These

same filters also maximize the output signal-to-noise ratios in linear systems [14, 15] and in

the nonlinear systems of threshold detection. In addition, they minimize the mean square

error between input signal and output signal corrupted by the noise, and as such are also

known asMMSEfilters. Finally, they also belong to theBayes class ofmatched filters, which

are part of optimum detection itself, as demonstrated below (Section 16.3.2 of Ref. [1] and

Chapter 4 of [8]).

We show now that theW–Kfilters are also equivalent to the above time-invariant Bayes

matched filters of detection, specifically toHð1Þ, (3.4.1), and so on, for coherent detection
(see Table 3.1); and for Hð2;2Þ, refer to (3.4.13), etc. For coherent detection, let us begin

with the case of a deterministic signal with random parameters. Specifically, we consider

the general class for which sh iu is different from zero, that is, sh iu 6¼ 0. The noise field is

additive (it may ormay not beGaussian, homogeneous, and (stationary), with a symmetric

(real) covariance matrix kNð¼ ~kNÞ. We wish now to minimize its variance, that is, its

average intensity �IN at the output while keeping a constant signal output intensity—the

condition for a W–K filter. If the (deterministic) vector W represents the W–K filter, we

have initially

~W sh i ¼ C0 > 0ð Þ : constant output sh i ¼ sh iu; and�IN ¼ ~Wn
� �2D E

¼ ~Wn~nW
� � ¼ ~WkNW:

ð3:4:22Þ

Next, we wish to minimize �IN , subject to the constraint ~W sh i ¼ C0, or equivalently,

L 	 �IN þ l ~W sh i; ) dL ¼ d ~W 2kNWþ l sh ið Þ ¼ 0; ð3:4:23Þ

where l is a Lagrangemultiplier (a constant) and the vector variation is dW ¼ d ~W
� �

, since

kN ¼ ~kN, in the usual fashion. Setting d ~W ¼ 0, we obtain the extremum from (3.4.23),

namely,
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W ¼ �l=2ð Þk�1N sh i ¼ ~sh iW ¼ C0; ) �l=2ð Þ ¼ C0= ~sh ik�1N sh i ¼ C0=F sh i 	 C1;

ð3:4:24Þ

which last determines the factor �l=2ð Þ. Accordingly, the weighting function of theW–K

filter is

W ¼ C0k
�1
N sh i=F sh i ¼ C1k

�1
N sh i; whereF sh i ¼ ~sh ik�1N sh i ¼

X

jj0
sj k�1N

� �
jj0sj0 > 0ð Þ:

ð3:4:25Þ

To establish the minimizing nature ofW, that is,�IN , (3.4.22), is a minimum, wemust show

that d2L > 0. This is easily done, since from (3.4.23) and (3.4.24) we obtain from

d ~W ¼ 2kNW�2C0 � sh i=F sh i
� �

d2L ¼ d2 ~W � 0þ d ~WkNdW ¼ d ~WkNdW ¼ d2�IN > 0; ð3:4:26Þ

since �IN > 0 and d ~WkN dW is positive definite. We obtain at once the discrete integral

equation that W obeys, namely,

kNW ¼ C0 sh i or
X

m0n0
kN rm; tn; rm0 ; tn0ð ÞW rm0 ; tn0ð Þ ¼ C0 s rm; tnð Þh i ð3:4:26aÞ

for all rm; tnð Þ in 0; Rj j; 0; Tð Þ.
Comparisons with the matched filter Hð1Þ ¼ k�1N s, derived from the optimum detector

analysis above (Section 3.4.1) givesW ¼ C1H1. Thus, except for the (positive) constantC1

and the fact that now ŝ ¼ ŝh i, theW–Kfilter (3.4.25) is identical to the genericmatchedfilter,

Type I,Hð1Þ, of the Bayes detection analysis of Sections 3.1 and 3.2, here specifically in the
case of originally Gaussian noise. (By adjustingC1 to unity, that is, choosingC0 ¼ F sh i, we
establish the identity.) The equivalence of the W–K filter to Hð2;2aÞ;Hð4;1aÞ, and Hð4;2bÞ for
incoherent reception in detection in Gaussian noise is established from the fact that these

matchedfilters have the same form asW. Accordingly, ifwe now require theW–Kfilter to be

identical to the generic Bayes matched filterHð1Þ, and thereby incorporate theW–K filter in

the generalBayesian frameworkof statistical decision theory (Chapter 1),wegetC1 ¼ 1, so

that W ¼ Hð1Þ ¼ k�1N sh i here. Note, incidentally, during the observation interval or data

acquisition period 0 � rm � R; 0 � tn � Tð Þ, the average signal intensity �IS at the

output of the filter is held constant, refer to Eq. (3.4.22). We have here

IS ¼ �ISð Þ ¼ ~W sh i� �2 ¼ ~W sh i ~sh iW ¼ ~Wk sh iW ¼ C2
0 ¼ F2

sh i; k sh i ¼ sh i ~sh i: ð3:4:27Þ

On the other hand, when sh i ¼ 0, as is the case for incoherent detection and in some

cases coherent detection as well, it is not possible to employ a Wiener filter. One must

use a causal time-varying filter, of the second kind, Types 1 and 2, for example,

Hð2;1Þ;ð2;2Þ;Hð4;1Þ; andHð4;2Þ, Sections 3.4.3, which are now described by matrices, not

vectors like W.

Finally, however, we must observe that the operations here are fundamentally different

from the original MMSE tasks. The matched filter is a component of the detection process,

whose ultimate outcome is expressed in terms of probabilities of correct and incorrect
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decisions. The W–K filter on the other hand is used for linear estimation (E), producing a

minimum mean square estimator, in particular, with the signal known to be present. It

depends statistically on the covariance of the noise only, which can be non-Gaussian.

Detection (D), however, is sensitive to the full statistical nature of the noise, that is, to the

joint pdf values, not only to the covariance. Moreover, in the general framework of decision

theory, the cost functions of detection are different, basically constant costs versus quadratic

error constraints in theW–K situation. That thematched filter in the caseswhere sh i 6¼ 0 and

the W–K filter are formally the same (to within a constant scale factor) in these different D

and E operations is largely a statistical coincidence, attributable to the additive Gaussian

nature of the noise (in detection) and to the required linear character of the two filter types.

3.4.5 Extensions: Clutter, Reverberation, and Ambient Noise

When the additive noise contains such signal-dependent noise as clutter and reverberation,

(i.e., scatter noise) as well as ambient noise (which later can contain intentional or

unintentional jamming), we can easily extend thematched filters to include these additional

components. In place of (normalized) covariance of the usual added noisekN,wehavenow
43

kN! kN þ k̂CðSRCCÞ þ k̂I; where k̂C ¼ ðbCÞ2jj0 ðkCÞjj0
h i

; k̂I ¼ ðbIÞ2jj0 ðkIÞjj0
h i

: ð3:4:28Þ

Thus,

bCð Þ2jj0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cCj

cCj0 =cNj
cNj0

q
; bIð Þ2jj0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cIj

cIj0=cNj
cNj0

q
: ð3:4:28aÞ

Here k̂C and k̂I represent the covariance of the scatter noise and the jamming, respectively,

normalized to the noise cNj
. These latter may be highly non-Gaussian, especially when

produced by rough terrain or wave surfaces, or such other sources as communications,

lightning, and vehicular emissions (cf. Chapter 8). In addition, scatter or signal-generated

sources can include “coherent,” that is, resolvable multipath. Not only are these noise types

encountered in electromagnetic propagation, their counterparts also occur in acoustic

environments, both in the ocean and in the atmosphere. However, since matched filters

are by definition linear and at most time-variable, it is sufficient to consider the first-order

covariance (3.4.28) in their design and implementation, where the different relative levels

of k̂C; k̂I vis-à-vis kN are accounted for by their intensity scaling factors bCð Þ2jj0 ; bIð Þ2jj0 ,
(3.4.28a).

Let us proceed formally and begin with the case of ambient and scatter noise,

kNþ k̂C Sincð Þ in the quadratic forms Yð3ÞJ�coh and Yð4ÞJ�inc:

Yð3ÞJ�coh ¼ ~xAð3Þ sh i; where Að3Þ ¼ kNþ k̂C
� ��1

;

Yð4ÞJ�inc ¼ ~xAð4Þx; with Að4Þ ¼ kNþ k̂C
� ��1

k̂S kNþ kCð Þ�1;
ð3:4:29Þ

where k̂S ¼ a20kS with a20 normalized to cM , so that j kSð Þjj0 j � 1. From Eqs. (3.4.28) and

(3.4.29), we can write

43 Most of the covariances in this book are symmetric and scale-normalized, although the unnormalized

representations are not necessarily Hom-Stat.
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Yð3ÞJ�coh ¼ ~xHð3Þ ¼ ~x kNþ k̂C
� ��1

sh i; and ) Hð3Þ ¼ kNþ k̂C
� ��1

sh i; a vector;

ð3:4:30Þ

from which we can calculate Hð3Þ, either from the following discrete integral equation or

directly from (3.4.30), namely,

kNþ k̂C
� �

Hð3Þ ¼ sh i or Hð3Þ ¼ kNþ k̂C
� ��1

sh i; O; Rj j; Tð Þ; ¼ 0 elsewhere:

ð3:4:31Þ

Like Hð1Þ in (3.4.3) and (3.4.4), Hð3Þ is causal, and is illustrated in Fig. 3.9 with obvious

change in notation. A correlation receiver, Eq. (3.4.7), in “white” noise is a simple example,

maximizing its output at tn ¼ T .

For incoherent reception, the generic quadratic form provides the obvious extensions of

(3.4.8). We have

Yð4ÞJ�inc ¼ ~xAð4Þx; withAð4Þ 	 rð4Þ 	 kNþ k̂C
� ��1

k̂S kNþ k̂C
� ��1 ¼ ~H

ð4;1Þ
Hð4;1Þ ¼ ~rð4Þ:

ð3:4:32Þ

Paralleling the analysis of (3.4.9a)–(3.4.12), we obtain directly

Yð4ÞJ�inc ¼ ~xrð4Þx ¼ ~x~H
ð4;1Þ

Hð4;1Þx; with ~H
ð4;1Þ

Hð4;1Þ ¼ rð4Þ ¼ ~rð4Þ ¼ u~u: ð3:4:33Þ

Here Hð4;1Þ, like Hð2;1Þ, is a lower triangular matrix, refer to Eq. (3.4.9c) et seq. so that

Hð4;1Þ 6¼ ~H
ð4;1Þ

and is determined by rð4Þ, Eq. (3.4.32), as a result of the reduction of rð4Þ by a
suitable congruent transformation, refer to Eq. (3.4.8).Hð4;1Þ, likeHð2;1Þ, is a time-variable

causal filter. Figure 3.10 also applies here, with obvious notational changes, and Eq. (3.4.10)

shows its structure. Equation (3.4.12) gives Yð4ÞJ�inc in more detail, with Hð4;1Þ replacing
Hð2;1Þ, and so on.

A similar result applies to the decomposition of Yð4ÞJ�inc when we express it in the

alternative form:

Yð4ÞJ�inc ¼ ~xHð4;2Þx; rð4Þ ¼ Hð4;2Þ ¼ ~rð4Þ; withHð4;2Þ 6¼ ~H
ð4;1Þ

; ð3:4:34Þ

since Hð4;2Þ is a symmetric matrix, whereas Hð4;1Þ is a triangular one, refer to Eq. (3.4.10).
However, the same technique used tomakeHð2;2Þ causal (refer toEq. (3.4.13) et seq.)may be

employed here, with Að4Þ given by (3.4.32) et seq., so that we can write alternatively to

(3.4.13):

Yð4ÞJ�inc ¼ ~x~H
ð4;2Þ

x ¼
XJ

j

xjx̂j ; x̂ ¼ Hð4;2Þx; whereHð4;2Þ ¼ rð4Þ: ð3:4:35Þ

In this case, Fig. 3.11 applies again.
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Finally, we have cases Hð4;1aÞ;Hð4;1bÞ as a variant of case Hð4;1Þ, when rð4Þ factors
according to (3.4.18) and (3.4.20)44, that is,

rð4;1aÞ ¼ kNþ k̂C
� ��1

a ~a kNþ k̂C
� ��1h i

þ kNþ k̂C
� ��1

b
h i

~b kNþ k̂C
� ��1h i

or kNþ k̂C
� ��1

sh i ~sh i kNþ k̂C
� ��1 ð3:4:36aÞ

and

rð4;2bÞ ¼ kNþ k̂C
� ��1

k̂
1=2

S � k̂
1=2

S kNþ k̂C
� ��1

: ð3:4:36bÞ

The first relation arises in the case of purely incoherent reception involving narrowband

noise andsignals,whereonly theRFepochof the latter« is uniformlydistributed.The second

occurs when k̂S ¼ s~sh i. Then, we have formally,

Yð4aÞJ�inc ¼ ~xrð4;2aÞx ¼ ~zz; with z ¼ ~H
ð4;2aÞ

x and Hð4;2aÞ ¼ kNþ k̂C
� ��1

sh i;
ð3:4:37aÞ

Yð4bÞJ�inc ¼ ~xrð4;2bÞx ¼ ~vv; with v ¼ ~H
ð4;2bÞ

x and Hð4;2bÞ ¼ kNþ k̂C
� ��1

k̂
1=2

S :

ð3:4:37bÞ

Here Hð4;2aÞ is a vector, representing a causal time-invariant filter, and Hð4;2bÞ is a square
symmetric matrix, which can be rendered causal by the methods of Section 3.4.3, refer to

Eqs. (3.4.13) et seq. Figure 3.9 is applicable to Hð4;2aÞ, while Fig. 3.11 represents Hð4;2bÞ,
which is a time-variable filter.

3.4.6 Matched Filters and Their Separation in Space and Time I

Here we examine the role of the matched filter on the test statistic Yx�J (Eq. (3.4.1)) and
on the detection parameter Yx�J, when the separation of space and time processing is

imposed at the receiver. This is a constraint on optimality, since for the received fields

space and time are not generally physically separable (Section 2.5). The result can be

a degradation of performance, especially for broadband signals. The trade-off is usually a

simpler processing procedure when this condition is imposed, as it permits separate

optimizations of the space and time portions of reception.

3.4.6.1 Separation of Yð1ÞJ ¼ ~xk�1N a We begin by considering the input to the receiver

of the general type ~xk�1N a (Eq. (3.4.1)). First, we introduce the matched filter H ¼ k�1N a,

expressed in more detail as the solutions to the set of equations.

kNH ¼ a or
X

m0;n0
kN rm; tn; rm0 ; t̂n0 tnð ÞHðaÞ rm0; t0n

� � ¼ a rm; tnð Þ; with

0 � rm; tnð Þ � R; Tð Þ; 0; elsewhere; j ¼ mn ¼ 1; . . . ; J: ð3:4:38Þ

44 Recall that kN; k̂C; k̂S, and so on are all symmetric and positive definite.
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Then, ~xk�1N a ¼ ~xHðaÞ ¼PjxjH
ðaÞ
j ¼

P
m;nH

ðaÞ
m;nxm;n and so on, which is the familiar result

in the general case, refer to Eqs. (3.1.6) and (3.1.6a). (A similar result holds for ~xk�1N b,

namely, ~xk�1N b ¼Pj¼m;nH
ðbÞ
m;nxm;n in the narrowband cases of Section 3.2.)

Next, we introduce the separation of space and time. This gives us (also for the broadband

cases when a ! ŝ)

~xk�1N a ¼ ~xHðaÞ ¼
X

mn

xmH
ðaÞ
m unĤ

ðaÞ
n ¼

X

m

xmH
ðaÞ
m �

X

n

unĤ
ðaÞ
n ; where now xj ¼ x rmð Þu tnð Þ

~xk�1N b ¼ ~xHðbÞ ¼
X

j¼mn

xmunH
ðbÞ
m Ĥ

ðbÞ
n ð3:4:39Þ

The discrete integral equations (3.4.38) now become (for nb noise)

X

m0
kN rm; rm0ð Þ HðaÞ rm0ð Þ

HðbÞ rm0ð Þ

 !¼
¼

a rmð Þ
b rmð Þ

 !

; m ¼ 1; . . . ;M

0 � r1; r2; . . . ; rM � R

ð3:4:40aÞ

X

n0
kN tn; t

0
n

� � Ĥ
ðaÞ

t0n
� �

Ĥ
ðbÞ

t0n
� �

0

@

1

A
¼
¼

â tnð Þ
b̂ tnð Þ

 !9=

;
; n ¼ 1; . . . ;N

0 � t1; t2; . . . ; tN � T ð3:4:40bÞ

Equation (3.4.39) can also be written

~xk�1N a
� �

nb
¼
X

m

Am

X

n

Bn ¼ ~1M �A
� �

~1N �B
� �

; 1M ¼ 1; 1; . . . ; 1M½ �
1N ¼ 1; 1; . . . ; 1N½ �:

ð3:4:41Þ

To achieve ~xk�1N a
� �2

nb
, we proceed as follows:

~xk�1N a
� �2

nb
¼ ~xHð Þ2Y

X

m;n

xmHmunĤn

� �




2

¼
X

mn

X

m0n0
xmHmxm0Hm0ð Þ unĤnun0 Ĥn0

� �

¼
X

mm0

X

nn0
AðaÞ � BðaÞ
� �

; where AðaÞ ¼ Amm0½ � ¼ xmHmxm0Hm0½ �

BðaÞ ¼ Bnn0½ � ¼ unĤnun0 Ĥn0
� �

9
>>>>>>>=

>>>>>>>;

: ð3:4:42Þ

To diagram this, we write as in Fig. 3.1.3.

3.4.6.2 Separated Structure of the Test Statistic Y*
x�inc We are now ready to give the

complete structure of Y*
x�inc ¼ ~xk�1N a

� �2þ ~xk�1N b
� �2

in the separable cases. Referring to

Eqs. (3.2.5)–(3.2.9),

Y*
x�incjnb ¼ ~xk�1N a

� �2þ ~xk�1N b
� �2 ¼ ~x k�1N a~aþ b~b

� �
k�1N

� �
x 	 ~xCx: ð3:4:43Þ
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For this we need a parallel branch for ~xk�1N b
� �2

and as above a designation to distinguish

the matched filters HðaÞ from HðbÞ. For ~xk�1N b
� �2

, following the analysis for ~xk�1a
� �

,

we have

~xk�1N b
� �2 ¼

X

mm0

X

nn0
AðbÞ � BðbÞ ¼

X

mm0

X

nn0
xmH

ðbÞ
m xmH

ðbÞ
m0

� �
uðbÞn Ĥ

ðbÞ
n u

ðbÞ
n0 Ĥ

ðbÞ
n0

� �

nb
:

ð3:4:44Þ

Thus, the complete reduction of the separable space–time data is

Y*
x�inc!Y*

x�incjsep: ¼
X

mm0

X

nn0

�
xmH

ðaÞ
m xm0H

ðaÞ
m0

� �
uðaÞn Ĥ

ðaÞ
n u

ðaÞ
n0 Ĥ

ðaÞ
n0

� �

þ xmH
ðbÞ
m xm0H

ðbÞ
m0

� �
uðbÞn Ĥ

ðbÞ
n u

ðbÞ
n0 Ĥ

ðbÞ
n0

� ��

nb

ð3:4:45Þ

with a second branch added at H!H
ðbÞ
j¼mn in Fig. 3.13.

3.4.6.3 Separated Structure of the Detection ParameterY*
s Performance is measured

for coherent detection using the detection parameter Y*
s�coh ¼ ð~̂sk�1N ŝÞS�T, refer to

Eqs. (3.1.3a) and (3.1.9a) for the coherent cases treated here, and for the incoherent

cases, with the help of Y*
s�inc ¼ ~ak�1N aþ ~bk�1N b

� �
=2

� �
S�T :nb, refer to Eqs. (3.2.5),

(3.2.19a), and (3.2.22). We have

Y*
s�cohjsep: ¼

X

mm0
ŝm k�1N

� �ðrÞ
mm0 ŝm0

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�
X

nn0
un k�1N

� �ðrÞ
nn0un0

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
; k
ðxÞ
N ¼ kN rm; rm0ð Þ

k
ðtÞ
N
¼kN tn;tn0ð Þ

;

¼
X

ŝmHm �
X

n

unĤn ð3:4:46Þ

for the coherent cases, where Hm; Ĥn are the respective matched filters, each respectively

determinedby the setm¼1, . . .,M, andn¼1, . . .,Nequations, in themannerof (3.4.40a) and

(3.4.40b). For the incoherent cases, Y*
s�incjsep: becomes

FIGURE 3.13 Schematic of ~xk�1N a, when x ¼ x rmð Þu tnð Þ½ � is separated into space and time

components.
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Y*
s�incjsep ¼

1

2

X

m

amH
ðaÞ
m

X

n

unĤ
ðaÞ
n þ

X

m

bmH
ðbÞ
m

X

n

vnĤ
ðbÞ
n

 !

nb

; an ¼ u tnð Þ; vn ¼ v tnð Þ;

ð3:4:47Þ

which is a simpler result thanYx�incjsep:. Alternatively, solving for H
ðaÞðbÞ
m ; Ĥ

ðaÞðbÞ
n gives the

pair of discrete (sets of) equations (3.4.41) in the general cases of imposed separability.

Performance in the two situations is compared by contrasting the effects of Y*
s�coh;Y

*
s�inc

with Y*
s�cohjsep;Y*

s�incjsep, respectively, in the expressions for the error probabilities under
H0 and H1. We have from (3.1.3a) and Eqs. (3.4.46) and (3.4.47)

Y*
s�coh ¼

X

j¼mn

ŝ rm; tnð ÞH rm; tnð Þ �
X

j¼mn

ŝ rmð ÞH rmð Þu tnð ÞĤ tnð Þ 	 Y*
s�cohjsep; ð3:4:48aÞ

Y*
s�inc ¼

1

2

X

j¼mn

ajH
ðaÞ
j þbjH

ðbÞ
j

h i
� 1

2

X

mn

amunH
ðaÞ
m Ĥ

ðaÞ
n þbmvnH

ðbÞ
m Ĥ

ðbÞ
n

� �
	Y*

s�incjsep�nb;

ð3:4:48bÞ

with the unconstrained case giving a higher (or equal) value ofY*
s than the constrained case,

since a constraint generally limits optimality.

The matched filters in time have a direction, from a point in the past to the “now” of

operation. Thus, we wish the filter to “accumulate” the past until the present, and so we set

their response (i.e., memory) to have the formHn ¼ H TN�tnð Þ; 0 � tn � TN ; 0 otherwise,
where TN ¼ NDt ¼ tN . (A delay-line filter with cutoff at t ¼ T, the end of the observation

period TNð Þ will serve.) For the spatial filter, there is not a preferred direction: forward or

backward in space in arbitrary, and hence H rmð Þ ¼ H �rmð Þ. We choose one or the other

and accumulate, the direction being optimal. Thus, we represent the matched filters of the

unconstrained cases byHmn ¼ H rm; TN�tnð Þ; 0 � rm � Rj j; 0 < tn < TN ; and ¼ 0 out-

side this space–time interval, with the spatial constraint determined by the size of the

aperture (or array) and time constraints specified by a setting on the delay line, namely, by

the observation period 0; TNð Þ. In the commonoccurrence of (imposed) separability of space

and time operations, the matched filters response isHmn ¼ HmĤn ¼ H rmð ÞH TN�tnð Þ, with
the aforementioned limits.

3.4.6.4 “White” Noise in Space and Time A situation of frequent occurrence is one

where the noise is “white” in space and time, so that djj0 ¼ dmm0dnn0 , or at least is

approximated by this condition. Then, the discrete integral equations are immediately

soluble, since kN ¼ djj0 ¼ dmm0dnn0 and therefore

ðunconstrainedÞ: H rm; tnð Þ ¼ a rm; tnð Þ
ðconstrainedÞ: H

ðaÞ
m ¼ a rmð Þ; H

ðbÞ
m ¼ b rmð Þ; Ĥ

ðaÞ
n ¼ â tnð Þ; Ĥ

ðbÞ
n ¼ b̂ tnð Þ:

ð3:4:49Þ
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Specifically, for the coherent and narrowband incoherent cases, we have

ŝj ¼ aðmÞon s
ðmÞ
0 ; ŝj

� �
sep
¼ Amŝm �Anŝnffiffiffiffiffi

cj

p ¼ A rmð Þŝ rmð Þ �A0 tnð Þŝ tnð Þffiffiffiffiffi
cj

p ; ð3:4:50aÞ

Unseparated: Separated:

aj

bj

3

5

nb

¼AjcosFj¼
A
ðmÞ
0nffiffiffiffiffi
cj

p cos v0tn�fnð Þ� k0�kOR
ð Þ�rmð Þ

¼AjsinFj¼
A
ðmÞ
0nffiffiffiffiffi
cj

p sin v0tn�fn� k0�kOR
ð Þ�rmð Þ

9
>>>>>>=

>>>>>>;

;
aj

bj

3

5

sep

¼Am rmð ÞA0 tnð Þffiffiffiffiffi
cj

p cosðÞncosðÞmþsinðÞnsinðÞm
� �

¼A rmð ÞA0 tnð Þffiffiffiffiffi
cj

p sinðÞncosðÞnþcosðÞmsinðÞm
� �

:

ð3:4:50bÞ

The performance parameters (3.4.46) and (3.4.47) become with the help of (3.4.49).

Y*
s�cohðsepÞ ¼

X

m

ŝ2m

X

n

u2n; Y*
s�inc

sep
nb ¼

1

2

X

mn

a2mu
2
nþb2mv2n

� �
nb


ð3:4:51Þ

¼c�1
X

mn

A2
ms

2
mA

2
ns

2
n6

1

2c

X

mn

A2
mA

2
n¼

1

2c

X

mn

A
ðmÞ
0 rmð Þ2A0 tnð Þ2: ð3:4:52Þ

For the nonseparated cases, we have again using

Y*
s�coh ¼

X

mn

ŝðaÞ
2

n ¼ 2c
X

mn

A2
0 rm;tnð ÞsðmÞn

 !

;Y*
s�incjnb

6
1

2

X

mn

a rm;tnð Þ2þb rm;tnð Þ2
h i

¼1

2

X

mn

A
ðmÞ
0 rm;tnð Þ2nb;

ð3:4:53Þ

which shows that except for special cases (e.g., A
ðmÞ
0 rm;tnð Þ2¼A

ðnÞ
0 rmð Þ2A0 tnð Þ2), they are

not equal.

In addition, the test functions Y*
x in the two situations are also not equal. We have

Y*
x�coh ¼ ~Hx ¼ ~̂s x ¼

X
j
ŝjxj

!
X

mn

HmxmHnvn ¼
X

mn

x rmð Þa rmð Þu tnð Þâ tnð Þ ¼
X

m

x rmð Þa rmð Þ
" #

X

n

u tð Þâ tnð Þ

¼ AR

X
u tð Þâ tð Þ ð3:4:54aÞ
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Y*
x�inc ¼ ~H

ðaÞ
x

� �2
þ ~H

ðbÞ
x

� �2
¼ ~x HðaÞ ~H

ðaÞ þHðbÞ ~H
ðbÞ� �

x

!
X

mn

X

m0n0
xmxm0H

ðaÞ
m H

ðaÞ
m0

� �
unun0ĤnĤn0
� �þð ÞðbÞmm0 ð ÞðbÞnn0

h i

¼
X

mn

x2m a2mâ
4
nþ b2mb̂

4

n

� �
¼
X

mn

x rmð Þ2 a rmð Þ2â tnð Þ4þ b rmð Þ2b̂ tnð Þ4
h i

¼ A
ðaÞ
R

X

n

â4nþA
ðbÞ
R

X

n

b̂
4

n

9
>>>>>>>=

>>>>>>>;

separated

ð3:4:54bÞ

where the differences are directly seen. (The different indexes (m, n) here and above denote

different functions.) TheAR;A
ðaÞ
R ;A

ðbÞ
R are the array contributions, and exhibit equivalencies

for the case (M¼ 1), where the array is separately optimized or not. Since the unconstrained

cases giveahigher (or equal) valueofY*
x andY

*
s ,wemayexpect that these test functionswill

provide a higher (or equal) value against the prechosen threshold. Note that if we use for the

signal a or b (a choice that is arbitrary, refer to Eq. (3.2.31)), we need to consider only the

terms involving (a) or (b) inY*
s�inc above. For the test statistic, however, both terms a and b

are required. In case ofY*
s�inc, this simplifies the relation inSections 3.4.6.3 and3.4.6.4. In the

more general situation involving averages over the signal parameters, we replace s by sh i, a
by ah i, and so on in the quadratic forms (3.4.1) defining these matched filters (represented

byH
ðaÞ
n ; Ĥ

ðAÞ
n et seq.). The averages over the space and time factors are likewise separated, as

they are for the solutions to the discrete integral equations for the matched filters.

3.4.7 Solutions of the Discrete Integral Equations

Finally, there remains the taskof evaluating thevarious discrete integral equations that define

the matched filters discussed in Sections 3.4.1–3.4.6. These matched filters are basically

described by three types of disparate relations, with a number of variants, summarized in

Section 3.4.8 following, refer to Table 3.1. The generic types are

ðiÞ kN
Hð1ÞsW
Hð2;2aÞ

	 

¼ sh i

ðiiÞ Eqs:ð3:4:21Þ kN Hð2;2bÞ

Hð2;1Þ

	 

¼ k̂

1=2

S

ðiiiÞ kNHð2;2Þ ¼ k̂Sk̂
�1
N ð3:4:55Þ

in the space–time sampling interval D ¼ [S] � [T], and is 0 outside this interval, with the

normalized covariance of noise and signal (where appropriate).45 These noise and signal

covariances are furthermore postulated to be real, symmetric, and positive definite, and

unless otherwise indicated, represent non-Hom-Stat fields.

45 Note that for the unnormalized forms, one has KN ¼
ffiffiffiffiffiffiffiffiffiffi
cjcj0

p
kNð Þjj0

h i
and kN in (i) is replaced by

KN ¼ Ĥ
ð Þ ¼ Sh i, where Ĥ

ð Þ ¼ Hð Þ=c1=2
j

h i
, vide (3.1.6) et seq., and Ĥ

ð Þ
now has the dimensions of S½ ��1, S½ �

denoting signal amplitude. Alternatively, all the normalized quantities in (3.4.55) are dimensionless. See p. 142

and the remarks in Section 3.4.7.2.
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The solutions to these equations essentially require at least finding the eigenvalues of

the various covariances.46 This may be accomplished in a variety of efficient ways,

depending on the size of the covariance matrixes involved. Before referring to their

specific numerical techniques [19, 20], let us obtain the formal solutions for these (real)

matched filters by employing orthogonal matrices R1;R2; . . .ð Þ to reduce them to

diagonalized form, that is, in terms of their eigenvalues. The following examples illustrate

the procedures for the Bayes matched filter types summarized in Eq. (3.4.55) and derived

in Sections 3.4.1–3.4.5.

Here, the real normalized covariance kN, which represents the more general situation of

non-Hom-Stat fields, is

(i) symmetric and positive definite, that is, kN ¼ ~kN;

(ii) has a defined inverse, also symmetric and positive definite, that is, det

kN 6¼ 0; k�1N ¼ ~kN
� ��1

;

(iii) has real positive eigenvalues, none of which are zero, which is the necessary and

sufficient condition for (i) and for which a real orthogonalmatrixR is obtainable.47

The orthogonal matrix R has the defining property that

~RR ¼ R~R ¼ I or R ¼ ~R
�1
; ~R ¼ R�1; ð3:4:56Þ

where I asusual is the identitymatrix I ¼ djj0
� � ¼diag(1, 1, . . ., 1). TheorthogonalmatrixR1

diagonalizes kN, that is, ~RkNR1 ¼ LN lNj

� �
. Let us consider the following examples:

Example 1: knH
ð1Þ ¼ s : ) Hð1Þ ¼ k�1N s

or

H1R1 ¼ k�1N sR1 ¼ k�1N
~R1~s

)R1
~R1

~H
ð1Þ ¼ R1k

�1
N

~R~s

~H
ð1Þ ¼ L�1N ~s or Hð1Þ ¼ sL�1N ;

or

Hð1Þ
X

j0
sjdjj0

.
lNj0

" #

¼ sj=lNj
� �

ð3:4:57Þ

whereLN ¼ lNj � djj0
� � ¼ ~LN

or L�1N ¼ djj0=lNj
� � ¼ ~L

�1
N

)

where we have used the diagonalizing properties ofR1, refer to the various steps leading to

(3.4.57). The result is the eigenvalue reduction of the normalized covariance kN and the

46 The square root of a real matrix requires that the matrix be symmetric and at least positive semidefinite

(Chapter 6, Section 5, pp. 92 and 93 of Ref. [21].
47 See pp. 54–58 of Ref. [21] for these and for other properties of general symmetric matrices, refer to Chapter 4,

ibid.
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desired solution for thematchedfilterHð1Þ, which can bemade identical toW, theW–Kfilter

(3.4.26a), namely:

Hð1Þ ¼ sj=lNj
� � ¼ W ; ðEq:ð3:4:26aÞwith C1 ¼ 1; p: 185Þ: ð3:4:58Þ

In the situation where the coherent average of the signal sh i is different from zero, we see at

(3.4.57)

Example 1a : kNH
ð1Þ ¼ sh i : Hð1Þ ¼ sj

� �
=lNj

� � ¼ Wsh i ð3:4:58aÞ

For the unnormalized cases, KN, we obtain

Example 1b : KNĤ
ð1Þ ¼ Sh i : Ĥð1Þ ¼ Sj

� �.
l̂Nj

h i
¼ sj
� �. ffiffiffiffiffi

cj

q
lNj

h i
; with l̂Nj ¼ cjlNj:

ð3:4:58bÞ

When we consider the cases of signal samples represented by symmetric (positive definite)

matrices like k̂
1=2

s , refer to (3.4.21)wemust use another (necessary and sufficient) property of

orthogonal matrices, namely, that one orthogonal matrix can simultaneously diagonalize

two symmetricalmatrices (like kN and k̂
1=2

s ), provided they commute, which they clearly do

here (see Chapter 4, Theorem 5 of Section 11 of Ref. [21]) The Bayes matched filters in this

example are as follows:

Example 2 : Hð2Þ ¼ k�1N k̂
1=2

s : ~R2H
ð2ÞR2 ¼ ~R2k

�1
N R2

~R2k̂
1=2

s R2 ¼ L�1N L1=2
s

by Theorem 5, Section 11, Chapter 4 of Ref. [19], (3.4.59a)

Multiply the right-hand side by R�12 , followed by multiplication of the left-hand side by

R2, to get

R2
~R2H

ð2Þ ¼ R2R
�1
2 ¼ Hð2Þ ¼ R2L

�1
N L1=2

s R�12 ¼ R2R
�1
2 L̂

1=2

s L�1N ð3:4:59bÞ
or

Eq: ð3:4:21Þ : Hð2;1Þð2;2bÞL1=2
s L�1N ¼

X

j0
l�1Nj

djj0l
1=2
sj0k

" #

¼ l�1Nj
djj0l

1=2
s

h i
: ð3:4:60Þ

By the same method, we get Hð2;2Þ ¼ k�1N k̂sk
�1
N

Eq:ð3:4:13Þ : Hð2;2Þ ¼ l̂sjdjj0=l
2
Nj

h i
; ð3:4:60bÞ

Note that R1;R2, and so on are different orthogonal matrices, depending on the different

covariances involved, that is, k�1N and k1=2s .

A somewhat extended version of the above technique can be used in case of two or more

added noise covariances, say, involving clutter, interference, or reverberation, as well as

general receiver or ambient noise in the channel, that is, Section 3.4.5. We obtain, for
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example, in case of clutter and ambient noise fields,

Eqs: ð3:4:31Þ; ð3:4:36aÞ; and ð3:4:37bÞ : kNþ k̂C
� �

H 4;2að Þ ¼ sh i;

Eq: ð3:4:37bÞ: kNþ k̂C
� �

H 4;2bð Þ ¼ k̂
1=2

S ð3:4:61Þ

where nowwemust include a relative normalizing factor for the additional noise component

k̂C ((3.4.74a) following). Again, using an orthonormal matrix to effect the reduction of the

sum kNþ kCð Þ, for example,

~R3kNR3þ ~R3k̂CR3

� �
~R3H

4;2að ÞR3 ¼ ~R3 sh iR3; or LNþLCð ÞH 4;2að Þ ¼ sh i ð3:4:61aÞ

we find, as expected, the (vector) matched filter response

H 4;1að Þ 4;2að Þ ¼ lNð Þj þ b2j lCð Þj
n o�1

sj
� �

� �
: ð3:4:61bÞ

Similarly, we obtain for H 4;2bð Þ the matrix

H 4;2bð Þ ¼
�

l̂
1=2

S

� �

j
djj0
.

lNð Þj þ b2j lCð Þj
n o�

: ð3:4:62Þ

Here and wherever l̂S
� �

j
appears, for the normalization with respect to cNð Þj we have

l̂S
� �

j
¼ cSj=cNj

� �
lSj : ð3:4:62aÞ

In case of “white” noise in the receiver, that is, kN ¼ djj0
� � ¼ dmm0dnn0½ �, we have lNð Þj ¼ 1

all m ¼ m0; n ¼ n0ð Þ, that is, LN ¼ I, so that (3.4.57)–(3.4.59) all reduce to the simpler

forms:

H 1ð Þ ¼ sj
� �

; H 2;2bð Þ ¼ l̂
1=2

S

� �

j
djj0

� �
; H 2;1ð Þ ¼ l̂S

� �1=2

j
djj0

� �
; H 2;2ð Þ ¼ l̂Sjdjj0

h i
;

ð3:4:63Þ

Equations (3.4.61b) and (3.4.62) reduce to

H 4;2að Þ ¼ sj
� �

= 1þ b2j lCð Þj
� �h i

; H 4;2bð Þ ¼ l̂
1=2

S

� �

j
djj0= 1þ b2j lCj

� �� �
; ð3:4:64Þ

respectively a vector and a square matrix.

3.4.7.1 Separation of Space and Time48 Physical fields are functions of space and

time, that is, a ¼ a r; t STj Þð , which are not naturally separable into functions of space alone

48 Again, we have non-Hom-Stat covariances, both unnormalized KNð Þ and normalized kNð Þ, and so on.
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and time alone, that is, a r; t STj Þ 6¼ a r Sj Þa t Tj Þððð . Nevertheless, it is often an important

convenience to be able to treat them as separable. In narrowband situations, it is a good first-

order approximation to do so. However, for the broadband cases, separability is definitely a

suboptimizing constraint, which becomes serious for signals and the accompanying noise

that have significant bandwidths. For such signals andnoise, the spatial problemsof coupling

to themedium, embodied in the aperture or array, become significant. The physical elements

are frequency sensitive so that the aperture or array has different electrical or acoustic

“sizes,” and hence produces beam patterns of different resolution over the range of

frequencies employed. At the same time, in the temporal domain, the necessarily fixed

sample-size, that is, processing time, is differently affective for different portionsof theband.

Thematchedfilters in this scenario are thenmuchmore complex functions of frequency than

in the narrowband cases, which latter can be designed for a fixed central frequency f0, and is

then independent of frequency variations. In Section 3.5, we briefly explore the general

broadband case in wave number—frequency space, that is, Fourier four-space. This is done

from the viewpoint of the matched filter as system function, F�1d Hf g ¼ Y u; fð Þ, rather than
asweighting function (H). Here, the spatial and temporal roles, joint and separated, aremore

revealing of their functions than the space–time structures considered in Section 3.4.

Let us nowconsider these separated cases inwhich the single space–timematchedfilter is

separated into two distinct matched filters, one for space and the other for time processing.

Analytically, we represent this by the Kronecker products.

kNH ¼ sh i : kN ¼ k
ðSÞ
N � k

ðTÞ
N ; H ¼ HðSÞ �HðTÞ; sh i ¼ sh iðSÞ � sh iðTÞ: ð3:4:65Þ

We then use the product relation A� Bð Þ C� Dð Þ ¼ ACð Þ � BDð Þ, where A, C are

M1 �M1 matrices and B, D are N � N matrices, (Chapter 12, Sections 5–9, 11, and 12

of Ref. [21]), to write for kNH
ð1Þ ¼ sh i in the separated condition the discrete integral

equations

k
ðSÞ
N HðSÞ

� �
� k

ðTÞ
N HðTÞ

� �
¼ sðSÞ
D E

� sðTÞ
D E

; ¼ 0 outside D ¼ S½ � � T½ �: ð3:4:66aÞ

(Observe that for the complete separation of space and time postulated here, separate

ensemble averages over the signal are required, refer to Eq. (3.4.65).) Equation (3.4.66a)

is equivalent to

k
ðSÞ
N HðSÞ ¼ sðSÞ

D E
; kðTÞHðTÞ ¼ sðTÞ

D E
; ¼ 0 outside D; ð3:4:66bÞ

with similar relations for the other examples of (3.4.55) and Table 3.1 following.

Now the solutions corresponding to (3.4.66b) and to separated versions of (3.4.57)–

(3.4.62) become.

Hð1Þ ¼ Hð1ÞðS�TÞ ¼ Hð1Þ;ðSÞ �Hð1Þ;ðTÞ ¼ lðSÞN

� �

m
sðSÞm

D Eh i
� lðTÞN

� �

n
sðTÞn

D Eh i
ð3:4:67Þ

Hð2;1Þ ¼ Hð2;2bÞ ¼ Hð2;2bÞðSÞ �Hð2;2bÞ;ðTÞ ¼ l̂
ðSÞ
S

� �1=2

m
dmm0

.
lðSÞN

� �

m

� �
� l̂

ðTÞ
S

� �1=2

n
dnn0
.

lðTÞN

� �

n

� �
;

ð3:4:68Þ
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Hð2;2Þ ¼ l̂
ðSÞ
S

� �

m
dmm0= lðSÞN

� �2

m

� �
� l̂

ðTÞ
S

� �

n
dnn0= lðTÞN

� �2

n

� �
: ð3:4:69Þ

In a similar way, we readily find that the separated counterparts to (3.4.61b) and (3.4.62) are

Hð4;2aÞ ¼ Hð4;2aÞðSÞ �Hð4;2aÞ;ðTÞ ¼ lðSÞN

� �

m
þ b2m lðSÞC

� �

m

n o�1
s
ðSÞ
m

D E� �

� lðTÞN

� �

n
þ b2n lðTÞC

� �

n

n o�1
s
ðTÞ
n

D E� �
;

ð3:4:70Þ

the Kronecker product of two vectors, and the Kronecker product of two matrices is for

(3.4.62):

Hð4;2bÞ ¼ Hð4;2bÞðSÞ �Hð4;2bÞ;ðTÞ ¼ l̂
ðSÞ
S

� �1=2

m
dmm0

.
lðSÞN

� �

m
þ b2m lðSÞC

� �

m

n o� �

� l̂
ðTÞ
S

� �1=2

n
dnn0
.

lðTÞN

� �

n
þ b2n lðTÞC

� �

n

n o� �
:

ð3:4:71Þ

(Of course, lðSÞm 6¼ lðTÞn generally, since they are solutions of different discrete equations,

(3.4.66b)) For “white” noise in the receiver, that is, k
ðS�TÞ
N ¼ dmm0½ � � dnn0½ �, we have

lðSÞN

� �

m
¼ 1; lðTÞN

� �

n
¼ 1, which simplifies the results (3.4.67)–(3.4.71) considerably,

refer to Eqs. (3.4.63) and (3.4.64).

3.4.7.2 Unnormalized Covariances The results above apply for normalized

covariances, for example, (3.4.55). Moreover, these results can be readily related to the

unnormalized cases, where KN ¼ KNð Þjj0
h i

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cNj cNj0

p
kNð Þjj0

h i
and KC ¼ KCð Þjj0

h i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cCjcCj0

p
kNð Þjj0

h i
. Similarly, we have for the unnormalized signals and W–K filter, Ĥ

ð1Þ
.

Sh i ¼ sjc
1=2
j

h i
; Ĥ

ð1Þ ¼ H
ð1Þ
j c

�1=2
j

h i
. To see this in the additive noise case, we simply

write

KNþKCð ÞĤð3Þ ¼ Sh i or Ĥ
ð3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cNj cNj0

q
kNð Þjj0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cCjcCj0

q
kCð Þjj0

h i�1
sj0
� � ffiffiffiffiffiffiffiffi

cNj0

qh i
;

ð3:4:72Þ

which in diagonalization by the orthogonal matrix R becomes, since Ĥ
ð3Þ ¼ H

ð3Þ
j c

�1=2
Nj

h i
,

Ĥ
ð3Þ ¼ Ĥ

ð3Þ
j

h i
¼ djj0 l̂N

� �

j
þ l̂C
� �

j

� ��1" #�
sj0
� � ffiffiffiffiffiffiffiffi

cNj0

q �

¼ djj0
ffiffiffiffiffiffiffiffi
cNj0

q
l̂N
� �

j
þ l̂C
� �

j

� ��1" #�
sj0
� ��

: ð3:4:73aÞ
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The eigenvalues of KN and KC are respectively l̂N
� �

j
and l̂C

� �

j
, so that

l̂N
� �

j
¼ cNj lNj; l̂C

� �

j
¼ cCjlCj; l̂N

� �

j
þ l̂C
� �

j
¼ cNj ljþ cCj=cNj

� �
lC

� �
:

ð3:4:73bÞ

Accordingly, (3.4.73a) becomes, in normalized form:

Hð3Þ ¼ L�1NC sh i ¼ djj0 lNjþ cCj=cNj

� �
lCj

� ��1h i
sj
� �� � ¼ djj0

lNj þ b2j lCj

" #

sh i; a vector;

ð3:4:74Þ

b2j 	 cCj=cNj � 0

) k̂C ¼ cCjcCj0=cNjcNj0
� �1=2

kCð Þjj0
h i

	 b2jj0 kNð Þjj0
h i

8
<

:

9
=

;
: ð3:4:74aÞ

The ratio b2j 	 cCj=cNj

� �
, of course, appears in the appropriate place in all diagonalized

expressions involving an additional noise component, such as that for clutter and so on. In

(3.4.60) et seq., we havewritten k̂C for this covariance, normalized tocNj
in its reduced (i.e.,

diagonal) form, where kNð Þjj ¼ kCð Þjj ¼ 1. (This normalizing factor, including the off-

diagonal terms of k̂C, is in general b2jj0 , (3.4.74a).) Equation (3.4.72) can be expressed

equivalently as

Ĥ
ð3Þ ¼ Ĥ

ð4;2aÞ ¼ KNþKCð Þ�1 Sh i ¼ kNð Þjj0 þ b2jj0 kCð Þjj0
n o

cNjcNj0
� �1=2h i�1

Sh i ¼ Ĥjc
�1=2
Nj

h i
;

ð3:4:75Þ

which also shows the structure of theunnormalized covariances in terms of thosenormalized

with respect to cNjcNj0 .

In the case of separated space and time operations considered in Section 3.4.7.1, wewrite

Ĥ
ð3Þ ¼ Ĥ

ð4;2aÞ� �n o

S�T
¼ K

ðSÞ
N þK

ðSÞ
C

� ��1� �
SðSÞ
D E

� K
ðTÞ
N þK

ðTÞ
C

� ��1� �
SðTÞ
D E

ð3:4:76aÞ

¼ dmm

lNð Þmþ b2m lCð Þm

� �
sðSÞ
D E

� dnn
lNð Þnþ b2n lCð Þn

� �
sðTÞ
D E

; ð3:4:76bÞ

with similar relations for Ĥ
ð4;1aÞ

. For Ĥ
ð4;2bÞ

, the average SðSÞ
D E

is replaced by l̂
ðSÞ
S

� �

m
and

sðTÞ
� �! l̂

ðTÞ
S

� �

n
, with l̂S

� �ðSÞ;ðTÞ

m;n
¼ c

ðSÞ
S =c

ðSÞ
N

� �

m
lðSÞS

� �

m
; c

ðTÞ
S =c

ðTÞ
N

� �

n
lðTÞS

� �

n
. The

eigenvalues in these separated cases are l̂jjS�T ¼ l̂
ðSÞ
m l̂

ðTÞ
n , refer to Appendix A.

Finally,when the beam is preformed, that is,M¼ 1, and only the temporal processing can

be optimized, that is, H ¼ Hn;n0
� � ¼ H tn; tn0ð Þ½ �, the space–time solutions above for these

matchedfilters reduce to the simpler formswhere the eigenvaluesEqs. (3.4.57) and (3.4.58))
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et seq. depend only on the index n and j; j0 ! n; n0 in sj
� �

; djj0 , and so on. One adds a gain

factor g0 > 0ð Þ to H here, and replaces the operations ð ÞðSÞ� by 1�, or unity.

3.4.7.3 Matrix Reduction and Evaluation Finally, methods of reducing thematrices in

these discrete integral equations to eigenvalue (i.e., diagonal) form and obtaining specific

numerical results are QR decomposition, SVD (singular value decomposition), reduction

by Cholesky matrices, among others (Appendix A.5, A.6, A.63 of Ref. [31]). These,

among others, are also discussed in Ref. [20, 22, 23, 25], (refer to Bibliography,

Appendix A of Ref. [31]). Chapter 10 of Ref. [21] describes some of these concisely in

a physical context. All these techniques are to be implemented by appropriate computer

programs for the required numerical results (Appendix A.6 of Ref. [31]).

3.4.8 Summary Remarks

Wehave seen from the results of Section 3.4 that there are two classes ofmatchedfilter:Class

I is a J (¼MN) column vector, and Class II is a (J� J) square or triangular matrix, where

either class may apply to coherent or incoherent reception and deterministic or random

signals. Table 3.1 provides a short summary of their classification, type, weighting function

form (vector or matrix), illustrated in the text above.

As we can see from the table 3.1, theWiener–Kolmogoroff filterW plays a prominent role

as the optimizingcomponent of these quadratic formsYð1Þ;Yð2Þ, Eq. (3.4.1).TheW–Kfilter is

distinguished by its linear vector character and its space–time invariance. It can also appear

nonlinearly (i.e., quadratically) in the anatomization of the quadratic form from which it is

derived, for example, Nos. 3, 4, 10–12 of Table 3.4.1. The reduction of the generic quadratic

forms (3.4.1) and (3.4.1a) is clearly not unique: there aremany possiblematchedfilters, but all

are causal, that is, realizable, however complex in structure, and all are capable of handling

non-Hom-Stat covariances. Matched filters for the latter are of course space–time variable.

Finally, in the special case when the accompanying additive noise is spectrally “white”

in the wave number–frequency domain, all our preceding results simplify greatly, since

then kN ¼ 1Njdij0
� �

and the matched filters are now proportional to the replica signals used

in the receiver.

3.4.9 Signal-to-Noise Ratios, Processing Gains, and Minimum Detectable Signals. I

For the detection problems discussed in Sections 3.1–3.3 and in particular for the various

matched filters treated in Sections 3.4.1–3.4.7 and illustrated in Figs. 3.9–3.12, the key

parameter appearing in the probability measures of performance (e.g., 1�b*;a*
F, etc.) is the

quadratic form Y*
s�coh, Eq. (3.1.3a) and (3.1.3b), Y*

s�inc, Eqs. (3.2.5) and (3.2.13). This

includes extensions involvingmore complex forms of (additive) noise backgrounds, refer to

Eq. (3.4.55), and is true for suboptimum detectors as well, represented by Ys�coh;Ys�inc,
where the resulting decisions are consistent, that is, pD! 1 as sample size becomes infinite.

3.4.9.1 Coherent Detection For broad- or narrowband signals (3.1.1a) and (3.1.1b), we

see from (3.1.3) and (3.1.9) that

Y*
s�coh 	 s*2

0 ¼ ~̂skNŝ ¼ ~̂sHð1Þ ¼ ~H
ð1Þ
ŝð1Þ ¼ 2

J ~H
ð1Þ
ŝ

2~̂sŝ

 !
~̂sŝ

J

 !

¼ 2P*
coh � a20�coh

� �*
min

ð3:4:77Þ
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where now J ¼ MN as before and the processing gain P*
coh and associated minimum

detectable signal a20�coh
� �*

min
are defined and represented here by49

P*
coh 	 J ~H

ð1Þ
ŝ=2~̂sŝ and a20�coh

� �*
min
	 ~̂sŝ=J ð3:4:78Þ

for these coherently received signals. Broadly speaking,wemay say that the processing gain

measures howmuch theminimumdetectable signal is increased toproduce theoutput signal,

subject to the decisionH1 orH0. The minimum detectable signal is the smallest input signal

that can be detected under H1. The quantities are, of course, to be understood probabilisti-

cally, as part of the Bayes criterion of detection postulated in this book, as discussed

generally in Chapter 1.

As specific examples, from (3.1.3a) and (3.1.3b), we obtain for broadband signals

P*
coh�bb ¼ J~̂sk�1N ŝ=2~̂sŝjbb ¼ J

XJ

jj0

A0j �A0j0 k
�1
N

� �
jj0

2
ffiffiffiffiffiffiffiffiffiffi
cjcj0

p

,
XJ

jj0

A2
0j

cj

#

bb

ð3:4:79aÞ

and

a20�coh
� �*

min�bb ¼
~̂sŝ

J


bb

¼ 1

J

XJ

j

A2
0j

cj


bb

ð3:4:79bÞ

In case of narrowband signals, we readily see that from (3.1.3b),

P*
coh�nb ¼ Eq: ð3:4:79aÞ; with factor 2 inserted in the denominators of each sum ð3:4:80aÞ

a20�coh
� �*

nb
¼ Eq:ð3:4:79bÞ; with a factor 2 in the denominator: ð3:4:80bÞ

Finally, observing thatHð1Þ is a Bayes matched filter of the first kind, refer to Eq. (3.4.2) and

Fig. 3.9, we can express the processing gain P*
coh more compactly in terms of eigenvalues

of kN, namely, Eq. (3.4.57):

Pcohjbb;nb ¼ J
XJ

j

ŝ2j =lNj
� �

=2
XJ

j

ŝ2j ; ð3:4:81Þ

with the minimum detectable signals represented by (3.4.78), and in detail by (3.4.79b) and

(3.4.80b).

3.4.9.2 Narrowband Incoherent Detection When an exact treatment is possible for the

narrowband cases (Sections 3.2 and 3.3), we have the more complex relations

Y*
s�incjnb 	 s*2

0�inc6 ~ak�1aþ ~bk�1b
� �

=2 ¼ ~H
ðaÞ
aþ ~H

ðbÞ
b

� ��
2 ð3:4:82aÞ

49 The factor 2 in (3.4.77) and (3.4.83) is used in the definition of processing gains here to make it conform to the

more general definition that must be used in the threshold non-Gaussian noise cases.
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from (3.2.22c), where now the matched filters areHðaÞ;HðbÞ, with kNHðaÞ ¼ a; kNH
ðbÞ ¼ b,

where a and b are given by (3.2.2). This is equivalent to

Y*
s�inc


nb

¼ 2
J ~H

ðaÞ
aþ ~H

ðbÞ
b

� �

2 ~aaþ ~bb
� �

8
<

:

9
=

;
� ~aaþ ~bb

2J

� �
	 2P*

inc � a20�inc
� �*

min


nb

; ð3:4:83Þ

where specifically

P*
inc�nb 	 J ~H

ðaÞ
aþ ~H

ðbÞ
b

� �
=2 ~aaþ ~bb
� �

; a20
� �*

min�nb 	 ~aaþ ~bb
� �.

2J: ð3:4:84Þ

In terms of eigenvalues of kN, refer to Eq. (3.4.57), the processing gain finally becomes

P*
inc�nb ¼ J

XJ

j

a2j þ b2j

� �.
lNj

� �
,

2
X

j

a2j þ b2j

� �

nb

¼ J
XJ

j¼1
A2
j =lNj

� �
,

2
XJ

j¼1
A2
j ;

ð3:4:85Þ
with

a ¼ Aj cosFj

� �
; b ¼ Aj sinFj

� �
; Aj 	 AðmÞon

. ffiffiffiffiffi
cj

q
; Fj 	 w0tn�fðmÞm ; j ¼ mn;

ð3:4:85aÞ
and where the minimum detectable signal is now from (3.4.84).

a20
� �*

min�inc


nb

¼
XJ

j¼1
A2
j

�
2J: ð3:4:86Þ

From Section 3.4.4, we observe that the Bayes matched filters Hð1Þ;Hð2Þ;HðbÞ are all W–K

filters here, as a consequenceof theparticular structure of thedetectionY*
s . This is clearlynot

generally the case for the test statistic Y*
x, refer to Sections 3.2.1, 3.2.2, and Section 3.3,

where more complex matched filters are often required, in the manner of Sections 3.4.2,

3.4.3, and 3.4.5.

3.4.9.3 Signal-to-Noise Intensity Ratios The generalized signal-to-noise (intensity)

ratios in the above optimum cases may be directly defined by the relations

S=Nð Þ2*
out�
�

coh
inc

� 	 2P*�
coh
inc

� S=Nð Þ2*�
coh
inc

� ¼ Y*

s�
�

coh
inc

�; S=Nð Þ2*
in�
�

coh
inc

� 	 a2

0�
�

coh
inc

�:

ð3:4:87Þ
In terms of eigenvalues lNj

� �
of kN, from Eqs. (3.4.81), (3.4.85) and (3.4.86) these

generalized signal-to-noise ratios become specifically

S

N

	 
2*

out�coh
¼ 1

ð2ÞJ
XJ

j¼1
ŝ2j =lNj ¼Y*

s�coh ¼ s2*
0�coh;

S

N

	 
2*

out�inc
¼ 1

J

XJ

j¼1
A2
j =2lNj

� �
¼Y*

s�inc ¼s2*
0�inc

ð3:4:88Þ
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with ŝj ¼Aj ¼ A
ðmÞ
0n

=
ffiffiffiffiffi
cj

p
, refer to Eq. (3.1.1a), and a20�coh

� �*
min

; a2inc
� �*

min
given respectively

by (3.4.79b) and (3.4.86). (Note the factor 2 in the denominator of the first set of equations,

which applies when ŝj is narrowband, refer to Eq. (3.1.1b).)

Similarly, relations to (3.4.87) also apply for suboptimum systems belonging to the class

that has Y*
s and so on as its optimum, namely,

Ys ¼ s2
0 ¼ S=Nð Þ2out ¼ 2P S=Nð Þ2in ¼ 2P a20

� �
min

h i

coh

inc

ð3:4:89Þ

This enables us to compare a suboptimum with the corresponding optimum system. For

example, with the same sample size and minimum detectable signals (the more usual

situation in practice), we can write

s2
0 ¼ F*

ds
2*
0 or s2

0=s
2*
0 ¼ F*

d � 1; whereF*
d ¼ P=P*; a20

� �
min
¼ a2*0
� �

min

ð3:4:90Þ

and F*
d is a degradation factor. Comparisons between two suboptimum systems are also

possible:

s2
01 ¼ Fdð Þ12s2

02; Fdð Þ12 � 1; s2
02 � s2

01; where Fdð Þ12 ¼ P01=P02: ð3:4:91Þ

Similarly, comparisons can be made between three or more systems (for the same purpose).

We have s2
0l ¼ Fdð Þlms2

0m;s
2
0m > s2

0l and so on, which we can place say, in descending

order, for example,s2
0l < s2

0ðlmÞ < � � �. In addition,we have the option to compare systems

with the same probabilities of correct detection and the same sample size (J), where the

minimum detectable signals must be different. Thus, we find that

a20
� �*

min�1 ¼ F*
d a20
� �

min�2; ð3:4:92Þ

in case of an optimum system, which has a smaller minimum detectable signal than the

suboptimum one. A third variation on comparisons is to choose equal probabilities of

detection and minimum detectable signals, and determine the increase in sample size,

J > J*, required for this result, thus,P � Jð Þ ¼ P* � J*ð Þgivesus thedesired relationbetween
J and J*.

3.4.9.4 Remarks Since Yð*Þs is the only signal-dependent parameter of the decision

probabilities and does not depend on the relevant threshold (K), used in the decision process,

the results of this section apply equally to CFAR and IO systems. From amore general point

of view, the concepts of minimum detectable signals and processing gains are very useful

in the comparison process, but they are incomplete. They, by themselves, do not provide

the desired probabilities of performance. They are necessary but not sufficient, as can also

be seen by the fact that they involve signal-to-noise ratios, which say nothing about

false alarm probabilities and probabilities of detection. They are a form of second-

moment criteria of performance, refer to Sections 5.3.4 and 5.3.5 of Ref. [1]. They are

related to the relative efficiencies, and asymptotic relative efficiencies, of performance

(Section 6.3.3, pp. 95–102), [28], which likewise are useful but incomplete descriptors of

the associated detection probabilities.
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Finally, we must emphasize that these specific definitions and results apply in the

cases of reception only when an exact treatment,50 such as that described in Sections

3.1–3.3 here, is possible, so that an appropriately simple sufficient statistic for the signal

intensity can be used. In fact, the natural choice of detection parameter in these exact cases

s*2

0�coh;inc ¼ Y*
s�coh;inc

h i
is determined by the pdf values (under H0;H1) of a simplified but

equivalent sufficient statistic (i.e., proportional to a likelihood ratio of Section 1.6), vide the

examples in Sections 3.1, 3.2, and 3.3.1. When, as is usually the case, such is not possible

and only a (canonical) threshold analysis can be constructed, the definitions of processing

gain and minimum detectable signal must be suitably extended, following; see also

Section 3.3.1.1.

3.5 BAYES MATCHED FILTERS IN THE WAVE NUMBER–FREQUENCY

DOMAIN

Although the discrete matched filters of Sections 3.4.1–3.4.5 operate on the normalized

input sampled data x in space–time, their wave number–frequency equivalents, that is,

their discrete Fourier transforms (indicated by the subscript d) can be even more revealing

of their properties. Accordingly, we employ the sampling procedures of Chapter 2,

physically accomplished by an array of M þ 1 sensors distributed in space. Let us begin

first by considering the matched filter Hð1Þ rm; tnð Þ, sampled at rm; tnð Þ, where Hð1Þ is a
function jointly of space (r) and time (t). Later, we shall examine the useful special case

where we impose the separability of space and time on Hð1Þ by representing it as

Hð1Þ rm; tnð Þ ¼ HðSÞ rmð ÞHðTÞ tnð Þ.

3.5.1 Fourier Transforms of Discrete Series

We start by introducing the following 4-vectors and assume ordered, that is, periodic

sampling of the continuous function H(r ,t) in space and time, which means that each

component of the 4-vector is subject to periodicity. Furthermore, the interval between

sample points is r0j j, along a straight line of directionality î0. Thus, for the vector of position
rmð Þ and the component of time tnð Þ, we have

rm ¼ mî0r0; î4tn ¼ î4nT0; pj 	 rm�î4tn ¼ î0m r0j j�î4nT0; pm ¼ î0mr0; ð3:5:1Þ

with rmj j ¼ r2xþ r2y þ r2z

� �1=2

m
¼ m r0j j. Here, r0 is a unit of scalar length,m is the number of

such units, and T0 is the sampling period (Fig. 3.14). In more detail, we see that

î0 ¼ î1 cos f0 sin u0þ î2 sinf0 sin u0þ î3 cos u0

rxm ¼ mr0 cos f0 sin u0; rym ¼ mr0 sin f0 sin u0; rzm ¼ mr0 cos u0

)

: ð3:5:2Þ

50 It is necessary to point out that here there are no additional averages over signal waveform: not in the completely

specified signal case (Section 3.1.1), nor in the incoherent cases of Sections 3.2.1 and 3.2.2. In Sections 3.3.1–3.3.3

however, we do have additive averages h iŝ over signal. These can be accommodated by replacing ða2;*0 Þmin by

ha2;*0 imin, as in
�Y*

ss�inc ¼ �s2;*
0�inc, Eq. (3.3.10a) et seq. Also, we note that the definition of the detection parameter in

Ref. [28], Sec. 6.2, and in Ref. [8], is S=Nð Þ2out ¼ s
ð*Þ2
0 =2, which differs from the above by a factor 2. Similar

modifications occur in the incoherent cases.
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In the Fourier transform space, the complementary vectors are accordingly

q 	 nþ î4f ¼ înnþ î4f ¼ î1nxþ î2nyþ î3nzþ î4f 	 qnþ î4f ; nj j ¼ n2xþ n2y þ n2z

� �1=2

ð3:5:3Þ

where qv ¼ v is a (vector) wave number and f is a frequency. The generalization of the

temporal sampling procedure of Eq. 4.2 of [1], for the discrete ordered series of periodically

sampled values ofH
ð1Þ
j forming thevectorHð1Þ here, is the discrete Fourier transformofHð1Þ,

Y ð1Þ n; fð Þd ¼ Fd

X
j
H
ð1Þ
j

n o
	
XJ=2

�J=2
D0H

ð1Þ rm; nT0ð Þe2pipj � q; ð3:5:4aÞ

The inverse transform is similarly

F�1d Y ð1Þ n; fð Þd
� � ¼

ðn0=2½ �

� n0=2½ �

dn

ðf0=2

�f0=2

df Y ð1Þ n; fð Þde�2piq � pj

¼
ð1

�1
dn

ð1

�1
df Y ð1Þ n; fð Þde�2pip � q

XJ=2

�J=2
Hð1Þ rm; nT0ð Þ

ð3:5:4bÞ

where we note that F
ðJÞ�1
d ¼ SJ=2

�J=2F
ðjÞ�1
d and that

dn ¼ n2dn df sin u du; n0½ � ¼ 2p2n0; D0j ¼ D0 ¼ r0T; refer to Eq: ð2:7:34aÞ; rm ¼ mî0r0

ð3:5:4cÞ
since the now equally spaced sample points of Hð1Þ are along a straight line in space. For

the general case where m intervals have different lengths and directions, see 2.5 and

H rm , T − tn)(

T0

−T 2 T 2tn′ tn + T00, t →

FIGURE 3.14 Discrete periodic temporal sampling of the matched filter response (weighting

function) H rm; tnð Þ ¼ H rm; T�tnð Þ in the sample interval �T=2; T=2ð Þ. (We consider only the

primary intervals of the transform pair (3.5.4a) and (3.5.4b).)
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Figs. 2.11–2.13. The sums in (3.5.4a) and (3.5.4b) are over j ¼ m,n as usual on the basic,

space–time sampling interval is 0D0 ¼ r0T. Figure 3.14 shows a typical time response for

the matched filter. The principle domains of v and f are respectively

6¼ n0=2; f ¼ 0; 2pð Þ; u ¼ 0; pð Þ̂i0 n0½ �=2, (3.5.4b) �f0=2; f0=2ð Þ, where f0 ¼ 1=T0. The

spectral density (3.5.4a) and (3.5.4b) is periodic in wave number and frequency and is

completely specified in the primary interval �1=2 Rj j; 1=2 Rj jð Þ, �1=2T0; 1=2T0ð Þ). Thus,
the spectrum is zero outside these intervals indicated by the bounds on the integrals
(3.5.4b), as the subscript (d) also reminds us. Both the space–time samples and the
resulting wave number–frequency spectrum are limited to finite domains.

These results (3.5.4a–3.5.4c) are directly applicable to those (matched) filters that are

represented previously as vectors, namely, Hð1Þ;Hð2;2aÞ;W;Hð3Þ;Hð4;2bÞ, refer to

Table 3.1. Figure 3.15 shows a typical sampling plan when M is odd or even, for linear

arrays.

For the discrete space and time-variable matched filters that have the generic form

Hð2;�Þ rm; tn; rm0 ; t0nð Þ� �
, that is, are square J � Jð Þ matrices and are generally space and

time-variable, we find by similar extensions of (3.5.4a)–(3.5.4c) that the corresponding

amplitude spectra here are given by

Ŷ
ð2;�Þ
d v1; f1; v2; f2ð Þd ¼ F

J�Jð Þ
d

X

j;j0
Ĥjj0

( )

¼
XJ=2;J=2

j;j0
� J=2;J=2ð Þ

D2
0 � Ĥ

ð2;�Þ
rm; nT0; rm0 ; n

0T0ð Þe2pi q1 � pjþq2 � pj0ð Þ
ð3:5:5aÞ

with the other member of the transform pair

XJ=2;J=2

j! J=2;J=2 j0
Ĥ
ð2;�Þðpj; pj0 Þ ¼ ðFðJ;J

0Þ
d Þ �1ð Þ

Ŷ
ð2;�Þ
d v1; f1; v2; f2ð Þ

n o

¼
ððv0½ �2=4

� v0½ �2=4

dv1dv2

ððf0=2

�f0=2

D�20 Ŷ
ð2;�Þ
d v1; f1; v2; f2ð Þde�2pi q1 �pj þ q2 � pj0ð Þdf1df2 :

ð3:5:5bÞ

M+1
2

M+1
2

210–1–2

3210–1–2–3

M =
2M0 +1

2

M = 2M0
−M 2 M 2

x→

x→0

rox

rox

FIGURE 3.15 Symmetrical linear arrays of sensors (spatial periodic sampled values):

M ¼ 2M0þ 1ð Þ=2, odd number; M ¼ 2M0 ¼ even number, along the x-axis.
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Again, the spectral density is (now doubly) periodic in wave number and frequency,

where the primary intervals on Y
ð2;�Þ
d are given by �1=2 Rj j; 1=2 Rj jð Þ1;2 and

� 1=2ð ÞT0; 1=2ð ÞT0ð Þ1;2 and we consider only this primary interval (see the comments

following Eq. (3.5.4c)).

In addition to the discrete Fourier transforms of the periodically sampled forms of the

matchedfilters Hj

� �
and so on,we shall also need the discrete representation of theHom-Stat

Wiener–Khintchine relations (Section 2.2). These (unnormalized) W–Kh relations are

applicable to the frequent but less usual cases of fields that are (wide sense) homogeneous

and stationary, namely, here for periodically sampled fields in the primary interval

� Rj j=2; Rj j=2;�T=2; T=2ð Þ represented by the (ðJ � JÞ square) matrices

KN rm0�rm; tn0�tnð Þ½ � ¼ KN Drmm0 ; n0�nð ÞT0ð Þ½ � ¼ KN Dp̂j
� �� �

; ĵ ¼ j0�j ¼ m0�m; n0�nð Þ;
ð3:5:6Þ

with Drmm0 ¼ m0�mð Þ̂i0r0. Thus, we have specifically

Dpĵ ¼ Drmm0�î4 n0�nð ÞT0 ¼ m0�mð Þ̂i0r0�î4 n0�nð ÞT0 ¼ Dpk; k ¼ m0�m; n0�nð Þ:
ð3:5:6aÞ

Here q ¼ vþ î4f , as before, refer to (3.5.3), as well as f0 ¼ 1=T0 and v0½ � ¼ 1= R0j j,
refer to (3.5.4b) and (3.5.4c). The discrete Fourier transforms of the periodic series

ĵ ¼ m̂; n̂ð Þ formed by the elements of kNð Þj;j0
h i

¼ kNð Þk
� �

represent the extension of the

W–Kh theorem in the Hom-Stat cases to discrete periodic sampling. It is found from

Section 2.2.1 to be51

WN v; fð Þd ¼ Fd KN Dpĵ

� �n o
¼ D0 �

XK

�K
KN Dpkð Þe2piDpk � q; ð3:5:7Þ

cf. (3.5.6a) above, with the corresponding member of the transform pair

KN Dpkð Þd6F�1d WNf g ¼ 1

2

ðv0½ �=2

� v0½ �=2

dv

ðf0=2

�f0=2

df WN v; fð Þd e2piq �Dpk ð3:5:8Þ

where, as usual, dn is given by (3.5.4c), and for all values in the new primary interval (�K,
K). As before, we confine our attention to the principal interval above (setting the others

51 Henceforth, we drop the designation on the Fourier transform operators F
ðJÞ
d ;F

ðJ; J0Þ
d , and so on, as being evident

from the text as to its order ðJÞ; ðJ; J0Þ.
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equal to zero, to avoid ambiguities and the possibility of attributing spurious energy to the

finite data sample).

Returning now to the general situation of inhomogeneous, nonstationary random

fields, we may obtain further insight into the structure of the above discrete matched

filters and their processing of received signals and noise, by examining their representa-

tions in the resulting finite wave number–frequency domain.52 This is made possible

by the results of Section 3.5.1 where periodic sampling is used. To this end, let us

consider the Fourier domain solution to the unnormalized discrete integral equation53 for

the general W–K filter, described by the weighting function Ĥ
ð1Þ
j , all j for the finite

interval, � Rj j=2; Rj j=2; �T=2; T=2ð Þ, namely,

X

j0
KNð Þjj0Ĥ

ð1Þ
j0 ¼ Ŝsig rm; T�tnð Þ� � ¼ Ŝj

� �
; ð1; 1Þ � j � J;¼ 0; elsewhere; ð3:5:9Þ

where periodic sampling is employed (Section 3.5.1). The deterministic signal Ŝj
� �

embodies the time-reverse of the temporal portion of the matched filter represented by

the (ordered elements of the) vector Ĥ
ð1Þ
. Equation (3.5.9) is exact and may be solved in a

variety of ways, all ultimately requiring numerical methods for specific matrices in

practical applications. But such solutions lack the direct physical insights that the solution

in the wave number–frequency space can provide.

Accordingly, let us consider the following Fourier transform solution, which is nonvan-

ishing only in the finite (n, f ) domain. Again, we consider the general non-Hom-Stat cases

for the covariance function KN (Section 2.4.3.3) Eq. (2.4.40b); for the Hom-Stat case, see

Eq. (3.5.7)). We begin by expressing the exact relation (3.5.9) in terms of its Fourier

transforms F �1d :

F �1d WN n; fð Þd
� �

F �1d Ŷ
ð1Þ
H n0; f 0ð Þd

n o
¼ F �1d Ŝsig n;�fð Þd

n o
; � Rj j=2; Rj j=2;�T=2;T=2ð Þ

¼ 0; elsewhere

9
=

;

ð3:5:10Þ

From (3.5.4b), we now extend the limits on f0; v0½ � to �1ð Þwithout changing the integrals
(viz, Eq. 3.5.10), since only the primary interval of the periodic spectra contributes.

(This includes the wave number–frequency equivalent) of the covariance in space–time,

multipliedbyJ=2, orwhenWN jd in (3.5.10) is set equal to J=2WX jD.) In either instance, these
two intensity spectra have the required dimension

�
S2
�
L½ � T½ �. Then, (3.5.10) can be

52 See the pertinent remarks following Eq. (3.5.4c).
53 Here in Section 3.5.2, we use the unnormalized covariance KN, so that Ĥ

ð1Þ
j in (3.5.9) has the dimensions ½S��1,

where [S] denotes the dimension of amplitude, that is,KN ¼ S½ �2; Srech i ¼ S½ �. In the normalized cases of Section.

3.5.1, Hð1Þ and so on, and in Table 3.1 ff., are dimensionless, as is kN.
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written exactly

X1

j0¼�1

ð1

�1

ð
dndfWN n; fð Þd e�2piq � pj�pj0ð ÞŶ ð1ÞH n0; f 0ð Þd e�2piq �pj0dn0df 0

¼
ðð

�1
dn

1

df Ssig n;�fð Þd
� �

e�2piq �pj ð3:5:10aÞ

With the help of the extended version of Eq. (4.8) [1], namely,

X1

j0¼�1
e�2pi pj�pj0ð Þ�qþpj0 �q0½ � ¼ e�2piq �pjd q0�qð Þ; � n0j j

2
< n0 <

n0j j
2

;�f0=2< f 0 < f0=2;

ð3:5:11Þ

we see that (3.5.10) finally becomes for any pj,

ðð

�1
dv

1

df WN n; fð Þd Ŷ
ð1Þ
H n; fdð Þ� Ŝsig n;�fð Þd

D En o
e�2piq �pj ¼0: ð3:5:12Þ

For arbitrary, and hence all (n, f), this gives the desired result54

Ŷ
ð1Þ
H n; fð Þd ¼ Ŝsig n;�fð Þd

D E.
WN n; fð Þd ; ð3:5:12aÞ

with

Ŝsig n;�fð Þ
D E

¼ Ssig n;�fð Þ� �
e�ivT ð3:5:12bÞ

to account for the time-reversal signal in (3.5.9). Equation (3.5.12a) is the extension to

space–time (or equivalently here towave number–frequency space) of the familiar continu-

ous temporal matched filter55 (cf. Section 16.2 of Ref. [1]), represented now by the discrete

series of sampled values Ĥj0 , Eq. (3.5.9). When KN!KNþKIþKC, we simply replaceWN

by WNIC, the combined intensity spectra corresponding to the sum of the separate

components of ambient, interference (or jamming), and scatter noise.

When the ambient (and system) noise is “white,” so that Eq. (3.5.12b) for this matched

filter becomes

Ŷ
ð1Þ
H n;�fð Þd ¼ Ŝsig n;�fð Þd

D E
= WðSTÞ þWI n; fð ÞþWC n; fð Þ
h i

d
ð3:5:13Þ

54 Incidentally, here the dimensions of Y
ð1Þ
H ; Ŝsig; andWN are respectively a½ ��1; a½ � LT½ �; andWN ¼ a2 LT½ � in

(3.5.13). In the space–time domain KN; Ĥ
ð1Þ

and Ŝsig are correspondingly a½ �2; a½ ��1; Ŝsig ¼ a½ � for Eq. (3.5.9)
above, where [a] = [s] is used interchangeably for the dimension of amplitude.
55 See the historical note at the end of Section 3.5.
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where WI ;WC are (unnormalized) intensity spectra and

WN n; fð Þ ¼W
ðSTÞ
N ¼W

ðSÞ
N

2
� W

ðTÞ
N

2
; and KN r0�r; t0�tð Þ ¼W

ðSTÞ
N

2
d r0�rð Þd t0�tð Þ;

ð3:5:13aÞ

where WðSTÞ has the dimensions
�
S2
�
LT for “white noise” in the wave number–frequency

domain, corresponding to the large number of emitting independent point sources in space–

time now with d r0�rð Þd t0�tð Þ! d î0 m0�mð Þr0
� �

d n0�nð ÞT0ð Þ here.56 For further optimi-

zation by “signal design,” we can also use as our signal theGreen’s function of the medium

in our original matched filter Ĥ
ð1Þ
, refer to Eqs. (3.5.9) and (3.5.12).

3.5.1.1 Space–Time Matched Filter as Optimum Beam Former The important and

inherent feature of the spatial dimension here is that the ordered sum (over m;m0ð Þ) of
samples Ĥ

ð1Þ
pj
� �

in (3.5.4a) now represent for these matched space–time filters optimum

beam forming by the resultant array of connected discrete point sensors, at rm m ¼ð
1; :::;MÞ. Thus, the spatial part of thematched filter response function Y

ð1Þ
H n;�fð Þd , that is,

the so-called system function ([1], Section 2.2.5) here for space–time processing

embodies the formation of an optimum “beam.” With an appropriate added phase

shift (�nOR ¼ a steering vector) to each element of the array, it is then possible to

steer this beam by varying nORð¼ îORnORÞ and then to locate potential signal sources, refer
to Fig. 3.16; (this is discussed further in Section 3.4). Equation (3.5.13) is accordingly

Wave front of α (r, t)z

x

y

VT

VR

x′
y′

′z

RoT

AR 0,− f )(

AR v,− f )(

φ −φoR
φ

θ θ −θoR

OR

rm

îm

îr
P rm)(

îm

RoR

FIGURE 3.16 Receiving array element at rm and (far-field) incident wave front, and steering

vector vOR (cf. Eq. 3.5.14); VR;VT ¼ receiving and transmitting apertures; path delay to

OR ¼
�
1�îm � îOR

�
ROR=c0j j.

56 In all cases, it is assumed that the noise and signal spectra are suitably defined to avoid singular results for the

quadratic forms of Eq. (3.5.1), and that the noise spectra vanish at frequencies 0 < f < 0þ, to avoid technical
problems, that is, Its integrals in the Gaussian cases.
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modified to

Y
ð1Þ
H n�nOR;�fð Þd6 Ŝsig n�nOR;�fð Þd

D E.
W
ðSTÞ
N n; fð ÞþWI n�nOR; fð ÞþWC n�nOR; fð Þ

h i

d

ð3:5:14Þ
when the noise in the vicinity of the receiver can be regarded as isotropic. (When the

noise is homogeneous only, then v is replaced by v�vOR.) We remark that the detailed

structure of v, and hence vOR, depends on the medium of propagation, that is, whether it is

“ideal,” absorptive, or generally dissipative, and so on (Chapters 8–10). In the general

casewhen the noise is non-Hom-Stat, Y
ð1Þ
H is also recognized as the general aperture beam

function (cf. (2.5.2a) and (2.5.2b)) or beam pattern (here for discrete arrays) of

the receiver:

Ŷ
ð1Þ
H v�vOR;�fdð Þ¼ ÂR v�vOR; f Ŝsig

 �
:

� ð3:5:14a 57Þ

(An important case in practice, discussed in Section 3.5.3 presently, arises when we

separate the space and time operations.) Accordingly, we may say, generally (from the

result (3.5.14a) that

Beam formation in reception in noise is the Fourier transform of the aperture weighting

function Ŷ
ð1Þ
N

� �
; and that optimal beam formingðin the Bayes frameworkÞ is the space� time

Fouriertransformof thereceivermatched filterðrepresented herebythediscreteW�K

weighting function Ĥ
ð1ÞÞ:

3.5.1.2 Wave Number as Functions of Frequency We next need to show that wave

number (space) and frequency (time) are not physically independent. This, of course, can be

practically important in the task of effective steering of the optimal (and near optimal)

beams, refer to Eqs. (3.5.14) and (3.5.14a).We begin by noting that these space–time fields,

whether signals or noise, can be expressed as equivalent time-variable quantities: insteadof

r and t being the independent variables, t0 and t can replace them. Thus, for example, the

signal field can be represented alternatively by

S r; tð Þ ¼ S r=c0; t=c0ð Þ ¼ S t0ir; t c0j Þ ¼ S t0; t c0; îr


�
¼ S t0�t; t0 c0; îr


�
;

���
ð3:5:15Þ

which emphasizes the time-variable nature of the signal field here when treated solely as a

function of time at the receiver.58 This is of course possible, from the viewpoint of the field,

57 The dimension of Ŷ
ð1Þ
H ¼ ÂR is S½ ��1 ¼ a½ ��1. In the normalized cases, kNH

ð1Þ ¼ s; Ŷ
ð1Þ
H ! Y ð1Þ ¼ AR is

dimensionless.
58 Of course, here there is no relativemotion of receiver, transmitter, and themediumsupporting the signal field, and

consequently from the customary perspective of these entities, r is simply a fixed position in space.Accordingly, the

filter elements representing the aperture or array coupling to the medium are time invariant here. When there is

(relative) motion of one or more of these components of the channel, then there will be Doppler components,

for example, in the received (or transmitted) field, requiring in turn a time-variable matching filter, for the

shifted frequencies or more generally for a modified amplitude and scaled phase [� v (at-b)] for broadband cases.
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because S(r,t) represents a propagating field, where space and time are related by rj j ¼ c0t,

and where c0 is the phase (or group) velocity of propagation in the medium59 supporting

S(r,t). Furthermore, if we in turn represent the field by its Fourier transform, refer to

Eq. (3.5.4b), in the sample interval D, that is,

S r; tð ÞD ¼
ðn0½ �=2

� n0½ �=2

d3n

ðf0=2

�f0=2

dfSsig n; fð Þd exp 2pi ft�r.n½ �ð Þ ð3:5:15aÞ

for a simple nondispersive medium where fl ¼ c0 or f ¼ c0=l ¼ c0n, so that r � n ¼
rn
�̂
ir � în

� ¼ c0tð Þ�̂ir � în
�
n, the exponent in (3.5.15a) is alternatively

ft ¼ c0v̂in � t̂; ) n ¼ f=c0ð Þ̂in and t̂ 	 îrt
0; with n ¼ nj j ¼ f=c0: ð3:5:15bÞ

Accordingly, |n| and n are specifically here linear functions of frequency,60which shows that
space and time are not naturally separable in a propagating field, as noted earlier, (Section

2.5). In fact, this holds for anyHom-Stat (and non-Hom-Stat) fieldwhere the field variable is

a function of space and time. As we shall see in Chapter 10, the specific argument above can

be extended to ambient and scattered noise fields, and correspondingly to the matched filter

for more complex, that is, dispersive, media (Section 8.2.1).

Thus in general, the dependence of wave number (n) on frequency (f) illustrates the

connectivity between space and time in the generation of field structure and must be taken

into account if thematched filter is to achieve its full optimality. Because of this dependence

of wave number on frequency, Eq. (3.5.15b), we can write (3.5.12b), and more generally

(3.5.14) as

ð3:5:12bÞ : Yð1ÞH n fð Þ�nOR fð Þ; fð Þd ¼ Ssig n fð Þ�n fð ÞOR;�f
� �

d

D E.
WN n fð Þ�n fð ÞOR; f
� �

;

ð3:5:16aÞ
ð3:5:14Þ : Yð1ÞH n fð Þ�nOR fð Þ; fð Þd

¼ Ssig n fð Þ�n fð ÞOR; �fd
� �� �.

W
ðSTÞ
N þ WI þWCð Þ n fð Þ�n fð ÞOR; f½ �

n o
; ð3:5:16bÞ

where for optimization, the steering vector nOR fð Þmust be a similar function of frequency

ton(f),whendirected at a signal source.Again, for these specific results, it is assumed that the

fields here are not necessarily homogeneous and stationary.

3.5.1.3 Clutter and Reverberation: The Inverse (Urkowitz) and (Eckart) Matched
Filters Several important special cases of the Bayes matched filters discussed in

Section 3.5 are also obtained as approximations of the general cases considered in

59 When considered solely as a function of time, as in (3.5.15), a Hom-Stat field S(r,t) becomes nonstationary: the

delay t0m ¼ rm=c0ð Þ from themth-sensor to the reference point ORð Þ (Fig. 3.16) occurs at a time tm independent of

the “memory” time (t) of the filter at rm.
60 For dispersive media, the wave numbers are nonlinear functions of frequency (Section 8.1.4 and Table 8.2).
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Sections (3.4.1)–(3.4.7). These are the so-called Inverse or Urkowitz [29] and Eckart [30]

matched filters, where the former is used in the detection of deterministic signals against

signal-generated noise, that is, strong clutter or reverberation, and the latter is employed in

the detection of stochastic signals generally [31]. For the inverse filter, we have

KNþ K̂C6K̂C, that is, the clutter is dominant. The structure of the resultant filter is

more fully revealed by the corresponding system function Y
ð1Þ
H , refer to Eq. (3.5.13),

which reduces to

Y
ð1Þ
H v; �fð ÞInverse6 Ŝsig v; �fð Þd

D E.
WC v; fð Þd or WC v�vOR; fð Þ� �

; ð3:5:17Þ

respectively, for isotropic or the much less restricted case of inhomogeneous nonstationary

clutter, respectively. In case of Eckart filter, the now stochastic signal may be regarded as a

sequenceofoverlappingpulses that occur randomlyandare themselves randominamplitude

and duration. Here, the observation interval in space and time is D ¼ � Rj j=2; Rj j=2;ð
�T=2; T=2Þ and ismuch larger than the duration of a signal pulse,which is nowdescribed by

Ŝsig ¼Wsig v�vOR;�fð Þ1=2expig v�vOR; fð Þ, where g is a phase factor inserted to make the

filter causal. In practice, it is the time-duration of the interval that is usually governing.

Thus, in case of inverse filter, we first assume pure clutter or reverberation, free of

resolvable, that is, deterministic multipath. Here, the spectral model is a generalized version

of Campbell’s theorem (Section 4.6.2 and Eqs. (4.79) and (4.80), p. 236, of Ref. [1]) for at

least locally Hom-Stat scatter, namely,

WC v; fð Þd ¼ g0

2y2

�t

�Su v; f tj Þ2


�

t
;

	
ð3:5:18Þ

with the corresponding covariance

KC Dr;Dtð Þ ¼ g0y
2 ru Dr;Dt tj Þð it
� ð3:5:18aÞ

ru ¼ u rm; t0 tj Þu rm0 ; t0þDt tj Þð it 	 ru Dr;Dtð Þ��

Dr ¼ rm0�rm;Dt ¼ n0�nð ÞT0: ð3:5:18bÞ

Here, g0 ¼ �n0�t ¼ the total number of the individual overlapping scatter events u rm; tnð Þ,
with 0 � uj j � 1;�t ¼ their averageduration (s), andn0 their expectednumber per second.

(As an example, we have u ¼ exp �btð Þ; 0 < t � 1, and b ¼ 1=�t here.) Next, we make

the usually reasonable assumption that the scatter returned to the receiver is proportional to

the received signal, that is, the scatter intensity is

WC n; fð Þd ¼ g0 Ŝsig n;�fð Þ



2

¼ gŜsig n;�fð ÞŜsig n;�fð Þ*: ð3:5:19Þ

Then, from (3.5.17), we have directly for the inverse filter, the well-known approximate

result

Y
ð1Þ
H n; fð Þinverse6g�10 Ŝsig �n; fð Þ�1: ð3:5:20Þ

228 OPTIMUM DETECTION, SPACE–TIME MATCHED FILTERS, AND BEAM FORMING



For beam steering an adjustable directional component, vOR, can be added (Fig. 3.16).

Note that this form of matched filter does not employ the time-reversal signal (i.e.,

Y
ð1Þ
H n;�fð Þinverse). Furthermore, it is not realizable, without adding an appropriate phase

factor [18, 31]. A variety of additional approximations are implicit in Eqs. (3.5.19) and

(3.5.20), as can be seen on comparison of (3.5.18) with (3.5.19): the average�
2y2=�th Suj j2i

�
6 Ssig
 2, that is, replacing the average of the square by the unaveraged,

deterministic quantity Ssig
 2 and neglecting multiple scatter, as well as ignoring range

dependence for the scatter.

With a strong signal from the transmitter and consequently strong clutter or reverberation

in themedium, theappropriatematchedfilter in the receiver is the inversefilter (Eq. (3.5.20)).

Its temporal behavior (at a given location on the wave front) is explained by observing that

with strong signals of fixed power and not too large bandwidth, this inverse filter has the

desired optimum weighting function H
ðaÞ
C ¼ F�1d

�
Y
ð1Þ
N

�
(Eq. (3.5.20)). As the frequency

spectrum of the signal is broadened, its intensity decreases and the scatter return exhibits a

progressively finer time structure. Thus, when the signal consists of a very short pulse or

train of such pulses, as in the case of radar and some sonar applications, the resulting clutter

or reverberation may be resolved into individual pulses with little or no time overlap. The

result is a consequent improvement in detection and resolution of the desired targets.

(The frequency response of the array (or aperture), aswell as that of the temporal processing,

must be broad enough to accommodate these spectrally broadened signals.)

However, although the resolution is improved through the progressive shortening of the

emittedpulses, a point is eventually reachedwhere the clutter component is dominatedby the

white noise background (cf.W
ðSTÞ
N in (3.5.13)). Subclutter visibility of the target is lost, and

thematchedfilter is oncemore thefilterof the correlationdetector (3.4.6b).Moregenerally, it

is the Bayes matched filter of the first kind, Type 1, embodied in the discrete (normalized)

formHð1Þ ofSection 3.4. (TheBayesfiltersHð2;2aÞ;Hð4;1aÞ; andHð4;2bÞ, respectivelygivenby
(3.4.19b), (3.4.36a), and (3.4.37b), are also of typeHð1Þ, along with theWiener–Kolmogor-

off filters W of Section 3.4.4, except that the former are defined for more complex noise

processes.)

For the Eckart filter, on the other hand, instead of a structured (i.e., deterministic) signal,

we have a purely random space–time signal, which is represented approximately by

Ŝsig n�nOR;�fð Þd ¼Wsig n�nOR; fð Þ1=2d e�igd n�nO; fð Þ; ð3:5:21Þ
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=β′ 2πF∆

=β′ β v̂OR = 2πF∆

2π∆ vF OR)=( 1
2π∆ vF OR )=( 1.5

c0 = 2π∆F

2M0 H; M0 = 4)(

FIGURE 3.17 Beam pattern of Eq. (3.5.31a) for selected values of b0 ¼ b=v̂ORð Þ, Eq. (3.5.31b), v̂OR
as parameter.

BAYES MATCHED FILTERS IN THE WAVE NUMBER–FREQUENCY DOMAIN 229



so that the system function of this matched filter is from (3.5.12b):

Y
ð1Þ
H n�nOR;�fð Þd6Wsig n�nOR; fð Þ1=2d e�igd n�nOR;�fð Þ=W n; fð Þd : ð3:5:22Þ

Here, a suitable phase term gd is also added to ensure causality. A steering vector vOR is

included to allowbeamdirectivity (in the signal), refer toSection 3.5.2.1 above. (Because the

noise here is assumed to be isotropic, steering does not alter thewave number portion of the

space–time intensity spectrum. However, for non-Hom-Stat noise, the noise is directional

and hence WN ¼WN v�vOR; fð Þd .

3.5.2 Independent Beam Forming and Temporal Processing

Although joint optimization of space and time processing is required for strict or uncon-

strained performance, it is often necessary to optimize the two separately, as a matter of

practical convenience in the design of arrays (and aperture) and temporal processors

(Sections 3.4.6 and 3.4.7.1). This scenario, of course, is suboptimum vis-à-vis the joint

procedure, which is presented in the various forms ofmatched filter discussed in Section 3.5.

With separate or disjoint space and time processing, the joint matched filter factors into two

separate matched filters in the following way, refer to Eq. (3.4.65) et seq.:

k
ðSÞ
N HðSÞ

� �
� k

ðTÞ
N HðTÞ

� �
¼ sh iðSÞ � sh iðTÞ ð3:5:23aÞ

and accordingly,

) k
ðSÞ
N HðSÞ ¼ sðSÞ

D E
and k

ðTÞ
N HðTÞ ¼ sðTÞ

D E
: ð3:5:23bÞ

From Eq. (3.5.10), this is equivalent to

Fd W
ðSÞ
N

n o
F�1d Y

ð1ÞðSÞ
H

n o
¼ Fd S

ðSÞ
sig

D En o
; F�1d W

ðTÞ
N

n o
F�1d Y

ð1ÞðTÞ
H

n o
¼ Fd S

ðTÞ
sig

D En o
:

ð3:5:23cÞ

Note that this imposed separation implies that the wave number or spatial factors do not

depend on the same frequency as the time factors (Eqs. (3.5.15), (3.5.15a), and (3.5.15b)).

Accordingly, wemust replace v(f) by v̂ f̂
� �

in the former to distinguish it from the frequency

dependence of the latter. Thus, v̂ f̂
� �  ¼ f̂=c0 6¼ v fð Þj j ¼ f=c0 in the following results for

Y
ðS�TÞ
H .

Proceeding next as in (3.5.10a) and (3.5.11)–(3.5.12b), we obtain again the pair of

relations:

W
ðSÞ
N n̂ð ÞdY ðSÞH n̂ð Þd ¼ S

ðSÞ
sig n̂ð Þd

D E
; n̂ ¼ f̂=c0

� �
îm � în̂
� �

W
ðTÞ
N fð ÞdYðTÞH fð Þd ¼ S

ðTÞ
sig �fð Þd

D E
:

ð3:5:24Þ
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Combining, we have the desired disjoint form, after inserting a steering vector nORð Þ
(Eq. (3.5.14)),

Y
ðS�TÞ
H1

¼ Y
ðSÞ
H1

n̂�n̂ORð ÞY ðTÞH1
�fð Þ ¼ S

ðSÞ
sig n̂�n̂ORð Þd

D E
Ŝsig �fð Þ
D E

=W
ðSÞ
N n̂�n̂ORð ÞWðTÞN fð Þ

ð3:5:24aÞ

Y
ðS�TÞ
H1

¼ A
ðSÞ
R n̂�n̂ORð Þd S

ðTÞ
sig �fð Þd

D E.
W
ðTÞ
N fð Þ; ð3:5:24bÞ

where

A
ðSÞ
R n̂�n̂ORð Þd 	 S

ðSÞ
sig n̂�n̂ORð Þd

D E.
W
ðSÞ
N n̂�n̂ORð Þd ð3:5:25Þ

represents the separately optimized receiving array or aperture, embodied in the system

function Y
ðS�TÞ
H of the matched filter. The characteristic time-reversal of the signal, refer to

Section 3.4.1, is given here by

S
ðTÞ
sig �fð Þd

D E
¼ S

ðTÞ
sig �fð Þd

D E
e�ivT ¼ S

ðTÞ
sig fð Þ*d

D E
e�ivT : ð3:5:26Þ

If the noise field is isotropic, in addition to being homogeneous and stationary (Hom-Stat),

then W
ðSÞ
N n̂�n̂ORð Þ ¼W

ðSÞ
N n̂ð Þ. The factor in the braces h i of (3.5.24b) is the familiar

temporal matched filter.

In the situation of two or more different noise components, for example,KNþ K̂I þ K̂C,

we find that (3.5.13), for the unseparated case, is extended to

Y
ðS�TÞ
H1

¼ S
ðSÞ
sig

D E
S
ðTÞ
sig

D E
= W

ðSÞ
N þW

ðSÞ
I þW

ðSÞ
C

� �
W
ðTÞ
N þW

ðTÞ
I þW

ðTÞ
C

� �
: ð3:5:27Þ

The added terms, W
ðSÞ
N W

ðTÞ
I þW

ðSÞ
N W

ðTÞ
C þW

ðSÞ
I W

ðTÞ
N þW

ðSÞ
I W

ðTÞ
C þW

ðSÞ
C W

ðTÞ
N þW

ðSÞ
C

�

þW
ðTÞ
I Þ > 0 vis-à-visW

ðSÞ
N W

ðTÞ
N þW

ðSÞ
I W

ðTÞ
I þW

ðSÞ
C W

ðTÞ
C clearly reduce the magnitude of

YH1
here and negatively impact the separated case YðS�TÞ with respect to the unconstrained

matched filter (3.5.13). Accordingly, we may expect a possibly significant reduction in

optimality here when two or more different noise fields are present in reception, as well as

from the simpler separability cases involving only a single interfering noise component.

Thus, the optimality properties of the separate space and time matched are individually

retained, but their joint effect is less (i.e., gives a smaller detection parameterYð*Þs�coh;Y
ð*Þ
s�inc)

than the unconstrained cases (Eqs. (3.1.9a) and (3.2.22a).

3.5.2.1 An Example We can use the array (or aperture) function AR, (3.5.25), for the

space–time separable matched filter (3.5.24a) and (3.5.24b) to illustrate the versatility of its

structure. From (3.5.4c), now restricted to space alone, we obtain the beam pattern

AðSÞ n̂�n̂ORð Þd ¼
XM=2

�M=2

r0j j H
ðSÞ
1 mî0r0
� �D E

e2pimr0 î0 � qn
.
W
ðSÞ
N n̂�n̂ORð Þ; ð3:5:28Þ
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where (3.5.4c) gives us n0½ �, and pm ¼ rm ¼ mî0r0 (Eq. 3.5.1) and q
0n̂ ¼ n̂�n̂OR (Eq. 3.5.3).

The simplest class of array structure occurs for H
ðSÞ
1 rmð Þ ¼ Am, a constant “shading” if Am

varies only with m. The simplest version of this in turn is Am ¼ A; > 0ð Þ, for example,

Am ¼ 1, and in both instances for “white” spatial noise, that is, WðSÞ ¼W
ðSÞ
N =2, refer

Eq. (3.5.13a).When the array is linear (and of coursewith sensors at equally spaced intervals

r0) so that rm ¼ îmr0, for example,weget the special but not the uncommon result (M¼odd)

for H
ðSÞ
1 rmð Þ, on setting n̂j j ¼ n̂ORj j and remembering that n̂ ¼ n̂j ĵin̂ and n̂OR ¼ n̂ORj ĵin̂OR ,

namely,

în̂ ¼ îxsinun cosfnþ îysinun sinfnþ îzcosun

înOR ¼ îxsinu cosfþ îysinu sinfþ îzcosu
� �

ðORÞ

9
=

;
ð3:5:29aÞ

and

) H
ðSÞ
1 rmð Þe2pirm �q0v̂ ¼ Ae2pimr0 nORj jFR f;u;f0;u0ð Þ; F0 ¼ sin u cos f�sin uOR cos fORð Þ:

ð3:5:30aÞ

With b ¼ 2pF v̂ORj jr0, the series in (3.5.28) becomes

XM=2

�M=2

eimb ¼ cosM0bþ sinb

1�cosb
	 


sinM0b: ð3:5:30bÞ

Thus, in this examplewhereM ¼ 2M0þ 1 andwith “white” noise in space,we obtain finally

for (3.5.28):

A
ðSÞ
R n̂�n̂ORð Þd ¼ cosM0bþ sinb

1�cosb
	 


sinM0P

� �
B0;

where B0 ¼ 2A=W
ðSÞ
N n0½ � ¼ A=p2n0W

ðSÞ
N ; ð3:5:31aÞ

from (3.5.4c), where now

b ¼ 2pr0 n̂OR sin u cos f�sin uOR cos fORð Þ ¼ 2pDFn̂OR: ð3:5:31bÞ

When the beam produced by the array is pointed at a source at ðu;fÞ, that is

uOR ¼ u; fOR ¼ f, then F ¼ 0 and ) b ¼ 0, with a resulting beam maximum

A
ðSÞ
R

� �

max
¼ 2M0þ 1ð ÞB0 ¼ MB0, proportional to the total number of array elements, an

expected result for this type of configuration.

Since v̂OR ¼ f̂ OR=c0 ¼ 1=l̂OR, where l̂OR ¼ l̂
� �

is the wavelength of a frequency in the

received field, we observe in addition that b increases with frequency, that is, at shorter
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wavelengths, so that the beam pattern is narrowed, although it maintains its relative shape,

with a maximum again at the source (u, f). (In the neighborhood of the source, where b¼
0þ , the pattern is AR6 2M0þ 1�M3

0b
2=2

� �
B0, where M3

0b
2=2� 1, with

b ¼ 2pD �«ð Þcos uORþfORð Þ=l̂, that is,M3
0 2pDð Þ2cos2 uORþfORð Þ �«=l̂

� �2
� 2. Thus,

|«| must be sufficiently small vis-à-vis l̂ to satisfy this inequality. Here « represents the

angular departure of uOR from u, andfOR fromf.) Figure 3.17 shows a typical beam pattern

M0 ¼ 4ð Þ; v̂OR ¼ 1; v̂OR > 1 i:e:; 1=l̂OR ¼ 1; < 1
� �

for the linear array of the example.

3.5.2.2 Narrowband Signals Finally, in the important practical cases of narrowband

signals, the beam pattern or aperture function, that is, the wave number–frequency

response function Y
ð1Þ
H v�vOR; fð Þ (Eqs. (3.5.14a), (3.5.16a), and (3.5.16b)), in both the

nonseparable and separated cases (Sections 3.5.2 and 3.5.3) is insensitive to frequency

variations in case of spatial “white” noise. In fact, this insensitivity is a measure of what

one means by narrowbandedness, (Section 2.5.5). Accordingly, for such narrowband

cases, one has

Y
ðSÞ
H n fð Þ�nOR fð Þð Þd! Y

ðSÞ
H n f0ð Þ�nOR f0ð Þð Þd: f ! f0; a constant: ð3:5:32Þ

Here, f0 is usually the central frequency of the narrowband signal and of the resulting

narrowband noise accompanying it in the matched filter. This insensitivity to frequency

greatly simplifies the beam structure and source localization, since nOR f0ð Þ is constant and
does not require the frequency scanning of nOR fð Þ required in “broadband” systems. Of

course, Eq. (3.5.32) is an approximation, that becomes exact only for monofrequentic

signals. A condition for its acceptability may be obtained from the expansion

Y
ðSÞ
1 Dnð Þ6Y

ðSÞ
1 Dn f0ð Þð ÞþDn � rDvYð Þf¼f0 þ � � � ; rDv ¼ îx

q
q Dvxð Þ þ îy

q
q Dvy
� � þ îz

q
q Dvzð Þ ;

6Y
ðSÞ
1 jf0 1þDn � rDvYð Þf¼f0=Y

ðSÞ
1 jf0

� �
6Y

ðSÞ
1 jf0 exp Dn �Að Þf0

where Af0	rDvY
ðSÞ
1 jf¼f0=Y

ðSÞ
1 jf0

9
>=

>;

Y
ðSÞ
1 Dnð Þ6Y

ðSÞ
1 jf0 Dn �Af0

 � 1; Dn 	 n fð Þ�nOR fð Þ:
ð3:5:33Þ

The condition for the approximation is thus Eq. (3.5.33), jDn �Ajf0 j � 1.

When the spatial noise is notwhite, that is, is “colored,” themoregeneral relation (3.5.28)

must be used, where, however, n̂ ¼ n̂ f0ð Þ again and the steering vector n̂OR ¼ n̂OR f0ð Þ. The
temporal part of the matched filter in these cases of imposed separation of space and time is

given by the temporal factor in (3.5.24b), with Ŝ
ðTÞ
sig �fð Þd in turn given by (3.5.26). For the

more general coupled cases of Section 3.5.2, the dependence on frequency of the spatial

part is also removed, so that space and time are de facto separated. Thus, with the

narrowband constraint, it is also possible to treat the array or aperture independent of

the temporal processing and still retain (approximate) space–time optimality, where the
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optimum aperture function61 is now specified by (3.5.25) and the optimum temporal

processing by the time-factor in (3.5.24b).

3.5.2.3 Summary Remarks Whether or not the noise fields are nonhomogeneous and

nonstationary,we can readily obtain transform, that is,wavenumber–frequency solutions, to

the discrete integral equations defining thesematchedfilters. This is demonstrated in Section

3.5.2. The principal results are as follows:

(1) The system function Y
ð1Þ
H of the matched filter consists of a space–time beam former

or aperture function AR n�nOR; f Ssig
 ��

, (3.5.14a) (Section 3.5.2.1).

(2) The spatial part of this aperture is frequency dependent, alongwith the time-variable

portion of the aperture. This occurs because of the physical nature of the propagating

fields, (Eqs. (3.5.15a)–(3.5.16b), which couple space and time together.

(3) For the general situation (2), the separation of space and time operations is

suboptimum, but is often a constraint imposed on the design of receivers for

convenience in implementation.

(4) However, in the narrowband case, the optimal aperture is insensitive to frequency,

depending only on the constant center frequency f0 of the suitably narrowband

(Eq. (3.5.33)). In fact, this iswhat ismeant here by “narrowband.” Thus, the temporal

processing can be separably optimized without overall system degradation (Section

3.5.3.1).

These results (1-4) apply for the general situation of non-stationary, non-homogeneous

noise fields, and include the Hom-Stat. situation as a special case.

Historical Note:

The concept of the “matched filter” was independently discovered by D.O. North [15a], in

June 1943, and by J.H.VanVleck andD.Middleton at about the same time [14a]. It was after

their analysis that they learned ofNorth’sRCAReport [15a],whichwasduly referenced then

and subsequently [14]. The methods employed in the two investigations, however, were

different: North [15a] used a calculus of variations technique; JHVV and DM used

the Schwartz inequality [14, 14a]. Moreover, the term “matched filter” was originally

introduced by the latter authors, along with applications to other detection problems

[14, 14a,14b], as the titles indicate. Reference [14] appeared in the open literature in

1946. North’s important work [15] was not published until 1963. (Some of this history has

been noted in Threshold Signals, Vol. 24 of theMIT Radiation Laboratory Series, McGraw-

Hill, 1950; see also unpublished correspondence (12/7/98) of DM with Prof. Jerry Gibson,

Southern Methodist University (12/29/98).)

[14a] J.H.VanVleck andD.Middleton, “Theory of theVisual vs.Aural orMeterReception

of Radar Signals in the Presence of Noise,” Harvard Radio Research Laboratory

(RRL), Report No. 411-86,May 1944. See also Ref. [13], p. 218 ofVol. 24, just cited.

[14b] D. Middleton, “The Effect of a Video Filter on the Detection of Pulsed Signals in

Noise,” also p. 218, of Vol. 24, just cited, as well as J. Appl. Phys., 21 (8), 1950.

61 Optimality in the sense of a linear filter maximizing a quadratic form derived under a Bayes criteria for detection

or estimation: see the initial remarks of Section 3.5.
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[15a] D. O. North, Analysis of Factors Which Determine Signal-Noise Discrimination in

Pulsed Carrier Systems, RCATechnical Report, PTR-6C, June 1943.

3.6 CONCLUDING REMARKS

Let us briefly review the results of Chapter 3. In Section 3.1, we have discussed the

prototypical case of coherent detection in additive normal noise, where everything is known

about the signal except its presence or absence. In Section 3.2, a number of examples of

incoherent detection involving narrowband signals, also in additive normal noise, have been

examined. These examples include the narrowband situation where only the signal epoch is

unknown and the extension to includeRayeigh fading of the amplitude. Section 3.3 has been

devoted to the case of a slowly fluctuating noise background and to the incoherent detection

of broadband signals, in normal noise. In Section 3.4, Bayes matched filters and their many

space–time formulations have been defined, discussed, and their eigenvalue solutions

formally obtained. Both space–time invariant and variable filters are described, especially

for dealing with incoherent reception. In Section 3.5, these matched filters are examined in

terms of their Fourier transforms. In the Fourier transform domain of wave number–

frequency, their equivalent representation is shown to be the aperture function, which is

also an optimum frequency-dependent beam former in space–time. However, in case of

sufficiently narrowband signals, this aperture function is shown to be essentially frequency

independent. The treatment in each section of Chapter 3 has also included a variety of

important special cases.

Here, in Chapter 3, we have provided an introduction to explicit results, following upon

the general analysis outlined in Chapter 2, which is not limited to particular classes of

noise fields and signals, and to the general methods presented therein for solutions.

Chapter 3 and subsequent Chapters 4–7, are devoted to realizing the details of these

general procedures, ultimately in non-Gaussian environments. It is, of course, one thing to

describe a general theory and quite another to realize its potential with specific results.

Chapter 3 is one such beginning. All the above is prelude to the difficult problems in

detection and estimation, and elsewhere encountered when the noise fields are non-

Gaussian, a situation that can and does occur in all applications of signal processing.

Chapter 3 and likewise Chapters 4–7, accordingly, are preliminaries to the more complex

and often more realistic real-world environments, where normal noise is by no means the

rule and where the non-Gaussian world can be dominant.
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4
MULTIPLE ALTERNATIVE DETECTION1

In Chapters 2 and 3, we have outlined a theory of optimum binary detection of space–time

fields where the final output of our optimum receiver is a definite decision as to the

presence or absence of a signal. For the detection situation, so far, only at most two

hypothesis states have been considered: signal and noise versus noise, or a signal of one

class and noise versus a signal of another class and noise (see Chapter 1). Here we shall

begin by extending the analysis first to multiple-alternative situations consisting of an

arbitrary number of disjoint hypothesis states, including the case of decision rejection

(Section 4.1). This is followed by Section 4.2 on overlapping signal classes. Section 4.2 is

based on the formulation of Section 1.10, and on decision rejection of signals (Section 4.3)

that are equivocal as to their presence. The extension here to space–time data and

operation is also formally included by introducing the sampling process denoted by the

index j ¼ mn. Here, again,m denotes the spatial location and n the temporal instant of the

received data Xj , or field aj ¼ a rm; tnð Þ, as first noted in Section 1.3.1 and developed in

more detail in Chapters 2 and 3. A short discussion of the results concludes the chapter.

4.1 MULTIPLE-ALTERNATIVE DETECTION2: THE DISJOINT CASES

As we have noted above, the detection and estimation processes considered in earlier

chapters are capable of generalizationwithin the framework of decision theory.We illustrate

this by considering important extensions of the binary detection process, first, for disjoint or

nonoverlapping signal classes.

1 This chapter is mostly adapted from Section 23.1 of Ref. [2], with added material (Section 4.2), and extended

formally to include spatial as well as temporal sampling.
2 This section is based in part on the original work of Middleton and Van Meter [1].

Non-Gaussian Statistical Communication Theory, David Middleton.
� 2012 by the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.
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4.1.1 Detection

Although the binary systems described inChapters 2 and 3 are quite common in practice, it is

frequently necessary to consider situations involving more than two alternatives. Instead of

having to distinguish one signal (and noise) out of a given class of signals from noise alone,

we may be required to determine which one of several possible signals is present. For

example, in communicationapplications avariety ofdifferent signalwaveformsmaybeused

as a signal alphabet in the course of transmission, and the receiver is asked to determine

which particular waveform is actually sent in any given signal period 0; Tð Þ. A second

example arises in radar and sonar, where it is desired to distinguish between several targets

thatmay ormay not appear simultaneously during an observation interval. In fact, whenever

we are required to discriminate between more than two hypothesis classes, we have an

example ofmultiple-alternative detection. Here we extend the binary theory of Chapters 2

and 3 to those multiple-alternative situations where only a single signal can appear (with

noise) on any one observation, that is, to the case of disjoint, or nonoverlapping, hypothesis

classes. The more involved situations of joint, or overlapping, hypothesis classes (an

extension of Section 1.10) are next briefly considered in Section 4.2.

4.1.1.1 Formulation Let us begin with a brief formulation of the decision model. As

before, the criterion of excellence (cf. Chapter 1) is theminimization of average risk, or cost.

Theresultingsystem(i.e., the indicatedoperationson thereceiveddata)whichachieves this is

the correspondingoptimumdetection system.Accordingly,our procedure isfirst to construct

the average risk function [(1.4.6a) and (1.4.6b)] and then tominimize it byasuitablechoiceof

decision rule (e.g., system structure). From Eq. 1.4.6b), the average risk can be written

R s; dð Þ ¼
ð

W
s Sð ÞdS

ð

G
FJ XjSð ÞdX

ð

D
dgC S; gð Þd gjXð Þ; ð4:1:1Þ

where now specifically

(1) s Sð Þ is the a priori probability (density) governing all possible signals S, in which
explicitly

s Sð Þ ¼
XK

k¼0

pkwk Sð Þd kð Þ Sð Þ;
XK

k¼0

pk ¼ 1; ð4:1:2Þ

with pk k ¼ 0; . . . ;Kð Þ the a priori probabilities that a signal of class (or type) k is

present on any one observation. Here, wk is the pdf of S
kð Þ [or of the parameters3 u

of S kð Þ uð Þ], where S kð Þ represents the signals of class k. The class k ¼ 0 is a class of

possible null signals, or “noise alone,” and d kð Þ Sð Þ ¼ 1, when S ¼ S kð Þ, with
d kð Þ Sð Þ ¼ 0; S 6¼ S kð Þ.

(2) S kð Þ r1; t1ð Þ; . . . ; S kð Þ rM; tNð Þ
� � ¼ S

kð Þ
11 ; S

kð Þ
12 ; . . . ; S

kð Þ
j¼mn; . . . ; SM

h i
is the kth signal

vector, whose components are the sampled values of S kð Þ R; tð Þ at the points Rm; tnð Þ

3 In such cases we replace s Sð Þ by s uð Þ ¼ PK

k¼0

pkwk uð Þd kð Þ Sð Þ and Wu for the region of integration.
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in the observation interval DR; Tð Þ. Similarly, we haveX ¼ Xj

� � ¼ X11; . . . ;XMN½ �,
the received-data vector, with Xj ¼ Xmn, and so on, as before.

(3) FJ XjSð Þ; FJ XjS uð Þ½ � are the conditional pdfs of X, given S.

(4) g ¼ g0; . . . ; gK½ � is a set of kþ 1 decisions; g‘ is a decision that a signal of class ‘ is
present versus all other possibilities.

(5) As before, j ¼ mnð Þ is a double index symbol, where m ¼ 1; . . . ;M and

n ¼ 1; . . . ;N J ¼ MNð Þ, denoting, respectively, space and time (see Section 1.3.1

and Eq. (1.3.1).)

As before,C S; gð Þ is a cost function [cf. Eq. (1.4.3)] that assigns to the various S, for one
or more possible decisions g‘; L ¼ 0; . . . ; kð Þ, about the S, some appropriate preassigned

constant costs. These costs are assigned to signal classes: no cost distinction ismadebetween

different signals of the same class or type. Also, as before (Section 1.3.1), d g‘jXð Þ is a
decision rule, or probability.4 The decisions k are governed by the further condition

XK

‘¼0

d g‘jXð Þ ¼ 1; ð4:1:3Þ

which is simply a statement of the fact that a definite decision must be made.

Constant costs are next assigned to the possible outcomes, according to our usual

procedure [Eqs. (1.6.6) in the binary case]. Here we set C
kð Þ
‘ ¼ cost of deciding that a

signal of class ‘ is presentwhenactually a signal of classk occurs.5Thus, if ‘ 6¼ k; C
kð Þ
‘ is the

cost of an incorrect decision, while if ‘ ¼ k;C
‘ð Þ
‘ represents the cost of a correct decision. In

all cases, we have

C
kð Þ
‘ j‘ 6¼k > C

‘ð Þ
‘ ; ð4:1:4Þ

since by definition an “error” must be more “expensive” than a correct choice.

Let us consider the costsC
kð Þ
‘ inmoredetail. For “successful” or correct decisionswehave

specifically

C
�
S 0ð Þ; g0

� ¼ C
0ð Þ
0 ; noise alone is correctly detected;

C
�
S kð Þ; gk

� ¼ C
kð Þ
k ; a signal of class k is correctly detected k ¼ 1; . . . ;Kð Þ:

ð4:1:5aÞ

The costs preassigned to “failures,” or incorrect decisions, are represented by

C
�
S 0ð Þ; g‘

� ¼ C
0ð Þ
‘ ; a signal of class ‘ ¼ 1; . . . ;Kð Þ is incorrectly decided when noise alone

occurs, and

C S kð Þ;g‘

� �¼C
kð Þ
‘ ; a signal of class‘ ‘ 6¼k; ‘¼0;...;K; out ofk¼1;...;Kð Þ

is incorrectlydetected;whena signal of classkoccurs:
ð4:1:5bÞ

4 With 0 � d g‘jXð Þ � 1; ‘ ¼ 0; . . . ;Kð Þ, in the case of detection. For estimation, d gjXð Þ is a probability density
(Sections 1.3.2, 1.3.3).
5 We adopt the convention that the superscript on the cost C

kð Þ
‘ refers to the true or actual state, while the subscript

refers to the decision made.
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Setting p0 � q, we readily obtain the average risk [Eq. (4.1.1)] after integrating over

decision space D. The result is

R s; dð Þ ¼
ð

G

C
0ð Þ
0 d g0jXð Þþ

XK

k¼1

C
0ð Þ
k d gkjXð Þ

" #

qFJ Xj0ð ÞdX

þ
XK

k¼1

pk C
kð Þ
k d gkjXð Þþ

X0M

‘¼0

C
kð Þ
‘ d g‘jXð Þ

" #

FJ XjS kð Þ
� �D E

k
dX

( )

0

BBBB@

1

CCCCA
;

ð4:1:6Þ

subject toEqs. (4.1.3) and (4.1.4),where h ik denotes the statistical average overS kð Þ (or over
the random parameters of S kð Þ), and the prime on the summation signifies that ‘ 6¼ k. Note

that whenM ¼ 1 (the binary case), Eq. (4.1.6) reduces at once to Eq. (1.6.7), with obvious

changes of notation.

4.1.2 Minimization of the Average Risk

At this point, it is convenient to rearrangeEq. (4.1.6)with the help ofEq. (4.1.3) by collecting

coefficients of d g‘jXð Þ. First, let us introduce the expressions

l 0ð Þ
i � C

0ð Þ
i � C

0ð Þ
0 ; i ¼ 1; . . . ;K

l kð Þ
i � C

kð Þ
k � C

kð Þ
0 ;

l ið Þ
k � C

ið Þ
k � C

ið Þ
0 ; i 6¼ k k; i ¼ 1; . . . ;Kð Þ

l ið Þ
k u0; k 6¼ i with l 0ð Þ

k > 0 k > 0ð Þ; l kð Þ
k < 0 k 6¼ 0ð Þ

h i

ð4:1:7Þ

and write6

Ak Xð Þ � l 0ð Þ
k þ

XM

i¼1

l ið Þ
k Li Xð Þ; ð4:1:8Þ

where, as before [cf. Eq. (1.7.2), the Li Xð Þ are generalized likelihood ratios

Li Xð Þ � pi FJ XjS ið Þ
� �D E

i=qFJ Xj0ð Þ: ð4:1:9Þ

For additive signals and noise, this reduces to the simpler relation

Li Xð Þ � pi WJ X� S ið Þ
� �

N

D E

i
=qWJ Xð ÞN ; ð4:1:9aÞ

in which as before, WJ Xð ÞN is the joint Jth-order pdf of the background noise.

After some algebra, we find that the average risk [Eq. (4.1.6)] may now be rewritten

RK s; dð Þ ¼ R0K þRK ð4:1:10aÞ

6 In this notation Li Xð Þ is the abbreviation for L XjS ið Þ
� �

, throughout this chapter.
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R0K � qC
0ð Þ
0 þ

XK

k¼1

pkC
kð Þ
0 > 0ð Þ ð4:1:10bÞ

RK �
ð

G

XK

k¼1

d gkjXð ÞAk Xð Þ
" #

qFJ Xj0ð ÞdX: ð4:1:10cÞ

HereR0K is simply the expected cost of calling every signal (including noise alone) “noise,”

whileRK is the portion of the average risk that can be adjusted by choice of the decision rules.

Again, the precise form of the system is embodied in the likelihood ratios, while the process

of detection is determinedbyour choice of theds and the corresponding regions in data space
G, which are nonoverlapping since the various hypotheses here are mutually exclusive, that

is, the signals are disjoint.

Now, in order to optimize the detection operationweminimize the average risk by proper

selection of the d gkjXð Þ. In essence, this is the problem of finding the boundaries of the

critical regions for the Lk Xð Þ. The argument for minimization is readily given. Since

qFJ Xj0ð Þ � 0 everywhere in G, the average risk [Eq. (4.1.10c)] is least where for each

value of X we choose d to minimize
P

dAk. The procedure, accordingly, is to examine all

As for the given X, selecting the one Akð Þ that is algebraically least7and then for this same

X choosing d gkjXð Þ ¼ 1, d g‘jXð Þ ¼ 0 all ‘ 6¼ kð Þ. We repeat this for all X in G, to obtain

finally a set of conditions on theAks k ¼ 1; . . . ;Kð Þ. Observe from the form ofRK , where the

ds appear linearly, and from the method of minimization itself, that d is automatically a

nonrandomized decision rule, that is, d ¼ 1 or 0 only [Eq. (1.7.4a) et seq.]. Since the Ak Xð Þ
may contain negative parts [Eq. (4.1.7)], we find that to minimize the average risk of

Eq. (4.1.10a) and make a decision gk (signal of type k present in noise) on the basis of

received data X, the explicit conditions on the Ak are that the data X satisfy the following

linear inequalities,

Ak Xð Þ � A‘ Xð Þ or l 0ð Þ
k þ

XK

i¼1

l ið Þ
k Li Xð Þ � l 0ð Þ

‘ þ
XK

i¼1

l ið Þ
‘ Li Xð Þ

and

Ak Xð Þ � 0 or l 0ð Þ
k þ

XK

i¼1

l ið Þ
k Li Xð Þ � 0;

all ‘ 6¼ k; ‘ ¼ 1; . . . ; Kð Þ

ð4:1:11aÞ

for each decision gk k ¼ 1; . . . ;Kð Þ in turn, with

d gkjXð Þ ¼ 1; d g‘jXð Þ ¼ 0; all ‘ 6¼ k; ¼ 0; . . . ; K: ð4:1:11bÞ

For the remaining case of noise alone k ¼ 0ð Þ we have the conditions

Ak Xð Þ � 0 or l 0ð Þ
k þ

XK

i¼1

l ið Þ
k Li Xð Þ � 0; each k ¼ 1; . . . ;K ð4:1:12aÞ

7 Subject (for themoment) to the assumption that for this givenX there actually exists anAk Xð Þ that is algebraically
less than all other A‘ Xð Þ; ‘ 6¼ kð Þ.
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and

d g0jXð Þ ¼ 1; d g‘jXð Þ ¼ 0; ‘ ¼ 1; . . . ;K: ð4:1:12bÞ

4.1.3 Geometric Interpretation

If now we regard the Ls as independent variables, we can at once give a direct geometric

interpretation of themutually exclusive sets of conditions (4.1.11), (4.2.12).Writing Lkð Þ as
the value of the quantity l 0ð Þ

k þPK
i¼1l

ið Þ
k Li Xð Þ and Lk for the hypersurface8 Lkð Þ, we observe

that, in conjunctionwith the hypersurfaces forming the boundaries of the first “2Kþ 1-tant,”9

the equalities in the conditions (4.2.11) or (4.2.12) give the boundaries of a closed region

within which lie all values of Lk Xð Þ associated with the decision gk. Each closed region is

distinct from every other, and the K planar hypersurfaces that form its boundaries are then

from Eqs. (4.1.11), (4.1.12) specified by

Lk ¼ 0; Lk � L‘ ¼ 0 all ‘ ¼ 1; . . . ;K ‘ 6¼ kð Þ for each gk; k ¼ 1; . . . ; Kð Þ
ð4:1:13aÞ

Lk ¼ 0; all k ¼ 1; . . . ;K ‘ 6¼ kð Þ for g0ð Þ : ð4:1:13bÞ
Solving theK linear equations (4.1.11), (4.1.12), or Eqs. (4.1.13a), (4.1.13b),we can show in

straightforward fashion that the various (distinct) K planar hypersurfaces determining the

boundaries of each region all intersect at a point K ¼ K
1ð Þ
0 ; . . . ;K

Kð Þ
0

� �
, where now the Ks

represent a set ofK thresholdsAk X0ð Þ ¼ K
kð Þ
o k ¼ 1; . . . ;Kð Þ, inwhich theX0 are all valuesof

X satisfying this relation. These thresholds depend explicitly only on the preassigned costs,

that is, only on the ls of Eqs. (4.1.11a), and so on. The requirement (4.1.4) ensures that the

point K lies in the first 2kþ 1-tant, that is, all K kð Þ � 0.

A simpler variant of Eqs. (4.2.11), also of practical interest, arises when the problem

becomes that of testing for the presence of one signal of class k in noise against (any one of

the) other possible nonzero signals in noise. The case of noise alone is here eliminated.10

Under these circumstances, the costsC
ið Þ
0 ,C

0ð Þ
0 ,C

0ð Þ
i drop out, and the ls of Eq. (4.1.7) et seq.

are simply l ið Þ
k ¼ C

ið Þ
k k; i ¼ 1; . . . ;Kð Þ � 0. Consequently, if C

ið Þ
k � 0, Ci

ið Þ
k � 0, the Ak Xð Þ

can now never be negative. Minimization of the average risk then gives only the first set of

inequalities in Eq. (4.1.11a), with l 0ð Þ
k ¼ l 0ð Þ

‘ ¼ 0, so that we may write for the decision gk

the modified conditions

XK

i¼1

Li Xð ÞC ið Þ
k �

XK

i¼1

Li Xð ÞC ið Þ
‘ ‘ 6¼ k; all ‘ ¼ 1; . . . ;M; ð4:1:14Þ

8 ForK � 4;Lk ¼ 0 is a plane hypersurface (inL1-; . . . ;L2-space). ForK ¼ 1; 2; Lk ¼ 0 represents a straight line

in two dimensions (of L1-;L2-space), while, for K ¼ 3; Lk ¼ 0 represents a plane surface (in L1-;L2;L3-space).
9 For example, if K ¼ 1, the first “22-tant” first “quadrant;” for K ¼ 2, the first “23-tant” first “octant,” and so on.

Since the likelihood ratios Lk can never be negative, values of Ak Xð Þ must always lie in the first “2Kþ 1-tant.”
10 This is equivalent to setting d g0jXð Þ ¼ 0 ¼ 1�PK

k¼1d gkjXð Þ [cf. Eq. (4.1.3)] in Eq. (4.1.6) and proceeding as
above. The quantity qFJ Xj0ð Þ in Li is only a normalizing factor here.
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repeated for each k ¼ 1; . . . ;K in turn. The pointK is now zero, and all decision regions (for

theLs) have their apexes at the origin. The bounding hyperplanes all intersect atK ¼ 0, and

the equations of the boundaries of the kth region are simply

Lk � L‘ ¼ 0; all ‘ ¼ 1; . . . ;K ‘ 6¼ kð Þ; for each gk; k ¼ 1; . . . ;Kð Þ : ð4:1:15Þ

To summarize, we see that the optimum Kþ 1ð Þ-ary (or K-ary) detector consists of a

computer that evaluates the Lk Xð Þ for a given set of data X over the observation interval

R; Tð Þ, computes the various Ak Xð Þ, and then inserts the results into the inequal-

ities (4.2.11), (4.2.12), or (4.1.14), finally making the decision gk associated with the one

set of inequalities that is satisfied.11 One possibility is sketched in Fig. 4.1, where a

succession of intermediate binary decision is employed to yield ultimately gk.

4.1.4 Examples

4.1.4.1 Binary Detection The simplest and most familiar case of Eqs. (4.1.11), (4.1.12)

arises when we have to distinguish S 1ð Þ þN versusN alone, so that K ¼ 1. With the help of

Eq. (4.1.7) in Eqs. (4.1.11), (4.1.12), we easily find that we

Decide g0 : N; if L1 Xð Þ <
Decide g1 : S

1ð Þ þN; if L1 Xð Þ �

)

K
1ð Þ
0 ð4:1:16aÞ

Λ1

Λ1

Comparator

Output:
decide S(k)

V(t)
γ k

Λ4

Λ4

Λi

Λk

Λ2

Λ3

Λ4

Λk=1

Λk

FIGURE 4.1 Schematic diagram of the decision process gk, for Eqs. (4.2.11), (4.2.12),

or (4.1.14).

11 Of course, this is not a unique way of setting up an actual computing scheme.
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where

K
1ð Þ
0 � � l 0ð Þ

1

l 1ð Þ
1

¼ C
0ð Þ
1 � C

0ð Þ
0

C
1ð Þ
0 � C

1ð Þ
1

¼ Ca � C1�a

Cb � C1�b
ð4:1:16bÞ

with the thresholdK
1ð Þ
0 a functionof thecosts only. [Ca,C1�a, etc., are expressed in the earlier

notation of Eq. (1.6.6a).]

The somewhatmore general binary problem of distinguishingS að Þ þN against S bð Þ þN,

with a, b any single integers in the range 1 � a; b � Kð Þ, a 6¼ b; K ¼ 2ð Þ, is readily treated.
From Eq. (4.1.14), we write for the decision process

Decide ga : S
að Þ þN; if La Xð Þ > Lb Xð ÞK bð Þ

a

Decide gb : S
bð Þ þN; if La Xð Þ < Lb Xð ÞK bð Þ

a ;

where K
bð Þ
a ¼ C

bð Þ
a � C

bð Þ
b

C
að Þ
b � C

að Þ
a

> 0;

ð4:1:17Þ

which can also be expressed alternatively in terms of a single likelihood ratio

L bð Þ
a Xð Þ � pb FJ XjS bð Þ

� �D E

b

�
pa FJ XjS að Þ

� �D E

a
ð4:1:18Þ

or its reciprocal. Typical regions are shown in Fig. 4.2 (or in Fig. 4.3 if we replaceL1 byLa,

L2 by Lb and set the point K ¼ 0.

4.1.4.2 Ternary Detection In this second example, we assume that noise alone is one of

the three possible alternatives, so thatK ¼ 2. Then, fromEqs. (4.1.11), (4.1.12), the decision

process is found at once (with k ¼ 1; 2; ‘ ¼ 1; 2). The two thresholds K
1ð Þ
0 ;K

2ð Þ
0 are

K
1ð Þ
0 ¼ l 0ð Þ

2 l 2ð Þ
1 � l 0ð Þ

1 l 2ð Þ
2

D

K
2ð Þ
0 ¼ l 0ð Þ

1 l 1ð Þ
2 � l 1ð Þ

1 l 0ð Þ
2

D
D ¼ l 1ð Þ

1 l 2ð Þ
2 � l 2ð Þ

1 l 1ð Þ
2 ;

ð4:1:19Þ

[γb]

[γa]

Λb

Λa

K = 0

L a –
 L b= 0

FIGURE 4.2 Region of decision for the binary case K ¼ 2ð Þ : S að Þ þN vs. S bð Þ þN.
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and we decide

g0 : N; when l 0ð Þ
1 þ l 1ð Þ

1 L1 þ l 2ð Þ
1 L2 > 0

l 0ð Þ
2 þ l 1ð Þ

2 L1 þ l 2ð Þ
2 L2 > 0;

ð4:1:20aÞ

g1 : S
1ð Þ þN; when l 0ð Þ

1 þ l 1ð Þ
1 L1 þ l 2ð Þ

1 L2 < l 0ð Þ
2 þ l 1ð Þ

2 L1 þ l 2ð Þ
2 L2

l 0ð Þ
1 þ l 1ð Þ

1 L1 þ l 2ð Þ
1 L2 < 0;

ð4:1:20bÞ

g2 : S
2ð Þ þN; when l 0ð Þ

2 þ l 1ð Þ
2 L1 þ l 2ð Þ

2 L2 < l 0ð Þ
1 þ l 1ð Þ

1 L1 þ l 2ð Þ
1 L2

l 0ð Þ
2 þ l 1ð Þ

2 L1 þ l 2ð Þ
2 L2 < 0:

ð4:1:20cÞ

Theboundaries of thevarious decision regions are easily determined fromEqs. (4.1.13a) and

the L1;L2 axes bounding the first quadrant. A typical case is illustrated in Fig. 4.3.

The decision process is particularly simple when the case of noise alone is removed and

one of three possible combinations of signal and noise can now occur, for exampleS að Þ þN,

S bð Þ þN, S cð Þ þN a 6¼ b 6¼ c; 1 � a; b; c � K;K ¼ 3ð Þ. From Eq. (4.1.14), we find the

decision process to be

Decide ga : S
að Þ þN; whenLa > LbK

bð Þ
ab þLcK

cð Þ
ab

La > LbK
bð Þ
ac þLcK

cð Þ
ac ;

ð4:1:21aÞ

Decide gb : S
bð Þ þN; according to Eq: ð4:1:21aÞ;

replacing a by b and b by a therein;
ð4:1:21bÞ

[γ2]

[γ0]
[γ1]

Λ2

Λ1

Κ 0(2)

Κ 0(1)

L1 = 0

L2 = 0

L1 – L2 = 0

O

K

FIGURE 4.3 Regions of decision for the ternary detection K ¼ 2ð Þ :N versus S 1ð Þ þN versus

S 2ð Þ þN; l 2ð Þ
1 > 0; l 1ð Þ

2 < 0.
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Decide gc : S
cð Þ þN; according to Eq: ð4:1:21aÞ;

letting a! c; b! a; c! b therein;
ð4:1:21cÞ

where the thresholds K
bð Þ
ab , and so on, are specifically

K
bð Þ
ab � C

bð Þ
a � C

bð Þ
b

C
að Þ
b � C

að Þ
a

K
cð Þ
ab � C

cð Þ
a � C

cð Þ
b

C
að Þ
b � C

að Þ
a

K
bð Þ
ac � C

bð Þ
a � C

bð Þ
c

C
að Þ
c � C

að Þ
a

K
cð Þ
ac � C

cð Þ
a � C

cð Þ
c

C
að Þ
c � C

að Þ
a

:

ð4:1:22Þ

[The thresholds for gb; gc are found by interchanging a, b, c according to

Eqs. (4.1.21b), (4.1.21c), respectively.] The bounding surfaces follow from Eq. (4.1.15),

and the planes defining the first octant (in La-;Lb-;Lc-space) are shown for a typical case

[Section4.1.4.3] inFig. 4.4.Avariety of different regions are clearly possible in these ternary

cases, depending on our choice of the preassigned costs, subject to Eq. (4.1.4), of course.

4.1.4.3 Simple Kþ 1ð Þ-ary Detection A particular case of considerable interest and

simplicity [as far as the structure of the detector, e.g., Eqs. (4.1.11a), (4.1.11b),

or (4.1.11a)c), is concerned] occurs when we assign the same constant costs C0 > 0ð Þ
to all types of “failure” and zero costs to all types of “success.” Then Eqs. (4.1.7) become

Λc

Λb

Λc

[γb]

[γa]

[γc]

Lb–Lc = 0
La–Lb = 0

(=Lc–Lb)
(=Lb–La)

Lc–La=0

K = 0

(=La–Lc)

FIGURE4.4 Regions of decision for the ternary detection K ¼ 3ð Þ :S að Þ þNversusS bð Þ þN versus

S cð Þ þN; constant cost C0 of failure, zero cost of success.
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l 0ð Þ
k ¼ C0, l

‘ð Þ
k ¼ 0 ‘ 6¼ kð Þ, l kð Þ

k ¼ �C0, and the decision process Eqs. (4.11) is governed

simply by the inequalities:

Decide lk; if Lk Xð Þ � L‘ Xð Þ all ‘ 6¼ k ‘ ¼ 1; . . . ;Kð Þ
Lk Xð Þ � 1

ð4:1:23Þ

for each k ¼ 1; . . . ;Kð Þ in turn. For noise alone, Eq. (4.1.12a) is simply

Decide g0; if Lk Xð Þ � 1 all ‘ ¼ 1; . . . ;K: ð4:1:24Þ

The boundaries of the decision regions are obtained as before from Eqs. (4.1.13a)

and (4.1.13b) in terms of the equalities above. For K-ary detection, where the case “noise

alone” is removed, the first line of Eq. (4.1.23) provides the desired inequalities, and the

boundaries of the decision regions again follow from the indicated equalities [see

Eq. (4.1.15) and Fig. 4.4].

The actual structure of these optimummultiple-alternative systems depends in each case

on the explicit form of FJ XjS kð Þ
� �D E

k
, as in the binary theory. Also as in the binary theory,

we may resolve the threshold structure for additive signals and (normal) noise into a

sequence of realizable linear and nonlinear elements: for example, when there is sample

uncertainty, into the Bayes match filters, zero-memory nonlinear rectifiers, and ideal

integrators (Sections 3.4 and 3.5). This yields logL‘ ‘ ¼ 1; . . . ;Kð Þ, from which in turn

the L‘ may be found to be combined according to Eqs. (4.1.11), (4.1.12), or (4.1.14) for an

ultimate decision gk (Fig. 4.1). Similar remarks apply in the instances of sample certainty

with the structure appropriate to these cases (Sections 20.1.1 and 20.2.1 of Ref. [2]). The

logarithmic form of the characteristic function may also be used to advantage here in

the special situation of the example in Section 4.1.4.3 [and, of course, for the binary cases, cf.

the example in Section 4.1.4.1]. Instead of Eqs. (4.1.23) and (4.1.24), we can write for this

particular cost assignment

Decide lk; if log Lk Xð Þ � logL‘ Xð Þ; all ‘ 6¼ k ‘ ¼ 1; . . . ;Kð Þ
Lk Xð Þ � 0

ð4:1:25Þ

for each k ¼ 1; . . . ;Kð Þ in turn. For noise alone, we have

Decide g0; if logLk Xð Þ � 0; all k ¼ 1; . . . ;K: ð4:1:26Þ

The boundaries of the decision regions follow from Eqs. (4.1.13), subject now to the

additional logarithmic transformation. When the alternative “noise alone” is eliminated,

Eq. (4.1.25) becomes

Decide g0; if logLk Xð Þ � logL‘ Xð Þ; all ‘ ¼ 1; . . . ;K: ð4:1:27Þ

The optimum system consists of a sequence of operations, logLk Xð Þ, as in Fig. 4.1, whose
ultimate output is once more a decision gk and whose structure (each ‘) is in threshold cases
given by threshold developments of the type for normal noise backgrounds.
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4.1.5 Error Probabilities, Average Risk, and System Evaluation

In order to evaluate the performance of these optimum decision systems, it is necessary to

determine their Bayes risks, and for this in turn we need the error probabilities associated

with the various possible decisions. Similarly, to evaluate the performance of suboptimum

systems and compare them with the corresponding optimum cases, we must also determine

the appropriate error probabilities. This is a conceptually straightforward generalization of

Chapters 2 and 3 for the earlier binary theory, although, as we shall note presently, there are

certain technical problems here not present in the simpler case, problems which make

explicit calculations considerably more difficult.

Let us now consider the various conditional probabilities of error. We define

a
0ð Þ
k �

ð

G
d gkjXð ÞFJ XjSð0Þ

� �
dX

� conditional probability of calling a null signal any

one member of kth signal class k ¼ 1; . . . ;Kð Þ
ð4:1:28Þ

b
kð Þ
‘

D E

k
�

ð

G
d g‘jXð Þ FJ XjS kð Þ

� �D E

k
dX

� conditional probability of calling any one member

the kth signal class a member of ‘th signal class ðin noiseÞ
‘ 6¼ k; ‘ ¼ 0; . . . ;K; k ¼ 1; . . . ;Kð Þ:

ð4:1:29Þ

The conditional probability of correctly deciding that any one signal member of class

k k ¼ 0; . . . ;Kð Þ is present in noise is

h
kð Þ
k

D E

k
�
ð

G
d gkjXð Þ FJ XjS kð Þ

� �D E

k
dX; ð4:1:30Þ

h
kð Þ
k

D E

k
¼ 1�

XK

‘¼0

0 b
kð Þ
‘

D E

k
: ð4:1:30aÞ

In the situation where the case “noise alone” is removed, we have only b
kð Þ
‘

D E

k
‘ 6¼ k; k ¼ 1; . . . ;Kð Þ.
For optimum systems, where Eqs. (4.1.11), (4.1.12), (4.1.14) apply, it is convenient to

make a change of variable and consider some monotonic function of the Ls as our new
independent variables, since it is in terms of the Ls that the (optimum) decision regions for

g0; . . . ; gK are explicitly given. As before, we let xk ¼ logLk k ¼ 1; . . . ;Kð Þ, so that

Eqs. (4.1.28) and (4.1.29) may now be written12

a
0ð Þ*
k ¼

ð

x1½ �
� � �
ð

xk½ �
� � �
ð

xK½ �
QJ x1; . . . ; xKð Þdx1; . . . ; dxK ð4:1:31Þ

b
kð Þ*
‘

D E

k
¼
ð

x1½ �
� � �
ð

x‘½ �
� � �
ð

xK½ �
P

kð Þ
J x1; . . . ; xKð Þdx1; . . . ; dxK ;P 0ð Þ

J ¼ QJ ; ð4:1:32Þ

12 See 1.9 for a discussion in the binary cases.
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whereQJ ;P
kð Þ
J are the joint probability densities for the randomvariables logL1; . . . ; logLK

in the first instancewith respect to the null hypothesisH0 and in the secondwith respect to the

alternatives Hk. Here xk½ � signifies the decision region for xk. (Some typical cases are

illustrated in Figs. 4.2 and 4.3 for the transformation x0k ¼ Lk, rather than xk ¼ logLk).

These probability densities may be written in terms of the original data X as [Section 1.9]

QJ x1; . . . ; xKð Þ ¼
ð

G
FJ Xj0ð Þ

YK

‘¼1

d x‘ � logL‘ð ÞdX; ð4:1:33Þ

P
kð Þ
J x1; . . . ; xKð Þ ¼

ð

G
FJ XjS kð Þ
� �D E

k

YK

‘¼1

d x‘ � logL‘ð ÞdX: ð4:1:34Þ

The corresponding characteristic functions are

FK ijð ÞQ ¼
ð

G
ei
~jxFJ Xj0ð ÞdX; ð4:1:35Þ

F
kð Þ
K ijð ÞP ¼

ð

G
ei
~jx FJ XjS kð Þ

� �D E

k
dX; ð4:1:36Þ

A specific example with additive Gaussian noise is considered in Problem 4.3.

With Eqs. (4.1.28)–(4.1.32), we can nowwrite the average risk [Eq. (4.1.6) or (4.1.10a)],

minimized or not, as

RK s; dð Þ *h i ¼ R0K þ q
XK

1

la 0ð Þ *ð Þ
k þ

X0K

‘ ¼ 0; k � 1;
‘ � 0 k 6¼ ‘ð Þ

pkl
kð Þ
‘ b

kð Þ *ð Þ
‘

D E

k

þ
X0K

k¼1

pkl
kð Þ
k h

kð Þ *ð Þ
k

D E

k
;

ð4:1:37Þ

which for the case of the excludednull signal simply omits the terms inl 0ð Þ
k and setsR0K ¼ 0,

with l ‘ð Þ
k k; ‘ � 1ð Þ equal to the costs C

‘ð Þ
k � 0.

The expressions (4.1.31), (4.1.32) for the error probabilities appearing in Eqs. (4.1.35)

and (4.1.36) have particularly simple limits for xk½ � when we make the cost assumptions

C0; 0ð Þ of the example in Section 4.1.4.3 above.We easily find that now (the primes indicate

terms ‘ ¼ k, or ‘, omitted in the products)

a
0ð Þ*
k ¼

ð1

0

dxk
Y0K

‘¼1

ðxk

�1
dx‘

 !

QJ x1; . . . ;xKð Þ; k ¼ 1; . . . ;K; ð4:1:38Þ

b
kð Þ*
‘

D E

k
¼
ð1

0

dx‘
Y0K

i¼1

ðx‘

�1
dxi

 !

P
kð Þ
J x1; . . . ; xKð Þ; ‘ 6¼ k; k � 1; ð4:1:39Þ
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and b
kð Þ*
0

D E

k
¼
ð0

�1
dx1 � � �

ð0

�1
dxKP

kð Þ
J x1; . . . ; xKð Þ: ð4:1:40Þ

When the noise class is omitted, Eqs. (4.1.38) and (4.1.39) donot apply and the lower limit on

the first integral of Eq. (4.1.39) becomes�1 instead of 0. For the general cost assumptions

[Eq. (4.1.7)], wemust useEqs. (4.1.13) or (4.1.15) (allk) to specify the boundaries onLk and

hence on logLk. General results for the ternary case [the example in Section 4.1.4.2] follow

at once from Eqs. (4.1.19), (4.1.20) or (4.1.21) with aid of Figs. 4.3 and 4.4.

4.1.5.1 Suboptimum Systems For suboptimum systems, instead of x‘ ¼ logL‘ Xð Þ we
have y‘ ¼ logG‘ Xð Þ, whereG‘ Xð Þ represents the ‘th component of the actual suboptimum

system in use (Section 1.9.2). Then, analogous to Eqs. (2.5.16a), (2.5.16b), and so on,

Eqs. (4.1.31), (4.1.32) are modified to

a
0ð Þ
k ¼

ð
� � �
y½ �

ð
qJ y1; . . . ; yKð Þdy1 � � � dyK > a

0ð Þ*
k ; ð4:1:41aÞ

b
kð Þ
‘

D E

k
¼
ð
� � �
y½ �

ð
pJ y1; . . . ; yKð Þdy1 � � � dyK > b

kð Þ*
‘

D E
: ð4:1:41bÞ

where qJ ; p
kð Þ
J are now the joint pdfs of the random variables logG‘ Xð Þ, ‘ ¼ 1; . . . ;Kð Þ, and

y½ � denotes the decision regions for the y1; . . . ; yK , whichmayormay not be the same as x½ � in
Eqs. (4.1.31) and (4.1.32). These probability densities are expressed in terms of the data

process X, analogous to Eqs. (4.1.33) and (4.1.34), as

qJ y1; . . . ; yKð Þ ¼
ð

G
FJ Xj0ð Þ

YK

i¼1

d yi � logGi Xð Þ½ �dX ð4:1:42aÞ

p
kð Þ
J y1; . . . ; yKð Þ ¼

ð

G
FJ XjS kð Þ
� �D E

k

YK

i¼1

d yi � logGi Xð Þ½ �dX ð4:1:42bÞ

with the associated characteristic functions [cf. Eqs. (1.9.17a), (1.9.17b)]

FK ijð Þq ¼
ð

G
ei
~jyFJ Xj0ð ÞdX F

kð Þ
K ijð Þp ¼

ð

G
ei
~jy FJ XjS kð Þ

� �D E

k
dX: ð4:1:43Þ

System comparisons are thenmade on the basis of the respectiveBayes and average risks, by

an obvious extension of the binary methods to these multialternative cases. However, even

when the background noise is normal, additive, and independent, it is difficult to evaluate

these error probabilities, since they are, in effect, K dimensional error functions whose

arguments depend on the successive variables of integration. The technical problem is

analogous to that of evaluating the volume cutoff from a hyperellipsoid by a series of

hyperplanes. One special example of some interest, where the multiple integrals “factor”

conveniently, is considered the example in Section 4.1.6. Generally, however, our expres-

sions are not so analytically tractable, so that, while structure can be obtained, the error

probabilities require a more formidable computational program.
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4.1.6 An Example

Consider themultiple-alternative detection situation in which the null signal or any one ofK

arbitrarynonzero signals (andnoise), identical in structurebutdiffering in amplitude,maybe

present at the input. Detection is assumed to be coherent. The signals and noise are additive.

Each signal set contains onlyonemember, and the costs of correct and incorrect decisions are

taken to be zero and unity, respectively. The noise itself is assumed Gaussian, with a known

variance matrix. The kth hypothesis class contains but one signal, of amplitude a0k, and the

amplitudes are ordered: 0 < a01 < a02 � � � < a0k < � � � a0K .

(1) We first obtain the characteristic functions and pdfs for the vector

y ¼ x� logmk þ a20kFkk=2
� �

:

FK ijð ÞQ ¼ e�
1=
2
~jSKj ð4:1:44aÞ

F
kð Þ
K ijð ÞP ¼ e�ij SKð Þk�1=

2
~jSKj ð4:1:44bÞ

QJ yð Þ ¼ 2pð Þ�K=
2 det SKð Þ�1=

2e�
1=
2 ~yS

�1
M y ð4:1:45aÞ

P
kð Þ
J yð Þ ¼ 2pð Þ�K=

2 det SKð Þ�1=
2e

�1=
2 ~y� ~S

K
� �

k

� �
S�1
K y� SKð Þ

k
½ � ð4:1:45bÞ

where SKD a0ia0kFik½ �, F si; skð Þ ¼ ~sik
�1
N sk, and mi ¼ p=q.

(2) The error probabilities for the optimum system here are found to be

a
0ð Þ*
i ¼

ð1

�Ai

dyk
Y0K

‘¼1

ðyi þAi�A‘

�1
dy

 !

QJ yð Þ

¼ a�1
0i 2pFð Þ�1=

2

ðCiþ

ðCi� or �AiÞ
e�y2=2a0i2Fdy; i ¼ 1; . . . ;K;

ð4:1:46aÞ

b
kð Þ*
0 ¼

ð�Ai

�1
dy1 � � �

ð�Ak

�1
dyKP

kð Þ
j yð Þ

¼ a�1
0i 2pFð Þ�1=

2

ðC0þ

�1
e� y�a2

0k
Fð Þ2=2a0k2Fdy; k ¼ 1; . . . ;K;

ð4:1:46bÞ

b
kð Þ*
0 ¼

ð1

�Ai

dyi
Y0K

‘¼1

ðyi þAi�A‘

�1
dy

 !

P
kð Þ
j yð Þ

¼ a�1
0i 2pð Þ�1=

2

ðCiþ

Ci� or Ai

e� y�a0i�a0kFð Þ2=2a0i2Fdy ‘; k ¼ 1; . . . ;K; ‘ 6¼ k;

ð4:1:46cÞ

where

Ai ¼ logmi � a20 � a20Fii=2; Fii � F; Ci� � max
‘

Ci‘ ‘ < ið Þ; Ciþ � min
‘

Ci‘ ‘ > ið Þ;
with

Ci‘ � ½ a0i a0i þ a0‘ð ÞFþ a0i= a0‘ � a0ið Þ � log mi=m‘ð Þ:
ð4:1:46dÞ
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(3) Assume next that the amplitudes are uniformly spaced, so that a0i ¼ iD with

D � DA0ð Þ= 2cJð Þ½, and let ui ¼ 1 all i ¼ 1; . . . ;Kð Þ. Then the Bayes risk for these

simple cost assignments becomes

R*
K ¼ K

K þ 1
1� Q

d

2

� 	
 �

d � FJ s; sð Þ
2


 �½
D

ð4:1:47Þ

(cf. Fig. 4.5). HereQ is the erf function defined on p. 369. We next verify that this result

also holds for the K-ary case as well. Observe that asK!1, the Bayes risk increases to

1� Q d
2= Þ;� ð4:1:48Þ

independent of the number of alternatives, and depending only on the autocorrelation of

the normalized signal and the sizeDof the increment between signals. The larger the latter

the easier it is to distinguish between signals, and hence the smaller the Bayes risk

i:e:; d � 1ð Þ. Conversely, for large K there is negligible distinction between large and

small signals. For details, see Middleton and Van Meter [1], pp. 6–9.

4.2 OVERLAPPING HYPOTHESIS CLASSES

When the signal classes overlap, as discussed in Section 1.10, the usual definitions, which

depend on the classes being disjoint, do not apply.Any signalmaynowbelong to one ormore

signal classes out of a total of K classes. This is the case if each contains the same type of

parameter uk; u‘ð Þ; k 6¼ ‘, for example, with similar waveforms, but with different pdfs for

the parameters, such that the signal classes overlap. Thus, for signals of class k the parameter

spacemay coincidewith that of class ‘by a certain amount, as does class ‘by another amount

on class k, in themanner suggested by Fig. 4.6a. Here any given signal may belong to two or

1.0

0.8

0.6

0.4

0.2

0
0 0.5 1.0 1.5

µi = 1, (i = 1, …, K) 
1(k ≠ i) 
0(k = i) 

(i, k = 0, …, K ) Ci 
(k) =

d = ∆ ΦJ (s, s)/2

2.0 2.5 3.0

M
 +

 1
K

M
R

*

FIGURE 4.5 Bayes risk for the coherent multiple-alternative detection of K signals in Gaussian

noise; simple cost assignments.
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more classes, butwill usually belong to one classwith the largest probability. Accordingly, it

is reasonable, as in the binary cases (Section 1.10.2), to assign the least cost to this most

probable case. The overlap may not be limited to two neighboring classes (in a probabilistic

sense), butmay in principle involve allK of them (Fig. 4.6b). [In the degenerate cases where

two or more distributions are equal, it is still possible to distinguish the signals, if the prior

probabilities pkð Þ are all different.] Accordingly, the cost assignments depend on the

probability that each signal belong to all K classes, with varying degrees of overlap,

including the fact that some distributions may not overlap, that is, are disjoint. It may be

“nearest neighbors,” if, say, the parameter in question is amplitude (i.e., scale), or it may

depend on several separate signal classes, and so on.

4.2.1 Reformulation

In our present exampleswe limit our cost assignments to the preset constant costs previously

used, and extend the “constant” cost functionF1, to themoregeneral case for thekth decision

gk, where “no signal” is included:

C
kð Þ
‘ S uð Þ; gkð Þ ¼ C

kð Þ
‘j0 p0w0 uð ÞþC

kð Þ
‘=1p1w1 uð Þþ . . . þC

kð Þ
‘jr prwr uð Þ

h i.
s uð Þ

¼
XK

r¼0

C
kð Þ
‘jr prwr uð Þ=s uð Þ;

ð4:2:1Þ

k

�

Overlap of
k by �

Overlap of � by k

k

�

i by �
i by k

k

i

k by �, by i

� by i, by k

FIGURE 4.6 (a) Mutual overlap of signals of class k and class ‘ (through their parameters u,
Eq. (4.2.1)). (b) Same as part (a) for mutual overlap of signals of class i, k, and ‘.
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where r ¼ 0; . . . ; r0 � K, and ‘ ¼ 0; . . . ;K are decided, with k ¼ 0; 1; . . . ;K. From (4.1.2),

now modified for the parameters u rather than waveforms S, we have

s uð Þ ¼
XK

k¼0

pkwk uð Þd kð Þ u� u kð Þ
� �

: ð4:2:1aÞ

In the case of stochastic signals (4.2.1) is given by

C
kð Þ
‘ S kð Þ; gk

� �
¼
XK

r¼0

C
kð Þ
‘jr prwr S kð Þ

� �
=s Sð Þ; ð4:2:2Þ

again with k; ‘ð Þ ¼ 0; 1; . . . ;K, and r ¼ 0; 1; 2; . . . ; r0 � K, where sðSÞ is given by

Eq. (4.1.2). The Bayes risk in once more expressed generally by (4.1.1), with s uð Þ, or
s Sð Þ, the a priori probability density governing the u, or all possible signals S. The pr
are positive numbers between (and including) 0; 1ð Þ, such that (4.1.2) is obeyed, in short, the
pr are again the prior probabilities that a signal of class r can be present (including r ¼ k) on

anyone observation, and the class r ¼ 0 represents the null signal class. Eq. (4.1.3) applies to

the decision rules gk: a definite decision is always made, with probability 1. Failure is more

expensive than success, that is, (4.1.4) applies here, where

C
0ð Þ
0 0; g0ð Þ ¼ Eq: ð4:2:1Þ : C

0ð Þ
0j0p0w0 uð Þ

¼ C
0ð Þ
0j0d S� 0ð Þ : noise alone is correctly detected:

ð4:2:3Þ

Here there is no signal (not to be confused with a signal with u ¼ 0). Similarly, we have

C
kð Þ
k Sk uð Þ;gk

� �¼C
kð Þ
kjr : a signal of class k is correctly detected; with parameters u;

although contaminated by different parameter distributions

r 6¼ k;r¼ 0; . . . ;K:

C
0ð Þ
‘ 0;g‘ð Þ ¼C

0ð Þ
‘jr : a signal of class ‘; ‘¼ 1; . . . ;Kð Þ; is incorrectly decided;

when noise alone occurs; with parameters us ¼ 0ð Þ:
Again; all parameters distributions > 0ð Þ contribute:

C
kð Þ
‘ Sk uð Þ;g‘

� �¼C
kð Þ
‘jr : ‘ 6¼ k : a signal of class ‘ is incorrectly detected; when a

signal of classkoccurs; with contamination by all possible

parameter distributions; r¼ 0;1; . . . ;K:

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

ð4:2:4Þ
The average risk is from (4.1.1) and (4.2.1)–(4.2.4), now expressed as

R s; dð Þ ¼
ð

G

C
0ð Þ
0j0d g0jXð Þþ

XK

k¼1

XK

r¼1

C
0ð Þ
kjrd gkjXð Þ

( )

qFJ Xj0ð ÞdX

þ

XK

k¼1

XK

r¼1

C
kð Þ
kjr pr FJ XjS kð Þ uð Þ

� �D E

wr

d gkjXð Þ

þ
X0K

k¼1

XK

r¼1

C
kð Þ
‘jr pr FJ XjS kð Þ uð Þ

� �D E

wr

d p‘jXð Þ

8
>>>><

>>>>:

9
>>>>=

>>>>;

dX

2

6666666664

3

7777777775

; ð4:2:5Þ

since w0 uð Þ ¼ d S� 0ð Þ, where the prime over the summation (in ‘) signifies ‘ 6¼ k. [Note

when the signal classes are disjoint (Section 4.1), that is, that only r ¼ k (or ‘) in all the terms
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of (4.2.5), our extended result reduces to the disjoint result (4.1.6) of Section 4.1, that is,

C
0ð Þ
kjk ¼ C

0ð Þ
k ,C

kð Þ
kjk ¼ C

kð Þ
k ,C

kð Þ
‘j‘ ¼ C

kð Þ
‘ , all k; ‘.] Here the different distributionswr uð Þ of the

common parameters u influence the decisions, as well as the associated cost functions

C
kð Þ
kjr ; C

‘ð Þ
kjr, and theaprioriprobabilitiespr. For individual distributions that are disjoint of the

other, C
kð Þ
kjr ¼ C

kð Þ
k , C

kð Þ
‘jr ¼ C

kð Þ
‘ , for any particular k (or ‘), or several k (or ‘).

4.2.2 Minimization of the Average Risk for Overlapping Hypothesis Classes

Following Section 4.1.2 we rearrange Eq. (4.1.6), extending it to the set of costs:

l 0ð Þ
i ! l 0ð Þ

ijr ¼ C
0ð Þ
ijr � C

0ð Þ
0 ; i ¼ 1; . . . ; K; ð4:2:6aÞ

l kð Þ
k ! l kð Þ

kjr ¼ C
kð Þ
kjr � C

kð Þ
0jr ; r ¼ 1; . . . ; K; ð4:2:6bÞ

l ið Þ
k ! l ið Þ

kjr ¼ C
ið Þ
kjr � C

ið Þ
0jr; r ¼ 0; . . . ;K; i 6¼ k; k; ið Þ ¼ 1; . . . ; K;

l ið Þ
kjrt0: k 6¼ i; with l 0ð Þ

kjr > 0; k > 0ð Þ; l kð Þ
kjr < 0; k 6¼ 0

9
=

;

ð4:2:6cÞ

Next, following (4.1.8), we write

Bk Xð Þ � l 0ð Þ
kj0 þ

XK

i¼1

XK

r¼1

l ið Þ
kjrL Xð Þwr

; where ð4:2:7Þ

Lijr Xð Þ ¼ pi FJ XjS ið Þ uð Þ
� �D E

wr

.
qFJ Xj0ð Þ; p0 ¼ q; ð4:2:7aÞ

which becomes for additive signal and noise

Lijr Xð Þ ¼ pi WJ X� S ið Þ uð Þ
� �D E

wr

.
qWJ Xð ÞN ; ð4:2:7bÞ

cf. (4.1.9a). Again, after some algebra we find that the average risk (4.2.5) can now be

expressed as

R s; dð Þ ¼ R0K þRK ; whereR0K � qC
0ð Þ
0 þ

XK

i¼1

XK

r¼1

prC
0ð Þ
0jr ; and ð4:2:8aÞ

Rk ¼
ð

G
qFJ Xj0ð Þ

XK

k¼1

d gkjXð ÞBk Xð ÞdX; ð4:2:8bÞ

cf. (4.1.10a,b,c). The quantity R0K is once more the average cost of calling every signal,

including noise alone, “noise,” and RK is that portion of the average risk which is adjusted
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by choice of the decision rules d gkjXð Þ. Once more, the form of the decision system is

represented by the (sum of) likelihood ratios Bk Xð Þ. The detection process, in turn, is

determined by the choice of the ds and the corresponding regions in data space G as before

(Section 4.1).

Our next task is to minimize the average risk,13 that is, the Bayes risk R* s; dð Þ is that risk
for which RK is a minimum, or

P
k¼1Bk Xð Þ is minimum, since qFJ Xj0ð Þ � 0, all X, in

Eq. (4.2.8b). Accordingly, we proceed to examine all theBks for a givenX, selecting the one
Bk which is algebraically least.14 For this same data set X we then set d gkjXð Þ ¼ 1, and

d g‘jXð Þ ¼ 0; ‘ 6¼ k. We next repeat the process for all X in G, to obtain at last a set of

conditions on the k ¼ 1; . . . ; K. (We note from the form of RK , where the decision rules

appear linearly, and from themode ofminimization, that the d is automatically a nonrandom

decision risk, that is, d ¼ 1 or 0 only, cf. Eq. (1.7.4a) et seq.)

Since the optimumBk Xð Þ*, likeAk Xð Þ, (4.1.8),may contain negative parts, cf. (4.1.7),we

see that minimizing the average risk (4.2.8b) and making a decision gk (signal of class k

present in noise) on receipt of the dataX, the specific conditions on theBk are that the dataX
satisfy the following linear inequalities:

Bk Xð Þ* � B‘ Xð Þ*; or l 0ð Þ
kj0þ

XK

i¼1

XK

r¼1

l ið Þ
kjrLijr Xð Þwr

� l 0ð Þ
‘j0 þ

XK

i¼1

XK

r¼1

l ið Þ
‘jrLijr Xð Þwr

and

Bk Xð Þ* � 0; or l 0ð Þ
kj0þ

XK

i¼1

XK

r¼1

l ið Þ
kjrLijr Xð Þwr

� 0; all ‘ 6¼ k; ‘;k ¼ 1; . . . ;Kð Þ:

9
>>>>>=

>>>>>;

ð4:2:9aÞ

Here Lijr Xð Þwr
is specifically given by (4.2.7) or (4.2.7a). For each decision

gk k ¼ 1; . . . ;Kð Þ in turn, we have

d gkjXð Þ ¼ 1; d g‘jXð Þ ¼ 0; all ‘ 6¼ k; ‘ ¼ 0; . . . ;Kð Þ: ð4:2:9bÞ

For the case of noise alone k ¼ 0ð Þ, we find that the condition is

Bk Xð Þ* � 0; or l 0ð Þ
kj0 þ

XK

i¼1

XK

r¼1

l ið Þ
kjrLijr Xð Þwr

� 0; k ¼ 1; . . . ;K; ð4:2:10aÞ

with

d g0jXð Þ ¼ 1; d g‘jXð Þ ¼ 0; ‘ ¼ 1; . . . ;K: ð4:2:10bÞ

Even though the signal classes overlap, they do so in the parameter spaceWu. This does not

affect their behavior in data spaceG: theLi�wr
may still be regarded as independent variables

as before, Section 4.1, and treated accordingly. The difference is that the (nonoverlapping)

13 This imposes conditions in the choice of costs functions, the a priori probabilities pi i ¼ 0; . . . ;Kð Þ being given.
It is assumed that these conditions aremet in practical applications, that is, the greatest costs are assigned to the least

probable events, and no two (or more) events are equally probable.
14 Again, this is subject to the condition that for a givenX there exists aBk Xð Þ that is algebraically less all the other
B‘ Xð Þ; ‘ 6¼ k.
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boundaries of the decision regions aremore complex, exceeding the dimensionalityK of the

decision process.

For the simpler cases encountered in testing for the presence of one signal of class k in

noise against any one of the other possible nonzero signals in noise, the case of noise alone is

eliminated (cf. Section 4.1.3).15 Here the costs C
‘ð Þ
0jr ;C

0ð Þ
0 ;C

0ð Þ
‘jr are omitted in Bk Xð Þ above,

and l ið Þ
kjr ¼ C

ið Þ
kjr, k; i ¼ 1; . . . ;Kð Þ � 0. Thus, if C

ið Þ
kfr � 0;C

ið Þ
ifr � 0, the Bk Xð Þ can never be

negative.Minimizationof theaverage risk (4.2.8a) thenyields only thefirst set of inequalities

in (4.2.9a), with l 0ð Þ
kjr ¼ l ið Þ

‘jr ¼ 0. The result is that we can write for the decision gk, the

modified condition

XK

i¼1

XK

r¼1

C
ið Þ
kjrLijr Xð Þwr

�
XK

i¼1

XK

r¼1

C
ið Þ
‘jrLijr Xð Þwr

; ‘ 6¼ k; all ‘ ¼ 1; . . . ;K; ð4:2:11Þ

repeated for each k ¼ 1; . . . ;Kð Þ in turn.

In summary, we observe that the optimum Kþ 1ð Þ-ary, or K-ary, detector is in effect a

(more complex) computer which evaluates the Lijr Xð Þwr
for a specified data set X over the

observation interval DR; Tð Þ. It then computes the various Bk Xð Þ and inserts the results into
the series of inequalities (4.2.9a, 10a)or (4.2.11), finallymaking thedecisiongk for the single

set of inequalities which is satisfied. This is, of course, not a unique process. The procedure

sketched in Fig. 4.1, involving a sequence of intervening binary decisions to yield ultimately

gk, is again one possibility, equally applicable to the case of overlapping signal classes.

4.2.3 Simple (Kþ 1) - ary Detection

As in Section 4.1.4.3, a simplified case of some interest and simplicity (though not so simple

as the disjoint signal classes (Section 4.1)) occurs if we assign the same constant costs

C0 � 0ð Þ to all types of “failure” and zero costs to all types of “success.” Equations (4.2.6a)
and (4.2.6b) become l 0ð Þ

kjr ¼ C0, l ‘ð Þ
kjr ¼ 0 ‘ 6¼ kð Þ, l kð Þ

kjr ¼ �C0, and the decision pro-

cess (4.2.9) is governed now by the simpler inequalities

Decide gk : if
XK

r¼1

Lkjr Xð Þwr
�
XK

r¼1

L‘jr Xð Þwr

XK

r¼1

Lkjr Xð Þwr
> 1;

9
>>>>=

>>>>;

all ‘ 6¼ k; ‘ ¼ 1; . . . ;Kð Þ; ð4:2:12Þ

for each k ¼ 1; . . . ;Kð Þ in turn. For noise alone k ¼ 0ð Þ, Eq. (4.2.10a) is the simple result

Decide g0 : if
XK

r¼1

Lkjr Xð Þwr
� 1; all k ¼ 1; . . . ;K : ð4:2:13Þ

Again, the boundaries of the decision regions for each k overlap, and in general are the entire

(hyperplane) G � 0. In the case of K-ary detection (i.e., “noise alone” is removed),

Eq. (4.2.12) supplies the needed inequalities. (Because of the sum
PK

r¼1 there is no

15 This is again equivalent to choosing d g0jXð Þ ¼ 0 ¼ 1� PK

k¼1

d gkjXð Þ, cf. Eq. (4.1.3) in (4.1.6).
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advantage per se in using the logarithm of the likelihood ratios: the result involves

log
PK

r

� �
Lkjr Xð Þwr

, i.e., the logarithm of the sum rather than the sum of the logarithms

[(4.1.25), (4.1.26), (4.1.27)].)

4.2.4 Error Probabilities, Average and Bayes Risk, and System Evaluations

To obtain the error probabilities we extend [(4.1.28) and (4.1.29) in a straightforward way:

a
0ð Þ
k !a

0ð Þ
kj0 ¼

ð

G
d gkjXð ÞFJ Xj0ð ÞdX

¼ conditional probability of calling a null signal

any one member of the kth signal class; k ¼ 1; . . . ;Kð Þ;
ð4:2:14aÞ

b
kð Þ
‘

D E
! b

kð Þ
‘

D E

kjr
¼
ð

G
d g‘jXð Þ FJ XjS kð Þ uð Þ

� �D E

wr

dX

¼ conditional probability of calling any one member of the

kth signal class a member of the ‘th class; subject to the

rth pdf; wr uð Þ; of the parameters; k ¼ 1; . . . ;Kð Þ; where
‘ 6¼ k; ‘ ¼ 0; 1; . . . ;K; k ¼ 1; . . . ;K:

ð4:2:14bÞ

Similarly, the conditional probability of correctly deciding that any one signal member

(including the null signal) of class k; k ¼ 0; 1; . . . ;Kð Þ, is present in noise, is

h
kð Þ
k

D E

k
! h

kð Þ
k

D E

kjr
¼
ð

G
d gkjXð Þ FJ XjS kð Þ

� �D E

wr

dX ð4:2:15Þ

and

h
kð Þ
k

D E

k
¼ 1�

XK

‘¼ 0

b
kð Þ
‘

D E

k
!
XK

‘¼ 0

XK

r¼ 0

b
kð Þ
‘

D E

kjr
ð4:2:16Þ

and k ¼ 1; . . . ;Kð Þ. In the case where “noise alone” is removed, (4.2.14b) becomes

b
kð Þ
‘

D E

kjr
; ‘ 6¼ k; r; ‘; k ¼ 1; . . . ;Kð Þ. With (4.2.14a)–(4.2.16), we can write the average

risk (4.2.5), minimized or not minimized, as

Rk s; dð Þ *ð Þ ¼ RoK þ q
XK

k¼1

l 0ð Þ
kj0a

0ð Þ *ð Þ
kj0

þ
X0K

k¼1

XK

‘¼0;k 6¼‘;r¼0

l kð Þ
‘jr pr b

kð Þ
‘

D E*ð Þ

kjr
þ
XK

k¼1

l kð Þ
kjr
XK

r¼1

pr h
kð Þ
k

D E*ð Þ

kjr

ð4:2:17Þ

where the *ð Þ denotes the minimum or Bayes conditional probabilities and the prime 0ð Þ on
the second sum indicates that k 6¼ ‘. For the excluded null signal, the terms in l 0ð Þ

kjr are

omitted, and R0K ¼ 0, with l ‘ð Þ
kjr; k; ‘ � 1ð Þ, equal to the costs C

‘ð Þ
kjr.

Finally, the error probabilities here are calculated inmuch the sameway as for the disjoint

classes [(4.1.31)–(4.1.36)], except that the averages (over the parameters u) are computed
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with respect to wr ¼ wr uð Þ. Thus, Q 0ð Þ
Jj0;P

kð Þ
Jjr are now the joint probability densities of the

likelihood ratios yi ¼ Li Xð Þwr
; i ¼ 1; . . . ;Kð Þ, which are found from the fact that

d gkjXð Þ ¼ d yk � Lkjr Xð Þ� �
. We have

H0 : Q
0ð Þ
J yð Þ*r¼0 ¼

ð

G
� � �
ð
FJ Xj0ð Þ �

YK

‘¼1

d y‘ � L‘j0 Xð Þ� �
dX; y ¼ y1; . . . y‘; . . . yK½ �;

ð4:2:18aÞ

Hk : P
kð Þ
J yð Þ*r ¼

ð

G
� � �
ð

FJ XjS kð Þ uð Þ
� �D E

wr

YK

‘¼1

d y‘ � L‘jr Xð Þ� �
dX; ð4:2:18bÞ

where

FK ijð ÞQj0 ¼
ð

G
� � �
ð
ei~yjFJ Xj0ð ÞdX;

FK ijð ÞP kð Þjr ¼
ð

G
� � �
ð
ei~yj FJ XjS kð Þ

� �D E

wr

dX

ð4:2:18cÞ

are the characteristic functions of y, where h iwr
is the average over the parameter space

appropriate to wr uð Þ. Consequently, we have

a
0ð Þ*
kj0 ¼

ð
� � �
ð

y1½ ���� yK½ �

Q
0ð Þ
J y1; . . . ; yKð Þ*r¼0 dy1 � � � dyK ; ð4:2:19aÞ

and

b
kð Þ
‘

D E 0ð Þ*

kjr
¼
ð
� � �
ð

y1½ ���� yK½ �

P
kð Þ
J y1; . . . ; yKð Þ*r> 0 dy1 � � � dyK ; ð4:2:19bÞ

where yK½ � represents the decision regions for the yk; k ¼ 1; . . . ;K.
For suboptimum systems z‘jr ¼ G‘jr Xð Þ instead of F‘jr ¼ L‘jr Xð Þ, and the results of

[(4.2.18) and (4.2.19)] are modified to

b
0ð Þ
kj0 ¼

ð
� � �
ð

z1½ ���� zK½ �

q
0ð Þ
J z1; . . . ; zKð Þr¼0 dz1 � � � dzK > a

0ð Þ*
kj0

� �
; ð4:2:20aÞ

b
kð Þ
‘

D E

kjr
¼
ð
� � �
ð

z1½ ���� zK½ �

p
kð Þ
J z1; . . . ; zKð Þr>0dz1 � � � dzK > b

kð Þ
‘

D E*

kjr

� 	
; ð4:2:20bÞ

and z½ � in Eqs. (4.2.20a) and (4.2.20b) represents the decision regions for the z1; . . . ; zK . The
q

0ð Þ
Jjr and p

kð Þ
Jjr are,

16 as before, the joint pdfs of the random variables G‘jr Xð Þ; ‘ ¼ 1; . . . ;K.

16 See, for example, early paper of Chow [3].
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These pdfs are likewise given in terms of the received data processes X, analogous
to (4.2.18), by

q
0ð Þ
J z1; . . . ; zKð Þr¼0 ¼

ð

G
FJ Xj0ð Þ

YK

i¼1

d z1 � Gijr Xð Þ� �
dX 6¼ Q

0ð Þ*
Jjr¼0

; ð4:2:21aÞ

p
kð Þ
J z1; . . . ; zKð Þr ¼

ð

G
FJ XjS kð Þ
� �D E

wr

YK

i¼1

d z1 � Gijr Xð Þ� �
dX 6¼ P

kð Þ*
Jjr ; ð4:2:22aÞ

with the associated c.f.s (4.2.18c) Fk ijð Þqj0, Fk ijð ÞP kð Þjr, where now the exponential is

exp i~zjð Þ. The average risk (and the Bayes or minimum average risk) is provided

by (4.2.17), respectively with ð Þ and *ð Þ.
In principle, comparing the error probabilities with various constraints, that is,

Neyman–Pearson and Ideal Observer restrictions, extended to particular signals for

example, permits system comparisons: nonideal systems [(4.2.20a) and (4.2.20b)] versus

ideal [(4.2.19a) and (4.2.19b)]. However, even in the cases of normal noise processes and

simplified costs (4.2.11), (4.2.12), and (4.2.13), the actual calculations are very difficult if

not impossible analytically, with the result that numerical computation is required. An

exception of some interest is given in the example of Section 4.1.6. Another exception, of

much greater generality, is the important case of threshold operation, with independent

sampling.

4.3 DETECTION WITH DECISIONS REJECTION: NONOVERLAPPING

SIGNAL CLASSES

In the usual procedure described above, if a data sample X 0 is such that the inequal-

ities (4.2.11) or (4.2.12) are satisfied for a particular k, that is, if the data “point” X 0 falls in
the decision region associated with gk, we make the decision that a signal of Class k is

present. However, it may be that the point X 0 falls too close to the boundaries of the

acceptance region for gk, that is, for the given cost assignments the probability of decision

error is too large, so that the resulting decision is actually incorrect. Because of the

background noise, the point X 0, which really belongs in the region for g‘ ‘ 6¼ kð Þ, say, has
landed in gk. Of course, we can realign the boundaries to diminish this effect—that is,

decrease the probabilities of error—by a readjustment of the various costs involved, when

these are at our disposal. But frequently we do not have this option: not only are the costs

preassigned (in any case), but these preassigned values are inflexible for other reasons. In

such circumstances, we may then decide to reject all excessively doubtful decisions. Thus,

we introduce a new set of decisions, namely, decisions to reject the decisions that

particular signals are present. The purpose of this rejection procedure is to guard further

against the penalties of wrong decisions, by substituting “blanks” or other indications

of rejection in the noticeably doubtful cases. Accordingly, a typical rejection of a signal of

Class k might be represented by S
kð Þ
R , where both the signal rejected and the fact of

rejection are available at the output of the receiver. Rejection procedures have application

in coding for communication and computation whenever it is advantageous to take

additional precautions against decision errors. The expense of incorrect decisions is, of
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course, reduced at the lesser expense17 of a lower positive decision rate. Rejection also

occurs in estimation when p H1ð Þ < 1, that is, the desired signal is not known surely to be

present p ¼ H1ð Þð Þ; see Chapters 6 and 7 ff.

We can illustrate this schematically with the simple diagrams of Fig. 4.7a and b. These

show the data spaceG divided into various regions. For the nonrejection case, there areKþ 1

distinct, nonoverlapping zones, corresponding to the decisions to accept noise or S kð Þ in
noise, for example, N, S 1ð Þ þN, S 2ð Þ þN; . . . ; S Kð Þ þN, while in the rejection case Kþ 1

additional zones have been introduced which represent the regions where acceptance of a

γt

γo
γk

N

S(1) + N

S(k) + N

S(2) + N

S(k) + N

γkΓ

γz

γKR

N γΚ
S (1) + N

S (2) + N

etc.
Γ

γ1R

γ2R

γ0R

γ0

γ1

γz

FIGURE 4.7 (a) Data space G, showing decision regions without rejection. (b) Same as part (a), but

with rejection regions.

17 This depends on the cost assignments of rejection and acceptance; for meaningful operation, it is clear that

rejection is to be assigned a smaller cost than a decision error.
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particularS kð Þ in noise (or noise alone) is excessivelydoubtful.Thus, if a particular data point
X 0 falls too close to an original acceptance boundary (solid lines in Fig. 4.7a and b), our

decision is to reject the original decision, whether or not it is correct or false. With this in

mind, we can readily extend the analysis of Section 4.1.1 to include the additional K þ 1

decisions with rejection.

4.3.1 Optimum (Kþ 1) - ary Decisions with Rejection

We begin first with the cost assignments. Let us write

C
‘ð Þ
k ¼ cost of incorrectlydecidingS kð Þ is present whenS ‘ð Þ actually occurs and of

accepting the decision ‘ 6¼ k; ‘; k¼ 0; . . . ; K ‘¼ 0; k¼ 0 are“noise alone”statesð Þ½ �;
C

‘ð Þ
‘ ¼ cost of correctlydeciding a signal of Class ‘ is present when such a signal actually

occurs and of accepting the decision ‘¼ 0; . . . ; Kð Þ;
C

‘ð Þ
kR ¼ cost of decidingS kð Þ is present whenS ‘ð Þ really occurs and of rejecting this decision

ðwhether correct or incorrectÞ:

A meaningful interpretation of these costs and of the subsequent decision procedures

requires that

C
‘ð Þ
‘ < C

‘ð Þ
‘R � C

‘ð Þ
kR < C

‘ð Þ
k 6¼‘ð Þ; ‘; k ¼ 0; . . . ;K; ð4:3:1Þ

that is, the cost of a correct decision is less that the cost of a rejection,which in turn is less than

the cost of an error.

Modifying Eqs. (4.1.7) to

l ‘ð Þ
k ¼ C

‘ð Þ
k � C ‘ð Þ

o l ‘ð Þ
kR ¼ C

‘ð Þ
kR � C ‘ð Þ

o ; ‘; k ¼ 0; . . . ;K; ð4:3:2aÞ

and setting

g0
k ¼ gk ; k ¼ 1; . . . ;K

g k�Kð ÞR ; k ¼ Kþ 1; . . . ; 2K þ 1;

�
ð4:3:2bÞ

where g Kþ 1ð ÞR ¼ decision to reject the choice of “noise alone,” we extend the condition

(4.1.3) to

XK

k¼0

d gkjXð Þþ
X2Kþ 1

Kþ 1

d g k�Kð ÞRjX
� �

¼ 1: ð4:3:2cÞ

Then, following the steps leading to Eq. (4.1.10c), we obtain the rearranged version of the

average risk,

R s; dð Þ2Kþ 1 ¼ R0ð Þ2K þ 1 þ
ð

G

X2Kþ 1

k¼1

d g0
kjXð ÞAk Xð Þ

" #

qFJ Xj0ð ÞdX; ð4:3:3Þ
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where now

Ak Xð Þ¼ l 0ð Þ
k þ

XK

‘¼1

l ‘ð Þ
k L‘ Xð Þ; k ¼ 1; . . . ;K;

¼ l 0ð Þ
k�Kð ÞR þ

X2Kþ 1

‘¼Kþ 1

l ‘�Kð Þ
k�Kð ÞRL ‘�Kð Þ Xð Þ; k ¼ Kþ 1; . . . ; 2Kþ 1:

ð4:3:3aÞ

Thegeneralized likelihood ratiosL‘;L ‘�Kð Þ are given as before byEqs. (4.1.9), (4.1.9a)with

qþ
XK

‘¼1

p‘ ¼ 1 ½cf: Eq: ð4:1:2Þ�: ð4:3:3bÞ

For optimum detection, we minimize the average risk [Eq. (4.3.3)], again by suitable

choices of the decision rules, as in the nonrejection case above. The result is the following set

of decision procedures:

Decide g0
k k ¼ 1; . . . ; 2K þ 1ð Þ; if

l 0ð Þ
k þ

X2Kþ 1

‘¼1

l ‘ð Þ
k L‘ Xð Þ � l 0ð Þ

i þ
X2Kþ 1

i¼1

l ‘ð Þ
i L‘ Xð Þ;

l 0ð Þ
k þ

X2Kþ 1

‘¼1

l ‘ð Þ
k L‘ Xð Þ � 0; all i 6¼ k i ¼ 1; . . . ; 2K þ 1ð Þð Þ:

ð4:3:4aÞ

Then set d g0
kjXð Þ ¼ 1 and d g0

ijXð Þ ¼ 0 i 6¼ kð Þ. For noise alone

Decide g0
0; if l

0ð Þ
k þ

X2Kþ 1

‘¼1

l ‘ð Þ
k L‘ Xð Þ � 0; all k ¼ 1; . . . ; 2K þ 1: ð4:3:4bÞ

Similarly, d g0
0jXð Þ ¼ 1, d g0

kjXð Þ ¼ 0 k � 1ð Þ. Here we adopt the convention that

L‘j‘>K ¼ L ‘�Kð Þ; L ‘ð Þ
k jk and=or ‘>K ¼ l ‘ð Þ or ‘�Kð Þ

k�Kð ÞR : ð4:3:4cÞ

Accordingly, all decisions for k � K þ 1 represent rejections of the decision

k ¼ 1; . . . ;K; 0, respectively. As in the nonrejection case, the boundaries of the decision

regions are obtained from the equalities in Eqs. (4.3.4a) and (4.3.4b).

4.3.2 Optimum (Kþ 1) - ary Decision with Rejection

Here we remove the null signal class: a signal is always present in noise. From Eq. (4.1.14),

by an obvious extension of the analysis we can write the decision procedures as

Decide g0
k; if

X2Kþ 1

‘¼1

l ‘ð Þ
k L‘ Xð Þ � l 0ð Þ

i þ
X2Kþ 1

‘¼1

l̂
‘ð Þ
i L‘ Xð Þ; i 6¼ k; all i ¼ 1; . . . ; 2K ; ð4:3:5Þ
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where now

l̂
‘ð Þ
k ¼ C

‘ð Þ
k ‘; k ¼ 1; . . . ;K

¼ C
kð Þ
k k ¼ 1; . . . ;K

¼ C
‘ð Þ
k�Kð ÞR k ¼ K þ 1; . . . ; 2K

¼ C
‘�Kð Þ
k�Kð ÞR ‘; k ¼ Kþ 1; . . . ; 2K

¼ C
‘�Kð Þ
kR ‘ 6¼ k 6¼ K; with C

‘ð Þ
k�Kð ÞR ¼ C

‘�Kð Þ
kR ¼ C

‘�Kð Þ
k�Kð ÞR:

ð4:3:5aÞ

The likelihood ratios L‘ still obey Eqs. (4.1.9), (4.1.9a), except that q > 0ð Þ is arbitrary, and
the condition (4.1.2) becomes

PK
1 pk ¼ 1. The convention of Eq. (4.3.4c) also applies,while

Ak ¼
P2K

‘¼1l̂
‘ð Þ
k L‘ Xð Þ [Eq. (4.1.8)]. The boundaries of the various decision regions are

determined by the equalities in Eq. (4.3.5).

4.3.3 A Simple Cost Assignment

Let us consider as an example the situation where the null signal class is omitted, so that

Eq. (4.3.5) applies.WesetCR ¼ cost of rejection,CE ¼ cost of anerror, andzero the cost of a

correction decision that is accepted. Accordingly, Eq. (4.3.5a) becomes

l̂
kð Þ
k ¼ 0

l̂
‘ð Þ
k ¼ CE ‘ 6¼ k; ‘ ¼ 1; . . . ; 2K; k ¼ 1; . . . ;K

l̂
‘ð Þ
k ¼ CR k ¼ Kþ 1; . . . ; 2K; with 0 < CR < CE:

ð4:3:6Þ

The decision rules [Eq. (4.3.5)] reduce explicitly to

Acceptance

Decide that some one S kð Þ k ¼ 1; . . . ;Kð Þ is present and accept the decision; if

Li � Lk for some k each i ¼ 1; . . . ;K; i 6¼ kð Þð Þ;

0 � CR � CE

CE

XK

‘¼1

L‘ þLk for this k:

ð4:3:7aÞ

Rejection

Reject a signal S kð Þ k ¼ 1; . . . ;Kð Þ; if

0 � CR � CE

CE

XK

‘¼1

L‘ þLk:
ð4:3:7bÞ

for the k above forwhichLi � Lk applies i 6¼ kð Þ. Oncemore, the equalities in Eqs. (4.3.5a)

establish the boundaries of the various decision regions.

266 MULTIPLE ALTERNATIVE DETECTION



4.3.4 Remarks

As in the nonrejection situations of Section 4.1.1, the elements of the system are the

likelihood ratios L‘ ‘ ¼ 1; . . . ;K; 0ð Þ as shown in Fig. 4.1, albeit they are combined in a

somewhat different fashion because of the rejection operations. In the limiting case of

threshold signals, the structure once again involves a generalized (averaged) cross- or

autocorrelation of the received datawith itself.Moreover, if the background noise is normal,

we may use the results of Chapter 3 to obtain the specific structures of the L‘ in such cases.

The error probabilities and Bayes risk may be found in principle from Eqs. (4.1.31)

and (4.1.32), although explicit calculations are usually difficult because of the nature of

the integrands and the limits. For the simple cost assignments of Sections 4.1.3 and 4.3.3,

when the a priori probabilities q; pi are not known to the observer, the corresponding

Minimax system can be shown to have the same structures as the above, where now

q ¼ pi ¼ 1= K þ 1ð Þ all ið Þ: the pis are “uniformly” distributed.

Finally, we may extend the results of Section 4.3 involving decision rejection to the case

where the signal classes overlap, generalizing the analysis of Section 4.2. These results,

though somewhat tedious, are straightforward, and are left to the reader (Problem P4.7).

PROBLEMS

P4.1 (a) Carry out the details leading from Eq. (4.1.6) to Eq. (4.1.10c).

(b) Obtain Eqs. (4.1.38)–(4.1.40) for the simple cost assignment.

(c) Establish Eqs. (4.3.7a) and (4.3.7b) for the simple cost assignment, where there

is decision rejection.

P4.2 Show that in the multiple-alternative detection case of Section 4.1.1, the actual

amount of information conveyed, on the average, is

HT ¼ �H s; dð Þ � q log q �
XK

i¼1

pi log pi: ð1Þ

Verify that the equivocation H s; dð Þ is

H s; dð Þ ¼ �
XK

i¼0

XK

‘¼0

P gi; S‘ð Þlog P gi; S‘ð Þ=P gið Þ½ �: ð2Þ

where

P gi; S‘ð Þ ¼
p‘b

‘ð Þ
i ‘ 6¼ 0

or

qa
0ð Þ
i ‘ ¼ 0

8
<

:
ð3Þ

and

P gið Þ ¼

qa
0ð Þ
i þ pi 1�

X

‘ 6¼i

b
ið Þ
k

 !

þ
X

‘ 6¼ i
‘ 6¼0

p
ð‘Þ
‘i i 6¼ 0

or

X

‘ 6¼0

p‘b
‘ð Þ
0 þ q 1�

X

k 6¼0

a
0ð Þ
k

 !

i ¼ 0:

8
>>>>>>>><

>>>>>>>>:

ð4Þ
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P4.3 (a) A signal is present additively with noise in K channels, or there are only the

various noises in theseK channels. Reception is coherent, and the signal class has

only one member per channel. If Sk is the version of the signal in the k channel,

and if the noises are all independent normal processes, show that the optimum

detector now uses the data X1; . . . ;XK from the K channels according to

logLJ X1; . .. ;XKð Þ¼ logm�1=2

XK

k¼1

a0k
2Fk sð Þþ

XK

k¼1

a0kFk x;sð ÞtlogK; ð1Þ

where Fk sð Þ�~sk k�1
N

� �
k
sk Fk x;sð Þ� ~xk k�1

N

� �
k
sk ð1aÞ

in which sk;xk are, respectively, the (normalized) signal and data vectors in

the kth channel and kNð Þk¼ KNð Þk=ck is the (normalized) covariance matrix

of the noise in this channel. As before, K is a threshold, and a20k¼A2
0k=2ck,

with A0k the amplitude of Sk tð Þ. Thus, one simply takes the outputs

logLJ X‘ð Þ� 1=Kð Þlogmþ½a0k
2F‘ sð Þ¼a0‘F‘ x;sð Þ, which are the weighted

cross-correlations of [Eq. (1a)] of sk with xk, and combines them additively to

get Eq. (1), which is then compared with the threshold in the usual way.

(b) Show, next, that the error probabilities of this Bayes system are for all signal

levels

a*

b*

� 
¼ 1

2
1� Q

P
a0k

2Fk sð Þ½ �1=2
2
ffiffiffi
2

p � log K=mð Þ
ffiffiffi
2

p P
a0k2Fk sð Þ½ �1=2

( ) !

: ð2Þ

In the limiting situation where sk ¼ s; a0k ¼ a0; and kð Þk ¼ kN; all kð Þ, we
accordingly obtain

a*

b*

� 
¼ 1

2
1� Q

a0Fs sð Þ1=2 ffiffiffiffi
K

p

2
ffiffiffi
2

p � log K=mð Þ
ffiffiffi
2

p
a0Fs sð Þ1=2 ffiffiffiffi

K
p

( ) !

ð3Þ

showing that in effect we have increased the “size” of our statistical sample:

a0F1=2
s of the single-channel case is made larger by the factor

ffiffiffiffi
K

p
. Thus,

the minimum detectable signal (on an rms basis) is decreased by
ffiffiffiffi
K

p
. Here

Q is the erf defined on p. 369.

P4.4 (a) Repeat Problem 4.3, but now for incoherent reception (where sh i« ¼ 0), and

where sk, sJ are essentially statistically independent (like the noises) from

channel to channel. Hence, show that the optimum detector structure in the

threshold case is

logLJ X1; . . . ;XKð Þ6log mþ
XK

k¼1

B
2ð Þ
Jk þB

4ð Þ
Jk

� �
þ 1=2

XK

k¼1

a0k2~xk �Gkxk ð1Þ

with �Gk ¼ k�1
N

� �
k
sk~sk k�1

N

� �
k
.
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(b) Obtain the Bayes error probabilities

a*

b*

� 
D

1

2
1�Q

P
a0k2

2
FGk
h i

� �1=2

4
� log K=mð Þ

P
a0k2

2
FGk
h i

� �1=2

8
><

>:

9
>=

>;

0

B@

1

CA ð2Þ

where FGk
h i ¼ ~sk �Gks

� �
. Hence, in the special case sk ¼ s, a0k ¼ a0,

kNð Þk ¼ kN, and so on, we get

a*

b*

� 
D

1

2
1�Q

a02 FGk
h i1=2 ffiffiffiffi

K
p

4
� log K=mð Þ
a02 FGk

h i1=2 ffiffiffiffi
K

p
( ) !

: ð3Þ

Thus, the improvement (on an rms basis) of the minimum detectable signal with

K independent channels (all containing the same signal), over the single channel

case is
ffiffiffiffi
K4

p
for incoherent threshold reception.

P4.5 Given the two sets of data X1 ¼ a0S1 þN1, X2 ¼ a0S2 þN2, where N1;N2 are

normal processes that may be statistically related, if a0 is normally distributed, show

that with a quadratic cost function the Bayes estimator of a0 is (for sampled data)

a*0 X1;X2ð Þ ¼ �a0=s
2 þ ~x1k1

�1s1 þ ~x1G1s1 þ ~x2G2s2 � ~x1G3s2 � ~x21G3s1

1=s2 þ~s1k1
�1s1 þ~s1G4s1 � 2~s1G3s2 þ~s2G5s1

ð1Þ

where

G1 ¼ ~k12k
�1
1 k2 � k21k

�1
1k12

� ��1
k�1

1k12 h2 ¼ c2=c1

G2 ¼ h�2 k2 � k21k
�1
1k12

� ��1

G3 ¼ ~k12k
�1
1 k2 � k21k

�1
1k12

� ��1

G4 ¼ ~k21k
�1
1 k2 � k21k

�1
1k12

� ��1
k�1

1k12

G5 ¼ h�2 k2 � k21k
�1
1k12

� ��1

ð2Þ

and the ks are normalized auto- and cross-covariance matrices between N1

and N2. (Compare these results with those of Section 4.3.1.)

P4.6 (a) Show that for multiple-estimation procedures the Bayes risk R
* kð Þ
‘ is always

equal to or less than R*
‘ using only a single data set X‘.

(b) Extend the treatment of Section 4.1.3 to the simple cost function.

P4.7 Carry out the details of the evaluation in Section 4.2 for overlapping signal

classes.
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5
BAYES EXTRACTION SYSTEMS: SIGNAL
ESTIMATION AND ANALYSIS, p(H1) = 1

In Chapters 2 and 3, we have considered binary detection systems, and in Chapter 4,

multiple alternative (K-ary) detection procedures, where the central problem is to determine

the presence or absence of a signal in noise. Here, on the other hand, the desired signal is

known a priori to be present at the receiver, and we are concerned with a somewhat more

general problem: that of determining the explicit structure or the descriptive parameters of a

signal in noise when these are unknown to the observer. Typical examples of communica-

tion interest are themeasurement of the presence, the location, and the velocity (Doppler) of

a moving target by a radar or a sonar; the calculation of signal amplitude, frequency, delay,

and other information-bearing features of the signal process in telephony. This also includes

the extraction of waveform data in the analysis and identification of signal structures in

various other communication operations. In all such cases we have to deal with a

measurement situation: our decisions now are not the simple “yes” or “no” of binary or

K-ary detection but are instead specific numbers, associated with the signal process in

question. Furthermore, in practical cases we do not have “pure” data uponwhich to operate,

but data corrupted by noise. As in detection, since observation time is limited, that is, since

the available samples fromwhich we obtain our measurement are finite, we can expect only

imperfect estimates of the desired quantities. Somewill be better than others, depending on

ourmethods for reducing the effects of the interfering noise. The principal aim of the present

chapter, accordingly, is to find and examine systems TR that have this desirable property of

yielding optimum estimates.

A receiving systemTR thatmeasures thewaveformor one ormore of the parameters of an

incoming signal ensemble we call a signal extraction system and the process itself signal

extraction.Aswenoticed inSection1.2.2, signal extraction is a formof statistical estimation

(e.g., point estimation) analogous to signal detection as a formof hypothesis testing. Both, of

Non-Gaussian Statistical Communication Theory, David Middleton.
� 2012 by the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.
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course, fall within the domain and techniques of decision theory (Section 1.2). If we define

signal analysis to include methods of estimation as well as representation, we see, then, that

signal extraction plays an important part in this theory. Here, as in detection, the goals of an

adequate theory remain unchanged: to obtain optimum systems for estimation, to interpret

the resulting structures TR in terms of specific, realizable elements, and to evaluate and

compare the performance of optimum and suboptimum systems. In Section 5.1, we begin

with a decision theoretic formulation of signal estimation where the signal is known

to be present.1 These general methods are then applied in Sections 5.2–5.4 to various

problems of signal analysis. Because of the many possible situations and criteria available,

our treatment is specifically selective and thus less compact and comprehensive than our

preceding treatment of detection inChapters 2 and 3.Chapter 5 is based largely on the earlier

work of Middleton and Van Meter [1] and Middleton, Chapter 21 of Ref. [2], extended to

include spatial as well as temporal data.

5.1 DECISION THEORY FORMULATION

A distinguishing feature of the decision theoretic formulation for communication is the

introduction of cost, or value judgments associated with the decisions. These costs play a

different role in estimation than they do in detection. In the latter, they are assigned to the

various correct and incorrect discrete outcomesof thedetector: “yes, a signal is present H1ð Þ”
or “no, a signal is not present H0ð Þ,” and are represented as components of a decision

threshold, as explained in Chapter 1 and illustrated with examples in Chapter 3. In signal

extraction, however, the decisions are now numbers or magnitudes, since estimation is

basically a measurement process.

The fact that we have a definite decision implies some sort of cost assignment. We may

accordingly expect that estimation systems, like detection systems, can be naturally

incorporated within the framework of decision theory on choice of an appropriate cost

function. That this is the case will be demonstrated here and in succeeding sections. For

example, we shall show that classical estimation methods, like maximum likelihood under

rather broad conditions,maybe regarded as decision systems (minimizing average risk)with

respect to certain cost assignments.Optimumsystemshere are againBayes systems (Section

1.4.3), as in the analogous detection theory. However, the cost functions themselves and the

resulting optimal structures are nowquite different. An important feature of estimation from

the decision-theoric viewpoint is the variety of possible cost functions and corresponding

optimum systems that can be generated. The present section is accordingly devoted to signal

extraction (or estimation) from this standpoint. Specifically, it is devoted to a discussion of

some cost functions of practical interest, the associated Bayes systems, and their various

properties, such as the distribution of estimators and the probabilities of correct decisions.

5.1.1 Nonrandomized Decision Rules and Average Risk

Extraction in the theory of signal reception is the counterpart of parameter estimation in

statistics. Here the signal parameters u ¼ u1; u2;. . . ; uMð Þ are the parameters of the

distribution densityFn X S uð Þj �½ governing the occurrence of the received dataX. Frequently,
the signal parameters u are taken to be the signal componentsS themselves, as in the case of

1 The reader is referred to results of classical estimation, as background to the Bayesian approach of this chapter.
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stochastic signals and waveform estimation generally. Point estimation (Section 1.2.2),

namely the direct estimation of each component of u or S, is considered here, rather than
estimation by confidence intervals (Section 6.3.5). As before (Section 1.3.1), we let g
represent the decision to bemade about u, where equivalently g ¼ gu or gs½ � is the required
estimator of u (Appendix A5.1). Observe also that, when a particular g is to be an estimate

of u, the parameter and decision spacesVu; D have the same structure, that is, a one-to-one

mapping exists between the two. We assume that each space contains a continuum of

points and is a finite, closed region, which may, however, be taken large enough to be

essentially infinite for practical purposes.2 Similarly, when waveform estimation is

desired, we set u ¼ S and the signal and decision spaces V; D of Fig. 1.5 likewise have

the same structure. The cost functions F1 ¼ C u; gð Þ, F1 ¼ C S; gð Þ [Eq. (1.4.3)], to be

used in the risk analysis, are as in detection (Section 1.6) preassigned in accordance with

the external constraints of the problem and are critical in determining the specific structure

of the resulting system.

An important theorem, due to Hodges and Lehmann [3], enables us to avoid randomized

decision rules (Section 1.3.2) in most applications. This theorem states:

If D is the real line and if C u; gð Þ C S; gð Þ is a convex function3of g for every u (or S),
then for any decision rule d there exists a nonrandomized decision rule whose average

risk is not greater than that of d for all u (or S) in Vu (or V).

This applies to one-dimensional u ¼ u1ð Þ, or S ¼ S1ð Þ, and g ¼ g1ð Þ but can usually be

extended to include multidimensional vectors [4]. Thus, when the decision rule is non-

randomized, we have from Eq. (1.4.14)

d g Xj Þ ¼ d g � gs Xð Þ½ �ð ð5:1:1Þ

wheregs Xð Þ ¼ TR Xf g is the functional operation performedon the dataXby the systemTR

and g is, for particular X, the estimate produced by the system. Since we are interested

primarily in Bayes systems, the unconditional estimator gs Xð Þ, rather than the conditional
estimator gu Xð Þ, is the quantity to be optimized, by minimization of the average risk.

Accordingly, for waveform extraction, u ¼ S, where g Xð Þ is an estimator of S based on X
and on the a priori distributions Sð Þ, while, for parameter extraction, the estimator gu Xð Þ is
based instead4 on X and s uð Þ.

For waveform estimation, in contrast to that for space and time-independent parameters,

the points P g; tð Þ at which estimates are desired provide a convenient subdivision of the

extractionprocess into three principal types ofprocedure5. Let uswrite for thewaveformvalue

under estimation Sl ¼ S gl; tlð Þ, where lmay assume a discrete (and, later, a continuous) set

of values. Depending on how gl; tlð Þ are chosen with respect to the spatial points

g1;. . . ; gm;. . . ; gM and the times t1; t2; tn;. . . ; tN in the space–time interval 0; R; 0; tð Þ at
which the received data X g; tð Þ are sampled (to give X), we distinguish as follows.

2 See also Section 1.5.3.
3 A real-valued function g xð Þ is convex in an interval a; bð Þ if for any x and y in a; bð Þ and any number 0 < r < 1

one has rg xð Þ þ 1� rð Þg yð Þ � g rxþ 1 1� rð Þy½ �.
4 Again, we employ the convention that (unless otherwise indicated) functions of the same form and different

arguments are different; that is, s uð Þ 6¼ s Sð Þ unless u ¼ S; w Xð Þ 6¼ w S Xj Þð , and so on.
5 For space–time indexing we employ the double index convention j ¼ mn (or the single index, k) described in

Section 1.3.1.
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5.1.1.1 Smoothing or Interpolation Here g ¼ j lies within the observation period

X g; tð Þ, but it does not coincide with any of the space–time points gi 6¼ gm; tnð Þ, of the
data and signal elements X11; . . . ; Xm;n; . . . ; XM;N

� �
, S11; . . . ; Sm;n; . . . ; SM;N

� �
, J ¼ MN,

on which the estimation of S is based. [lj may take a single value or many values in

0; R; 0; tð Þ. Usually, however, only a single Sl is to be determined, based on X and S.]

5.1.1.2 Simple orCoincidentalExtrapolation Herelj ¼ gm; tnð Þ is one (ormore) of the

space–time points at which data are obtained and for which a priori information concerning

S is also given. Thus, lj ¼ gm; tnð Þ again lies in the observation interval, and extraction

consists in obtaining suitable estimates of S based on X.

5.1.1.3 Prediction or Extrapolation In this case lj ¼ gm; tnð Þ lies outside the data

interval 0; R; 0; tð Þ, where no samples are taken, andwe are asked now tomake an estimate

of S on the basis of S and X in 0; R; 0; tð Þ (see Fig. 1.3 extended to include space–time

sampling).

From Eqs. [(1.4.5) and (1.4.6)] and (1.4.14), we accordingly write for the average risk

R s; dð ÞS ¼
Z

W
s S; Slð ÞdSldS

Z

W
C S; Sl; gsð ÞFJ X Sj ÞdX;ð ð5:1:2Þ

where FJ X Sj Þð does not contain Sl if l ¼ lj 6¼ j mnð Þ or if Xj; lj 7 0; R; 0; tð Þ, as in

prediction6. Since S is usually a function of one or more statistical parameters u, we can (in
the case of deterministic signals) make use of the fact that s S; Slð ÞdS dSl when integrated

over all W--space is equivalent to s uð Þdu, similarly integrated over all W--space [W and Wu

mapping into each other as a result of the transformationS ¼ S uð Þ]. Then Eq. (5.1.2) can be
put into the alternative and more convenient form

R s; dð ÞS ¼
Z

Wu

s uð Þdu
Z

G

C S uð Þ; Sl uð Þ; gs½ �FJ X S uð Þj �dX:½ ð5:1:2aÞ

Similarly, the average risk associated with the parameter estimation of u is

R s; dð Þu ¼
Z

Wu

du s uð Þ
Z

G

C u; gsð ÞWJ X uj Þduð ð5:1:3Þ

where WJ X uj Þ ¼ FJ X S u; u0ð Þj �½ iu0
��

and where u0 represents all other parameters, apart

fromu.Of course, if there arenootherparametersu0, thenWJ X uj Þ ¼ FJ X S uð Þj �½ ihð .Observe

here that the gs for u and forS; Sl are different estimators in general, while the average risks

Ru; RS likewise assume different values. As in detection, Bayes systems are obtained by the

choice of decision rule, here the estimatorgs [Eq. (5.1.1)]whichminimizes the average risk.

Examples for special cost functions are considered presently in Sections 5.1.2 and 5.1.3.

5.1.2 Bayes Extraction With a Simple Cost Function

Let us now determine the optimum extraction procedure for minimizing the average risk

[Eq. (5.1.2a) or (5.1.3)]when a simple, or “constant,” cost function is chosen.By a simple, or

6 When l ¼ j ¼ mnð Þ, the notation is pleonastic: Sl is absorbed into S; this is illustrated in subsequent examples.
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constant, cost function ismeant one forwhich the cost of correct estimates is set equal toCC,

while the costs of incorrect estimates all have the same value CE > CCð Þ, regardless of how
much in error they may be.

Assuming simple, or coincident, estimation l ¼ j mnð Þ of the signal parameters

u ¼ u1; . . . ; uMð Þ (Section 5.1.1.2) for the moment, as well as discrete parameter and data

spaces, so that u andX can take only discrete values, wemaywrite the constant cost function

specifically as

C u; gsð Þ ¼
XK

k¼1

CE � CE � CCð Þdgkuk

� � ð5:1:4Þ

where dgkuk is the Kronecker delta d ¼ 1; gk ¼ uk; g ¼ 0; gk 6¼ ukð Þ. Thus, we are pena-
lized an amount CE for each parameter k ¼ 1; . . . ; Kð Þ when our estimate gk is incorrect,

that is, when gk 6¼ uk, and, correspondingly, are assessed the smaller amount CC when a

correct decision gk ¼ uk is made. From Eqs. (1.4.6) and (5.1.4), we can write the discrete

analogue of the average risk [Eq. (5.2.3)] here as

R s; dð Þu ¼ KCE � CE � CCð Þ
XK

k¼1

X

Vu

X

G

X

D

dgkuk ps uð ÞpJ X uj Þd g Xj Þ;ðð ð5:1:5Þ

where ps andpJ are respectively the a priori probabilitiesof u and the conditional probability
ofX, given u. The symbols

P
Vu
, and so on, indicate summation over all Lk allowed values of

each uk k ¼ 1; . . . ; Kð Þ, and so on. Thus we write

X

Vu

�
XL1

‘1¼1

� � �
XLK

‘k¼1

;
X

G

�
XN1

‘1¼1

� � �
XNJ

‘J¼1

; and so on: ð5:1:6Þ

Next, let us define

Dk X; ps; dð Þ �
X

D

X

Vu

dgkuk pJ X uj Þps uð Þd g Xj Þðð ð5:1:6aÞ

¼
X

Dk
pJ X gkj Þps gkð Þd gk Xj Þðð ð5:1:6bÞ

in which pJ X gkj Þ; ps gkð Þð are the marginal probabilities

pJ Xjukð Þ �
X

Vu�Vuk

pJ Xjuð Þ; ps ukð Þ ¼
X

Vu�Vuk

ps uð Þ: ð5:1:7aÞ

The decision rule d gk Xj Þð is similarly the marginal probability

d gkjXð Þ ¼
X

D�Dk

d g Xj Þ:ð ð5:1:7bÞ

DECISION THEORY FORMULATION 275



(Inour present notation,
P

D ¼PDk
� PD�Dk

, etc.)The average risk [Eq. (5.1.5)] cannowbe

expressed more compactly as

R s; dð Þu ¼ KCE � CE � CCð Þ
X

G

XK

k¼1

Dk X; ps; dð Þ: ð5:1:8Þ

Optimization is next achieved by a suitable choice of the M decision rules d gkXð Þ
k ¼ 1; . . . ; Kð Þ. It is clear that Ru is smallest when each Dk is largest, since

Dk � 0 1 � pJ ; ps; d gk Xj Þ � 0 alsoð �½ . Accordingly, we select d gk Xj Þð to maximize

Dku . This is accomplished by setting

d gk Xj Þ ¼ dgk ĝk
¼ 0; gk 6¼ ĝk X; k ¼ 1; . . . ; K;j� ð5:1:9Þ

where ĝk ¼ ûk
� �

is the unconditional maximum likelihood estimator (UMLE) of uk,
defined by

ps ûk
� �

pJ X ûk
�� � � ps ukð ÞpJ X ukj Þ ; all uk inWuk :ð� ð5:1:10aÞ

This UMLE, ûk may be obtained from (5.1.10b) ff., where, of course, LJ is now L X; ukð Þ ¼
ps ukð ÞpJ X; ukð Þ, with probability densities replaced by the appropriate probabilities.7

@

@u
log L X; uð Þ ¼

�
@

@uk
log ps ukð ÞpJðX ukj Þ

�

uk ¼ ûk ¼ ĝk

	
¼ 0: ð5:1:10bÞ

The Bayes risk becomes

R*
u � min

ŝ
R s; dð Þu ¼ KCE � CE � CCð Þ

XK

k¼1

X

G

ps ûk
� �

pJ X ûk
�� �

:
� ð5:1:11Þ

Note that because of the particular structure of the cost function [Eq. (5.1.4)], the Bayes

estimators of u1; . . . ; uK here are the individual UML estimators ĝk ¼ ûk of each uk.
The parameters may be statistically related, as pJ X uj Þð indicates. Each ps ukð Þ; pJ X ûk

�� ��

embodies such interrelationships, but the UMLEs are determined independently

from (5.1.10b), as indicated above.

When the data, parameter, and decision spaces G; Vu; D are continuous instead of

discrete, the continuous analogue of the discrete constant cost function (5.1.4) becomes

C u; gsð Þ ¼
XK

k¼1

CEA
0
k � CE � CCð Þd gk � ukð Þ½ �; ð5:1:12Þ

where the A0
k are (positive) constants, with the dimensions of the delta functions (that is,

ukj j�1
) chosen so that the average risk for each uk is also positive (or zero).8 This can be

7 Note that generally pJ X ukj Þ 6¼ pJ X ulj Þ k 6¼ 1; etc:ð Þðð .
8 The choice of the A0

k , while to an extent arbitrary, is closely related to the fineness with which our extraction

system can distinguish between observed magnitudes (Section 5.1.5).
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expressed more compactly as

C u; gsð Þ ¼ C0

XK

k¼1

Ak � d gk � ukð Þ½ � C0 � CE � CC; Ak � CE

CE � CC

A0
k: ð5:1:12aÞ

Paralleling Eqs. (5.1.5) to (5.1.8), we get for the average risk

R s; dð Þu ¼ C0

XK

k¼1

Ak �
Z

G

Dk X; s; dð ÞdX
� �

; ð5:1:13aÞ

with Dk X; s; dð Þ ¼
Z

D

s gkð ÞWn X gkj Þd gk Xj Þdgk;ðð ð5:1:13bÞ

[Eq. (5.1.6b)], where nowprobabilities have been replaced by the corresponding probability

densities s; Wn; d.
Optimization again is achieved by selecting the decision rules d gk Xj Þð so as tomaximize

Dk. The analogue of Eq. (5.1.9) for this purpose is

d gk Xj Þ ¼ d gk � ĝk Xð Þ½ �; k ¼ 1; . . . ; K;ð ð5:1:14Þ

where ĝk Xð Þ ¼ ûk Xð Þ is the UML estimator of uk, defined by

s ûk
� �

WJ X ûk
�� � � s ukð ÞWJ X ukj Þ; all uk inWuk :ð� ð5:1:14aÞ

The required UMLE’s ûk, are once more obtained from Eq. (5.1.10b), with

LJZ ¼ s ukð ÞWJ X; ukð Þ now. Thus, we have equivalently

@

@u

�
log s ukð ÞWJðX ukj Þ

�

uk¼ûk¼ĝ
ukð Þ*

	
¼ 0; k ¼ 1; . . . ; K: ð5:1:14bÞ

The corresponding Bayes risk for this constant cost function [Eqs. (5.1.12) and (5.1.14)] is

R* s; dð Þu ¼ C0

XK

k¼1

Ak �
Z

G

s ûk
� �

WJ X ûk
�� �

dX
� �

;

�
ð5:1:15Þ

where we remember, of course, that ûk ¼ gk Xð Þ* is a function of X.
For waveform estimation, the constant cost function [Eq. (5.1.12a)] becomes for the

coincident estimation x ¼ j


j ¼ 11; 12; . . . ;

M

MN

�
employed here,

C S; Sl; gsð Þ ¼ C S; gsð Þ ¼ C0 AJ �
XJ

j¼1

s gj � Sj
� �

" #

; ð5:1:16Þ

in which it is assumed that Ak ¼ A0
n=J for each point rm; tnð Þ at which estimates of Sk are

desired. Following the argument of Eqs. (5.1.13a)–(5.1.15),we see that theBayes estimators

of S11;. . . ; SMN are again the various unconditional maximum likelihood estimators
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ĝk Xð Þ ¼ Ŝk Xð Þ, while the Bayes risk (5.1.15) is modified to9

R* s; dð ÞS ¼ C0

�
An �

XJ¼MN

j¼1

Z

G

s Ŝj
� �

FJ

�
X Ŝk
�� �

dX

�
> 0ð Þ: ð5:1:17Þ

(Other types of “constant” cost function can be constructed (Section 5.1.5), but they are not

particularly well suited tomany applications, their chief defect being an excessive strictness

with regard to accuracy and hence too great an average risk.)

In the above instances, the optimum estimators are all UML estimators. The estimates

themselves are the parameter or signal values which maximize the joint probabilities (for

discrete magnitudes) or probability densities of uk or Skð Þ and X, regarded as functions of

uk or Skð ÞwithX fixed. For each X, these estimates differ. If all signals Sk or parameters uk
are a priori equally likely, these estimates are equivalent to the corresponding conditional

likelihood estimates. However, regardless of the precise form ofs ukð Þ ors Skð Þ, these Bayes
estimates are the parameters (or signals) most likely a posteriori, that is, for given X. In
general,we can regard unconditional maximum likelihood estimators as Bayes estimators

relative to an appropriate constant, or simple, cost function. Since these optimum

estimators are all UMLEs, classical maximum likelihood theory as extended to the

unconditional cases may be applied in detail here.We can accordingly interpret the UMLEs

of amplitude a0 and shape factor u considered in the examples of as optimum decision

systems that minimize average risk with respect to a constant cost function of the type

(5.1.12). In a similarway, the estimator ofEq. (5.1.12) for the example inSection 5.1.2 canbe

shown to be Bayes relative to the cost function of Eq. (5.1.11) (see Section 5.4.1). Finally,

observe that the extension of Eqs. (5.1.16) and (5.1.17) to the interpolation and extrapolation

of waveforms l0j 6¼ li as distinct from simple estimation l0j ¼ li may be carried out in the

same way.

5.1.3 Bayes Extraction With a Quadratic Cost Function

Webegin again with the case of parameter estimation. Now, however, the cost function to be

used in the estimation of the K signal parameters u ¼ u1;. . . ; uKð Þ is the quadratic cost

function

C u; gsð Þ ¼ C0
~u� ~gs

� �
u� gsð Þ ¼ C0 u� gs Xð Þk k2 ¼ C0

XK

k¼1

uk� gkð Þ2; ð5:1:18Þ

where of courseC0 > 0.HereC itself is convex so that the inconvenienceof consideringboth

randomized and nonrandomized decision rules may be avoided.

This cost function is the square of the “distance” between the true value and the estimate.

The chief virtues of this “squared-error” or quadratic cost function for extraction are

(1) that it is convenient mathematically in the cases herewhere the signal is known to be

present;

9 Note that in Eq. (5.1.17), FJ X Skj Þ 6¼ FJ X Sj Þðð . For example, we write FJ X Sj
�� � ¼ R s Sð ÞFJ X Sj Þ dS 0ð�

, where

S 0 ¼ S11; . . . ; SJ with Sj omitted.
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(2) that it takes reasonable account of the fact that usually large errors are more serious

than small ones; and

(3) that under certain conditions (described in Section 5.1.4) it is also an optimum or

Bayes estimator for awider class of cost functions than the quadratic [5].Moreover, as

we shall see presently, it also leads in certain cases to the earlier extraction

procedures [4, 6] based on least-mean-squared-error criteria for linear systems,

which we wish to include from the more general viewpoint of decision theory.

For Bayes extractors, we minimize the average risk R as before. The conditional risk

[Eq. (1.4.5)] for Eq. (5.1.18) and the decision rule d g � gs Xð Þ½ � become

r u; gsð Þ ¼ C0

Z

G

u� gs Xð Þu
�� ��2Wn X uj ÞdX;ð ð5:1:19Þ

where care is taken to distinguish between the estimator gs Xð Þ, defined for all possible X,
and the estimate gs X0ð Þ, for a particular X ¼ X0. The average risk follows at once from

Eqs. (1.4.6a) and (1.4.6b) and is here

R s; dð Þu ¼ C0EX; u u� gs Xð Þu
�� ��2
n o

¼ C0

R
GdX wJ Xð Þ

� RVu
u� gs Xð Þu
�� ��2wK u Xj Þdu;ð

ð5:1:20aÞ

where we have written the probability densities

wJ Xð Þ ¼
Z

Vu

s uð ÞWJ X uj Þ du; wK u Xj Þ ¼ s uð ÞWJ X uj Þ=wJ Xð Þ:ððð ð5:1:20bÞ

When the cost function is differentiable (with respect to the estimator), we obtain the

following general condition for an extremum of R (actually a minimum for these concave

cost functions):

dR ¼
Z

G

dX

Z

Vu

s uð ÞWJ Xjuð Þ @C u; gð Þ
@g

du dg ¼ 0; ð5:1:21aÞ

or

Z

Vu

s uð ÞWJ Xjuð Þ @C u; gð Þ
@g

jg¼g*du ¼ 0: ð5:1:21bÞ

With the quadratic cost function (5.1.18), this becomes simply

g*
s Xð Þu ¼

R
Vu
u wK ujXð Þ du ¼

R
Vu
u s uð ÞWJ Xjuð Þ du

R
Vu
s uð ÞWJ Xjuð Þ du

¼
R
Vu
u wJK X; uð Þ du

R
Vu
wJK X; uð Þ du ;

ð5:1:22Þ

in which wJK X; uð Þ is the joint d.d. of X and u. Thus, the Bayes estimator for the squared-

error cost function is the conditional expectation [7] of u, given X. Since both members of
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Eq. (5.1.22) are vectors, Eq. (5.1.22) represents K equations between the K components of

g*
s and u. Accordingly, the kth component of the estimator is

g*
s Xn; . . . ; XMNð Þ� �

k

¼ R . . . R ukwK u1; . . . ; uM X11; X12; . . . ; XMNj Þ du1 � � � duKð
k ¼ 1; . . . ; K: ð5:1:22aÞ

The same result follows, of course, if instead of Eq. (5.1.18) we use for each component u,
that is, if theBayes estimate of a single component ofC ¼ uk� gkð Þ2 is required, rather than
the more general vector estimate. This is a consequence of the quadratic nature of the

preassigned cost function and clearly does not hold in general. (Note again that

WJ X uj Þ ¼ FJ X S u; u0ð Þj �½ iu0
��

, and ifS is a function of u only, thenWJ X uj Þ ¼ FJ X S uð Þj �½ð .)

The Bayes risk is specifically, from (5.1.22) in (5.1.20a),

R* s; dð Þu ¼ C0EX;u u� g*
s Xð Þu

�� ��2
n o

¼ C0Eu
~uu
 �� 2C0EX;u

~ug*
s

 �þ C0Eu g*
sg

*
s

 �
;

ð5:1:23Þ

since g*
s is a function ofX only, while u is governed solely by the d.d. s uð Þ. Note, however,

that sinceX is a function of u, inasmuch asX ¼ S uð Þ þ N here, the cross-term inEq. (5.1.23)

does not generally factor into the product of the individual averages EX g*
s

 �� Eu
~u
 �

.

In the case of waveform estimation, the preceding treatment is easily modified for simple

estimation l ¼ jð Þ. Instead of Eq. (5.1.18) one has now the cost function

C S; gsð Þ ¼ C0
~S� ~gs

� �
S� gsð Þ ð5:1:24Þ

wheregs ¼ gs Xð Þ is the estimator ofS itself, rather than of u inS ¼ S uð Þ. Replacing u byS
and WJ X uj Þð by FJ X uj Þð , and so on, in (5.1.20a)–(5.1.22), we obtain the corresponding

average risk, optimum estimators, and Bayes risk

R s; dð ÞS ¼ C0=

Z

V

Z

G

s Sð Þ S� gs Xð Þk k2FJ X Sj Þ dS dX;ð ð5:1:25Þ

g*
s Xð ÞS ¼

R
VSs Sð ÞFJ XjSð Þ dS
R
Vs Sð ÞFJ XjSð Þ dS ¼

R
VSWJ X; Sð Þ dS
R
VWJ X; Sð Þ dS ; ð5:1:26aÞ

and R* s; dð ÞS ¼ C0EX;S S� g*
s Xð ÞS

�� ��2
n o

: ð5:1:26bÞ

Like Eq. (5.1.2a), useful alternative forms of (5.1.25)–(5.1.26a) in the case of deterministic

signal processes are obtained on replacingS byS uð Þ explicitly ands Sð Þ bys uð Þ, where now
the integration is over all V-space. The result from [(5.1.26a) and (5.1.26b)] is

g*
s Xð ÞS ¼

R
Vu
S uð Þs uð ÞFJ XjS uð Þ


 �
du

R
Vu
s uð ÞFJ XjS uð Þ


 �
du

; ð5:1:27aÞ
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with the Bayes risk

R* s; dð ÞS ¼ C0EX; u S uð Þ� g*
s Xð ÞS

�� ��2
n o

: ð5:1:27bÞ

Even when �S or �g*
s vanishes, the Bayes risk [Eqs. (5.1.26a) and (5.1.26b)] still contains the

cross-term, namely,

R s; dð Þ*S ¼ C0ES or u
~SS
 �� 2C0EX; S or u Sg*

s

 �þ C0EX ~g*
sg

*
s

 � ð5:1:27cÞ

again, since X in g*
s

� �
is a function of S or u.

5.1.4 Further Properties

Some further properties of the Bayes estimator with the quadratic cost function (5.1.18) are

easily shown.

Case 1: For example, in the case of simple estimation if a fixed signal S1 is applied at the

input, so that s Sð Þ ¼ d S� S1ð Þ, the Bayes estimator is g*
s Xð ÞS ¼ S1 and is therefore

conditionally unbiased, that is,

Z

G

g*
s Xð ÞSFJ X Sj Þ dX ¼ S1:ð ð5:1:28Þ

The conditional risk for any unbiased estimator gs Xð ÞS is actually its conditional variance,
indicated by var gs Xð ÞS. The average risk [Eq. (5.1.25)a may be written

R s; gsð Þ ¼ C0

Z

V

var gs Xð ÞS
� �

s Sð Þ dS: ð5:1:29Þ

Since R s; gsð Þ is least for the Bayes estimator, we see from Eq. (5.1.29) that

The Bayes estimator for the quadratic cost function has the smallest average variance among

all unbiased estimators.

Similar remarks apply for the parameter estimators gs Xð Þu above.
Case 2:When signal and noise are additive and independent and waveform estimation is

required, several more important properties of Bayes estimators with quadratic cost

functions and simple estimation can be demonstrated. The first of these is the so-called

translation property [8, 9], which appears when the a priori signal distribution is uniform.

The Bayes estimator of S is now given by Eq. (5.1.26a), where FJ X Sj Þð is replaced by

WJ X� Sð ÞN . With s Sð Þ uniform, this estimator becomes

g*
sðXÞS ¼

R � � �1
�1
R
SWJ X� Sð ÞN dS

R � � �1
�1
R
WJ X� Sð ÞN dS

: ð5:1:30Þ

Now, letting l be an arbitrary fixed vector and introducing a new variable U such that

U ¼ Sþ l, we see that (5.1.30) gives at once

g*
s X� lð ÞS ¼ g*

s Xð ÞS � l: ð5:1:31Þ
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For example, if a fixed signal S ¼ X�N is applied to a system designed to be Bayes with

respect to a uniform a priori distribution s Sð Þ, then, if the same signal is changed by an

amount l, the system output is altered by the same amount.

Case 3:A third property is that ofMinimax. We recall from Section 1.4.4 that if a Bayes

system designed for a certain signal distribution s0 Sð Þ has a conditional risk that is

independent of S, then it is a Minimax system and s0 Sð Þ is called the least favorable

distribution. The above Bayes system g*
s Xð ÞS has also the conditional risk

r S; g*
� � ¼ C0

Z

G

S� g* Xð ÞS
�� ��2WJ X� Sð ÞN dX: ð5:1:32Þ

Letting the domain be infinite for each component and introducing new variables

Z ¼ X� S, we see that (5.1.21) becomes

r S; g*
� � ¼ C0

Z
� � �
1

�1

Z
S� g* S� Zð ÞS
�� ��WJ Zð ÞN dZ ð5:1:33Þ

but since the Bayes system g* here has the translation property (5.1.31), we have

g* Sþ Zð ÞS ¼ g* Zð ÞS þ S. When this is used in Eq. (5.1.31), the conditional risk becomes

independent of S, showing, therefore, that

When signal and nose are additive and independent, the least favorable a priori

distribution s0 Sð Þ is a uniform one and the Bayes system g*
s for this distribution is

Minimax ¼ g*
M

� �
.

Observe that, with deterministic signals, the signal parameters (except for amplitude

� a0) do not appear linearly in S, so that the translation property above does not hold any

more for theBayes estimatorg*
s Xð Þu even ifs uð Þ is uniform.Moreover, this Bayes system is

no longer Minimax, while the least favorable distribution s0 Sð Þ is not uniform. The

exception to this occurs for the signal amplitude, because of its linear relation vis-à-vis

the accompanying noise.

Sometimes the added constraint of linearity is imposed upon the estimator g Xð Þ, so that
the estimateg is required to be the output of a linear (usually physically realizable) filterwith

X rm; tð Þas its input.Then it is not generally true that optimumextractors under this constraint

are Bayes, since from Eq. (5.1.26a) the Bayes extractor is usually a nonlinear operator upon

X rm; tð Þ, even for the simple cost assignment of Section 5.1.4. In fact, as we can see from

the above, FJ X Sj Þð must have rather special properties if Bayes and linearity are to be

concomitant features of the optimum extractor. We remark, however, that some of the

notions of risk theory are useful for such restricted classes of decision rules, even though

the main theorems do not apply [10]. That is, if we agree that only the class of linear

estimators is to beconsidered,wemay speakof the onewith the smallest average risk, the one

forwhich themaximumconditional risk is smallest, the onewith the property that no other in

the class is uniformly better, and so on, settling the questions of existence and uniqueness in

specific situations by construction.

Finally, recall again that these estimators gs Xð ÞS, gs Xð Þu embody the actual structure of

our receiving and data processing systems, for example, TR Xf g ¼ gs Xð ÞS or gs Xð Þu.
Optimal systems from the risk point of view have now been defined with respect to at least
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two classes of cost function, the simple and the quadratic10 [(5.1.4) et seq., (5.1.18) et seq.].

Some additional cost functions are considered in the next section, while the questions of

structure and the distributions of the estimators themselves are examined in more detail in

Section 5.2.

5.1.5 Other Cost Functions11

The number of possible cost functions, while theoretically infinite, is in practice limited by

the dual requirements of reasonableness and computability. On the one hand, the cost of

“errors” must depend on the magnitude of the “error” in some fashion such that correct

decisions are penalized less than incorrect decisions. On the other hand, the cost function

should be such that optimum systems (in the sense of minimum average risk, for example)

can be found, at least approximately, from such conditions as Eqs. ((5.1.21a) and (5.1.21b))

and their corresponding Bayes risks in turn determined. Perhaps the most natural choice of

cost function is the symmetric “distance” function

C u; gsð Þ ¼ C u� gsj jð Þ; or C S; gsð Þ ¼ C S� gsj jð Þ; ð5:1:34Þ

where correct decisions cost a fixed amount C 0ð Þ � 0ð Þ and incorrect decisions a greater

amount; consequently, if C possess a Taylor expansion, Eq. (5.1.34) can be alternatively

represented by series of the type

C u; gsð Þ ¼ C 0ð ÞX

ij

C
0ð Þ
u


 �

ij
ui � gsi

� �
uj � gsi

� � ð5:1:34aÞ

with an analogous development for C S; gsð Þ in terms of C
0ð Þ
S ; C

2ð Þ
Sij ; Si � gsi

� �
, and so on.

Let us consider theK parameters u a number ofK-dimensional cost functions of the type

(5.1.34), which, however, are not necessarily developable in a Taylor series like

Eq. (5.1.34a). The quadratic cost function of Eq. (5.1.18) is one example that we have

already examined in some detail (Section 5.1.3). Another is the exponential cost function

C2 u; gsð Þ ¼ C0 1� exp �1
2
~u� gs

� �
n�1 u� gsð Þ� ��

;
� ð5:1:35Þ

where n is the diagonalmatrix hkdkj
� �

and thehk are scale factorswith the dimensions of the

respective parameters uk. Thehk are directly related to the finenesswithwhich the estimator

(or receiver TR Xf g ¼ gs) is able to distinguish between correct and incorrect values.

According to Eq. (5.1.35), the receiver is penalized comparatively little if the estimates

gs Xð Þ are close to the actual values u and almost themaximumamountC0 when one ormore

of these estimates depart noticeably from the correct values. Unlike the expandable cost

functions of Eqs. (5.1.18) and (5.1.35), we cite two additional examples involving the

nondevelopable “rectangular” cost functions:

C3 u; gsð Þ ¼ C0 1�
XK

k¼1

D
uk � gk

hk

����

����

 !

ð5:1:36Þ

10 We remark that the Bayes estimators for quadratic cost functions also sometimes possess optimal properties with

respect to a wider class of cost functions (Section 5.1.5).
11 See the report by Ashby [11].
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and C4 u; gsð Þ ¼ C0 1�
YK

k¼1

D
uk � gk

hk

����

����

 !

; ð5:1:37Þ

where D xj j ¼ 1 if xj j < 1 and D xj j ¼ 0 when xj j > 1. The former assesses the observer an

amountC0l=K if l � 1ð Þ estimates out of theK fall outside the tolerance limit ui � hð Þ, while
the latter invokes the maximum penalty C0 if any one estimate lies outside these limits. For

many applications, the latter is too strict. It produces too high an average risk (for given h),
rapidly approaching the maximum C0 as K!1.

Although, strictly speaking, the derivatives of the rectangular cost functions C3;C4

[Eqs. (5.1.38) and (5.1.39a)] do not exist, we can still obtain the solution of the extremum

condition for the Bayes estimators g*, in terms of delta functions. Thus, for C3 we write

@

@g
C0 1�

XK

k¼1

D
uk � gk

hk

����

����

 !

¼ C0 d uk � gk þ hkð Þ � d uk � gk � hkð Þ½ �; k ¼ 1; . . . ; K:

ð5:1:38Þ

Substituting this into Eq. (5.1.21b) yields the set of K equations k ¼ 1; . . . ; Kð Þ

s g*
k � hk

� �
WJ X g*

k � hk

�� � ¼ s g*
k þ hk

� �
WJ X g*

k þ hk

�� �
:

�� ð5:1:39aÞ

The solutions g*
k of these relations are accordingly the optimum estimators of u. In terms of

the joint d.d. wk X; ukð Þ of X and uk we have the equivalent relations

wk X; g*
k � hk

� � ¼ wk X; g*
k þ hk

� �
; k ¼ 1; . . . ; K: ð5:1:39bÞ

Note that whenhk is small, wemay develop bothmembers of Eq. (5.1.39b) after first taking

their logarithms, to get approximately (for each k ¼ 1; . . . ; K)

log wk X; g*
k

� �� hk

@logwk

@uk

����
uk¼g*

k

¼ log wk X; g*
k

� �þ hk

@logwk

@uk

����
uk¼g*

k

@ log wk X; ukð Þ
@uk

����
uk¼g*

k

¼ 0; k ¼ 1; . . . ; K

:

ð5:1:40Þ

But this is precisely the relation specifying the unconditionalmaximum likelihood estimator

(UMLE) of uk [cf. Eqs. (5.1.9) and (5.1.10a)] or, equivalently, obeying the condition

(5.1.14a), since wk X; ukð Þ ¼ s ukð ÞWJ X; ukð Þ. Thus, g* is Bayes with respect to the conti-

nuous version (5.1.12a) of the constant cost function discussed earlier, in Section 5.1.2,

which in turn is the limiting form ashk ! 0 of the rectangular cost function ofEq. (5.1.36).12

The (vector) Bayes estimatorg*
s is again theUMLestimator ĝs, each component ofwhich is

determined from Eq. (5.1.40), when we are able to distinguish between magnitudes

arbitrarily close together in value (i.e., hk ! 0). While such distinctions in physical cases

cannot be pushed to this theoretical limit, oftenhk can still bemade so small that Eq. (5.1.40)

12 After appropriate adjustment of the constants C0, and so on, in the two cases.
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is quite acceptable in practice. This limiting form, leading to the equivalent result

[Eq. (5.1.40)], is called the simple cost function of Type One, (SCF1).

Similar resultsmay be derived for the stricter rectangular cost function (5.1.37), which in

the limit n! 0 leads to the unconditional maximum likelihood estimator ĝs Xð Þ ¼ g*
s Xð Þ,

defined now by13

s ĝsð ÞWJ X ĝsj Þ � s uð ÞWJ Xuð Þ; simultaneously all u inVuð ð5:1:41Þ

or, equivalently, determined by the set of joint likelihood equations. The constant cost

function in this instance is given by

C ¼ C0 AK � d gs � uð Þ½ �; ð5:1:42Þ

which is called equivalently the strict simple cost function(SCF2), [cf. Eq. (5.1.12a)]. The

corresponding Bayes risk is

R* s; dð Þu ¼ C0 AK �
Z

G

s ĝsð ÞWJ Xjĝsð ÞdX
� �

> 0: ð5:1:43Þ

Atheorem[11] for determiningBayes estimatorsg*
s can sometimes be appliedwhen the cost

function is a symmetric differentiable distance function of the type of Eq. (5.1.34). The

theorem states:

Theorem I. If the joint d.d. w X; uð Þ can be factored into the form w X; uð Þ ¼
f1 Xð Þf2 u� g Xð Þ½ �, where f1 and g are any functions of X, and if f2 u� g Xð Þ½ � ¼
f2 g Xð Þ � u½ � and is unimodal about u ¼ g Xð Þ, where the ranges of u are �1; 1ð Þ, then,
for differentiable14 cost criteria [Eq. (5.1.34)], the Bayes estimator is

g*
s Xð Þ ¼ g Xð Þ: ð5:1:44Þ

To establish this result, observe that Eq. (5.1.21b) for determining g*
s is equivalent to

Z

Vu

f1 Xð Þf2 u� g Xð Þ½ � @C u� g*
s

� �

@u
du ¼ 0: ð5:1:44aÞ

SinceC u� g*
s

� �
is even, itsderivativesareodd.Withz ¼ u� g Xð Þ, andafter the substitution

g Xð Þ ¼ g*
s, Eq. (5.1.44) is now equivalent to

Z
� � �
1

�1

Z
f2 zð Þ @C zð Þ

@z
dz ¼ 0; ð5:1:44bÞ

which is identically satisfied, since the integrand is odd. This establishes the result (5.1.44),

wherewenote that (5.1.44) yields aminimumaverage riskbecause of the convexnature of the

cost function and the unimodality of f2.

13 This is the extraction procedure discussed originally in Middleton and Van Meter [1], Section 4.1.
14 The theorem is easily extended to include the rectangular cost functions [Eqs. (5.1.36) and (5.1.37)] in the limit of

arbitrarily small hk , and so on, the constant or “simple” cost functions [Eqs. (5.1.12a) and (5.1.42)].
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A second theorem15 is also often useful when we attempt to obtain Bayes estimation and

Bayes risks for cost functions other than the quadratic:

Theorem II. For all cost functions of the type C u� gsð Þ where

C u� gsð Þ ¼ C gs � uð Þ � 0

C u� gsð Þ1
� �

< C u� gsð Þ2
� �

if u� gsð Þ1
�� �� < u� gsð Þ2

�� ��

)

; ð5:1:45Þ

the Bayes estimator g*
s ¼ g*

s

� �
QCF

h i
for a quadratic cost function is also optimum, that

is, minimizes the average risk, for these other cost functions, provided the conditional d.d.

of the parameter uð Þ, givenX, that is, w u Xj Þð , is unimodal and symmetric about the mode16

[of w u Xj Þð ].

Some representative cost functions of practical interest shown in Fig. 5.1 are [with

gs ¼ g* � g*
s

� �
QCF

here, for optimality]

C1 u� g*
s

� � ¼ u� g*
s

�� ��; ð5:1:46aÞ

C2 u� g*
s

� � ¼
0 u� g*

s

�� �� < A;

1 u� g*
s

�� �� > A > 0;

(

ð5:1:46bÞ

(a) QCF

(c) C1 (d) C2

(b) SCF

γ

γ

γ

γ

FIGURE 5.1 Some typical cost functions for signal.

15 This is a modified version of Sherman’s results [5].
16 Or, equivalently, that w u� g*

s Xj Þ�
is unimodal and symmetric about u ¼ g*

s .
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C3 u� g*
s

� � ¼

0 u� g*
s

�� �� < A;

u� g*
s

�� ��� Aj j
Bj j � Aj j Aj j 	 u� g*

s

�� �� 	 Bj j;

1 Bj j < u� g*
s

�� ��:

8
>>>>><

>>>>>:

ð5:1:46cÞ

Note again that g*
s ¼ g*

s

� �
QCF

is not generally linear in X and that, of course, the Bayes

risks17EX; u C1f g, and so on, are not the same as for the quadratic cost function (5.1.23).

Finally, the results of this section may be equally well applied to the important cases of

waveform estimation. For simple estimation l ¼ jð Þ, j ¼ 11; . . . ; MN, one simply

replaces u by S and WJ X uj Þð by FJ X Sj Þð , and so on, as before. For interpolation and

extrapolation, similar results are readily found, with an appropriate modification of the

cost function C S; gsð Þ to C S; S; gsð Þ (cf. the beginning of Section 5.1.1). While the cost

functions of the distance type lead generally to the simplest results for g*
s andR

*, we are in

no way restricted to their use. The informational cost function F2 ¼ �log p S gj Þð is one

example of a more complicated type, where the cost assignment depends not only on

S and g but on the decision rule d as well.

5.2 COHERENT ESTIMATION OF AMPLITUDE (DETERMINISTIC SIGNALS

AND NORMAL NOISE, (p(H1) ¼ 1)

A fairly comprehensive theory for amplitude estimation in normal noise can be constructed

when the signal sð Þ is deterministic, signal and noise nð Þ are additive and independent, and
when the quadratic or the simple cost functions are chosenasmeasures of the risk. It is further

assumed that �n vanishes, the usual situation in most applications, and that observation is

coherent, that is, the amplitude is the only unknown quantity. The following four examples

illustrate the calculation of Bayes extractors and their associated Bayes risks: (1) coherent

extraction of signal amplitude in normal noisewith a quadratic cost function and normal d.d.

of amplitudes; (2) the same as (1), but with the simple cost function SCF1 (¼ SCF2 here),

which is the limit ofC3 ashk ! 0, cf. (5.1.36) et seq.; (3) incoherent estimation of amplitude,

again innormal noisewith aquadratic cost function; and (4) similar to (3), butwith the simple

cost functionSCF1, resulting in an appropriateUMLestimator. In this section,we assume (1)

andSection 5.3, on the other hand, is devoted to (3) and (4), as a consequence of the fact, once

more, that the amplitude parameter appears linearly in the signal representations.

5.2.1 Coherent Estimation of Signal Amplitude18 Quadratic Cost Function

We examine first the estimation of the amplitude factor a0 of a deterministic signal

S t� «0; u0ð Þ which has a normal distribution of amplitudes but is otherwise completely

specified at the receiver:

s uð Þ ¼ s a0ð Þ ¼ 2ps2
� ��1=2

e� a0��a0ð Þ2=2s2

; s2 ¼ a20 � �a20: ð5:2:1Þ

17 To calculate these other Bayes risks we may profitably employ the Laplace-transform techniques of Section

_______ and carry out the required averages over the resulting exponential terms, as in the calculation of output

covariance and spectra (cf. Chapter __ also).
18 We assume throughout that unless otherwise indicated, signal and noise are normalized by c

1=2
j .
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Again we assume that signal s and noise n are additive and normalized,

a0s ¼ Sj=c
1=2
j

h i
; x ¼ a0sþ n; n ¼ Nj=c

1=2
j

h i
: ð5:2:1aÞ

The quadratic cost function here is C0 gs� a0ð Þ2, where gs is the estimator, so that from

Eq. (5.1.22) or (5.1.30) the Bayes estimator g*
s ¼ a*0 becomes

T
N½ �
R Xð Þ ¼ a*0 Xð Þ ¼

Z 1

�1
a0w x; a0ð Þ da0=

Z 1

�1
w x; a0ð Þ da0 ð5:2:2Þ

with the joint distribution density w x; a0ð Þ here specifically equal to

exp �1=2 x� a0~sð Þk�1
N x� a0sð Þ þ a0� a0sð Þ2=s2

h in o

2pð ÞJ=2 det kNð Þ1=2 2ps2ð Þ1=2
; �N ¼ 0 ð5:2:2aÞ

and with kN , as before, the (normalized) covariance matrix of the normal noise process for

sample size J. Noting the identity

a*0 ¼
R1
�1 a0e

�A a0�a*
0ð Þ2þB xð Þda0

R1
�1 e�A a0�a*

0ð Þ2þB xð Þda0
; ð5:2:2bÞ

wecan evaluateEq. (5.2.2) very simplybycompleting the square inEq. (5.2.2a).The result is

the desired Bayes estimator, or optimum receiver,

T
N½ �
R Xð Þ ¼ a*0 Xð Þ ¼ FJ x; sð Þ þ a0=s

2

FJ s; sð Þ þ 1=s2
¼ s2Fx þ 1=a0

s2Fs þ 1
; ð5:2:3Þ

where FJ x; sð Þ ¼ ~xk�1
N s � FJ s; sð Þ ¼ ~sk�1

N s � FS: ð5:2:3aÞ

Because of sample certainty p H1ð Þ ¼ 1½ �, the normality of the noise and the linearity of

the parameter in the signal representation, this estimator is linear in the received data X.
(When the noise is non-Gaussian, the optimum estimator of amplitude is nonlinear in the

received data.)

We observe first that as s2 ! 0, that is, as the a priori signal density becomes a delta

function at a0 ¼ â0, the Bayes estimator reduces to a*0 ¼ �a0 ¼ a0, as expected. When

s2 !1 [so that the a priori distribution density becomes uniform] the Bayes estimates

become equal to a*0 ¼ ĝa0
¼ â0, agreeing with the maximum (conditional and uncondition-

al) likelihood estimates, as it should [for �N ¼ 0, cf. the examples in 5.2.2]. The structure of

these estimators takes the form indicated in Fig. 21.2 of Ref. [2].19

Because of the normal character of the noise, the normal distribution of amplitudes, and

the coherent observation of the signal, the Bayes estimator of amplitude is here a linear

function of the received sample data X. The distribution density of this estimator is

accordingly normal. To determine the explicit form of the d.d., let us begin first with the

characteristic function

19 Here, forFJ x; sð Þ one has essentially the same elements, for example, matched filters and ideal integrators used

in the coherent detection of such signals, followed, however, by a simple computer which adds �a0=s
2 and then

divides by FT þ s�2.
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F1 ijð Þa*
0
¼ EX jH eija

*
0
Xð Þ

n o
¼
Z

G

eij Axk�1
N sþBð ÞwJ Xð ÞdX; ð5:2:4Þ

where wJ Xð Þ is found from Eq. (5.2.2a) to be specifically

wJ Xð Þ ¼ s2Fs þ 1ð Þ 2pð ÞJ det kNð Þ� ��1=2
exp c0 � �a20=2s

2
� �

;

� exp �1=2 x k�1
N � 2c2G

� �
xþ c1 xk�1s

� �� � ð5:2:5Þ

with G ¼ k�1
N s~sk�1

N and

c0 ¼ a20= 2s4FS þ 2s2
� �

; c1 ¼ �a0= 1þ s2FS

� �
; c2 ¼ 2FS þ 2=s2 ð5:2:5aÞ

and c0 > 0; c1; c2 � 0. Carrying out the indicated operations20 in Eq. (5.2.4) using

Eq. (5.2.5), we get finally

F1 ijð Þa*
0
¼ eija0�1=2 � s4FSj

2= 1þs2FSð Þ; ð5:2:6Þ

so that a*0 is normally distributedwithmean �a0 and variances
4Fs= 1þ s2Fsð Þ. Observe that

when s2 ! 0, the Bayes estimator a*0 equals �a0 ¼ a0, as expected, since the only value of

amplitude is �a0 itself, that is, w1 a*0
� � ¼ d a*0 � �a0

� �
. On the other hand, if s2 is sufficiently

great, thens2Fs 
 1 and then a*0 is normally distributedwith a variance that is independent

of waveform and equal to the variance of a0 itself. This is reasonable, since now the large

spread in the possible values of signal amplitude, apart from the effects of the background

noise, dominates the distribution of a*0 Xð Þ.
We may use Eq. (5.2.6) directly to obtain the first and second moments of the Bayes

estimator. These are

a*0 ¼ �a0; a*20 ¼ �a20 þ
s4FS

1þ s2FS

: ð5:2:7Þ

For the Bayes risk [Eq. (5.1.23)], we need the d.d. of a*0 � a0, which like that of a*0 is also

normal, since a*0 is linear in X [cf. Eq. (5.2.3)] and a0 is normally distributed. Using the

fact that

ExjH1
Fxf g ¼ �a0FS; ExjH1

F2
x

 � ¼ a20F
2
S þFS;

we find after a little manipulation that

Ex;a0jH1
a*0� a0
� �2n o

¼ s2

s2F*
S þ 1

: ð5:2:8Þ

The d.d. of a*0 � a0 is normal, c.f. (6.4.9) ff., specifically with zeromean (since a*0 � �a0) and
variance s2=s2F*

S þ 1 above. The c.f. of a*0 � a0 is accordingly

F1 ijð Þa*
0
�a0

¼ e�j2s2=2 s2FSþ1ð Þ: ð5:2:8aÞ

20 An alternative and simpler method is to compute the c.f. of a*0 directly from EX; a0 jH1
eija

*
0

n o
with respect to the

joint d.d. w X; a0ð Þ [Eq. (5.2.2a)].
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The Bayes risk is proportional to Eq. (5.2.8), or to�d2F=dj2jj¼0, from Eq. (5.2.8a), so that

we can write it directly as

R* s; dð Þa0 ¼ C0 a*20 � 2a0a
*
0 þ a20


 �
¼ C0s

2

1þ s2FS

: ð5:2:9Þ

A more detailed development of these results is given in Section 6.4.1 ff., including

w1 y; a0 H1j Þð , w1 yja0ð ÞH1
, w1 y H1j Þð where y ¼ a*0 Xð Þ, (5.2.3), preliminary to the treatment

of the more general situation, a*0jp<1.

As expected when s2 ! 0, the average risk vanishes, sine extraction is exact on the

average, that is, a*0 ¼ �a0 ¼ a0. Fors
2 !1 there is necessarily always a finite average cost

C0FJ s; sð Þ�1
. The Bayes risk, of course, depends on the structure of the signal and on the

spectrum of the accompanying noise. This example is of some practical interest in the case

where signals subject to fading are received in noise, when �a0 is large and s
2 reasonably

small, so that a0 is essentially always greater than zero. In the present case, the noise arises

primarily in the receiver (and hence is unaffected by the propagation mechanism

producing the fading). Observe, moreover, that a*0 (5.2.3) or (5.2.3a) with s2 !1 is

also a Minimax estimate, as can be seen from the translation property [Eq. (5.1.31)],

which becomes here a*0 xþ bsð Þ ¼ a*0 xð Þ þ bs, with b a scalar quantity. One then uses an

argument precisely parallel to that given above [Eq. (5.1.32) et seq.], to show that the

conditional risk is independent of a0. For discrete sampling, the Minimax average risk is

specifically

R*
M ¼ C0FS s; sð Þ�1 >R*

� �
: ð5:2:9aÞ

5.2.2 Coherent Estimation of Signal Amplitude (Simple Cost Functions)

From the results of Section 5.1.2 and in particular (5.1.14b) or (5.1.40) where the limit

hk ! 0 is employed on the rectangular cost functionCJ , we obtain the following equivalent

relation for the resulting UMLE in the simple parameter case, u ¼ a0:

@

@u
logw1 X; uð Þ

� �

u¼a0¼a*
0

¼ @

@a0
log s a0ð Þ ¼ w1 Xja0ð Þ

� �

a0¼a*
0

;

¼ @

@a0
log Eq: ð5:2:2aÞ

� �

a0 ! a*
0

ð5:2:10Þ

applied here for amplitude estimation, where s a0ð Þ is the pdf of a0, given by (5.2.2a).

Equation (5.2.10) becomes specifically

@

@a0
FJ x; xð Þ=2� a0FJ x; sð Þ þ a0FJ s; sð Þ þ a0 � �a0ð Þ=2s2
� �

����
a0 ! a*

0

¼ 0; ð5:2:11aÞ

which yields at once

a*0 ¼ a*0 xð Þ
���
SCF

¼ FJ x; sð Þ þ �a0=s
2

FJ s; sð Þ þ 1=s2
¼ s2Fx þ �a0

s2Fs þ 1
¼ a*0 xð Þ

���
QCF

; ð5:2:11bÞ

from (5.2.3). This shows that the UMLE for signal amplitude under the conditions of (1),

(5.2.1) is equal to that derived from the QCF. This, of course, is not generally true: the
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estimators for theQCF and SCF1,2 are generally different, and the associated Bayes risks are

always different, as indicated, for example, by (5.2.9) versus (5.2.12) ff.

Let us now calculate the Bayes risk here for the SCF1 (¼ SCF2), from (5.1.43). We have

R* s; dð Þu ¼ C0 A1 �
Z

w1 x; a*0
� �

dx

� �
; ð5:2:12aÞ

for which we use (5.2.2a) or the simpler result (6.2.37) in (6.4.43) ff., to obtain

R* s; dð Þu ¼ C0 A1 � 1þ s2Fs

2ps3F1=2
s

 !

e�a2
0
1þs2Fsð Þ=2s4Fs

" #

: ð5:2:12bÞ

Although these estimators are the same (5.2.11b), clearly the Bayes risks in the two cases

(QCF versus SCF1,2) are not: vide (5.2.9) versus (5.2.12b).

5.2.3 Estimations by (Real) u Filters21

It is instructive to show that the estimator a*0, (5.2.11b), is equivalent to aW-K filter, that is, a

mean square error (MMSE) filter, operating on the input data x ¼ sþ nð Þ under the

conditions (1) at the beginning of Section 5.2, that is, deterministic signals, additive

Gaussian noise (with zero mean, �n ¼ 0), which is independent of the signal. Instead of

minimizing the variance of the random part of the received data x for a specified received

signal or signal-to-noise ratio, here at some point in space–time the usual condition (cf.

Sections 16.2 and 16.3 of Ref. [2] for matched filters) of operation, we require equivalently

that the noise power output of the Wiener filter be minimized under the constraint of

maintaining a specified constant signal value at the end of the space–time sampling period.

Accordingly, we have for this constraint

~ws ¼ ~sw ¼ C >0ð Þ ¼ output value at j ¼ J; ð5:2:13aÞ

wherew is the vector space–time response (i.e., discreteweighting function) of theWiener–

Kolmogoroff filter. The noise output variance to be minimized is

~wnð Þ2
D E

¼ wn~nw ¼ wkNw: ð5:2:13bÞ

The extremum process to be carried out is therefore, from L ¼ wkNwþ l~sw,

d wkNwþ l~swð Þ ¼ d L ¼ 0; ð5:2:14Þ

and for a minimum we require d L ¼ 0; d2 L > 0.

Carrying out the variation indicated in (5.2.14), we have, since ~kN ¼ kN :

d w ~w~kN þ ~wkN þ l~s
� � ¼ 0; or 2~wkN ¼ �þ l~s; which yields w ¼ � l=2ð Þk�1s:

ð5:2:15aÞ

21 For a detailed discussion, including prediction and interpolation, see Section 16.2 of Ref. [2]. See also Section

3.3 in this book.
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Since by (5.2.13a) ~sw ¼ �l=2~sk�1
N s ¼ �l=2Fs ¼ C, then �l=2 ¼ C=Fs. From the last

relation in (5.2.15a) and the result for �l=2, we get the desired expression for this Wiener

filter, which aswe have seen from (5.2.11b) is alsoBayes optimumwith respect to the simple

cost function (SCF1,2) and the QCF. It is the desired minimum22:

w ¼ Ck�1
N =Fs ¼ Ck�1

N s=~sk�1
N s; ~sk�1

N s ¼ Fs; s ¼ scoh: ð5:2:15bÞ

Accordingly, we see at once from (5.2.11b) that since the output of the Wiener Filter is

~wx ¼ ~xwð Þ, with C ¼ 1:

a*0 xð Þ ¼ ~wxð ÞA1 þ A2; where A1 ¼ s2= s2Fs þ 1
� �

; �a0= s2Fs þ 1
� �

: ð5:2:16Þ
If �a0 ¼ 0, then A2 ¼ 0, and if the a priori distribution of a0 is uniform, that is,s2 !1, then

A1 ¼ 1,A2 ¼ 0 and the estimator of amplitude is simply a*0 xð Þ ¼ ~wx, the unscaled output of
the Wiener filter. See Figure 5.2.

In the case of suboptimum systems, suggested by the optimum structure [(5.2.11b),

(5.2.16)], we can write

gs xð Þ ¼ a0 xð Þ ¼ ~w0xð ÞB1 þ B2;

with w0 ¼ Gs= ~sGsð Þ; G 6¼ KN ;
ð5:2:17Þ

where G ¼ ~G and B1; B2 are positive constants (and ~xGs � w0xð Þ has the properties

described in Problem 10.8 [2]). The associated average risk, moments, and pdf of this

suboptimum estimator may be obtained, as above, when the noise is Gaussian, zero mean,

and independent of the (deterministic) signal (Problem 20.8 [2]). Comparisons with the

optimum a*0 then follow.

TheW-Kfilter takes the familiar form of a (discrete) space–timematched filter (5.2.15b),

on choosing for the arbitrary constant C, the (known) signal dependent quantity

Fs ¼ ~sk�1
N s

� �
. We have

w ¼ wj

� � ¼
XJ

k¼1

k�1
N

� �
jk
sk

" #

¼ k�1
N s; ð5:2:18Þ

which requires the inversion of the matrix kN to establish the components ofw. From this in

turn we can obtain an alternative set of relations for determining w:

XJ

j0¼1

wj kNð Þj0k ¼ sk; or
XJ

j0¼m0n0
w rm0 ; tn0ð ÞkN mDr; m0Dr; tn; tn0ð Þ ¼ s rm0 ; tn0ð Þ; ð5:2:18aÞ

SPACE-TIME

( )A
1
 + B

1
a

0
*(x)W

W

~ 

x

X = a
0
 s + n

W-K Filter

FIGURE 5.2 Coherent Bayes estimator of signal amplitude, a*0, for QCF¼ SCF1,2.

22 This follows from d2 L ¼ 2 d�wð Þ2 kNw� s=Fs½ � þ 2 d~wð ÞkN dwð Þ. Now, kNw ¼ k�1
N kNs=Fsð Þ ¼ s=Fs, and since

kN is positive definite, ;d2 L ¼ 2 d~wð ÞkNdw > 0, as required.
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where

m; m0ð Þ ¼ 1; . . . ; M; n; n0ð Þ ¼ 1; . . . ; N or O 	 rm0 ; rn0 < DRþð Þ; O 	 tn; tn0 < Tþð Þ;
ð5:2:18bÞ

specify the domains of space and time forwhichw is defined.Note thatwe equivalentlywrite

rm0 ; T � tnð Þwith s rm0 ; tnð Þ, inwhich the limits are as indicated in (5.2.18b). This remindsus

that the filter has its maximum buildup at tN ¼ T , at which point an appropriate switch

terminates the outputwith a readout.As before, the typical sample points in O; DR ; O ; Tð Þ
are rm ¼ mDr and tn ¼ nDt. Inverting kN may be computationally simpler than solving

the J-fold set of equations [(5.2.18a) and (5.2.18b)].

5.2.4 Biased and Unbiased Estimates

Bydefinition an unbiased estimator is onewhose averagevalue is the same as the expected or

true value uð Þ of the quantity being estimated. Accordingly, for conditional unbiased

estimators we can write

EXju gu Xð Þf g ¼
Z

G

WJ X uj Þgu Xð Þdx ¼ u:ð ð5:2:19Þ

The corresponding unconditional unbiased estimators are

EX gu Xð Þf g ¼
Z

G

WJ Xð Þgu Xð Þdx ¼ �u ¼
Z

Wu

us uð Þdu
� �

ð5:2:20Þ

from which we have alternatively

EX;u gu Xð Þf g ¼ RWu
du
R
GWJ Xjuð Þs uð Þgu Xð Þdx

¼ RWu

R
GWJ X; uð Þgu Xð Þdx du ¼ �u:

ð5:2:21Þ

Here, as before,WJ X uj Þð is the conditional d.d. ofX, givenu, whileWJ X; uð Þ is the joint d.d.
ofX and u.Biased estimators, on the other hand, do not possess this desirable feature. Their

expected values contain an additional function, b uð Þ, of the parameter in question.

Accordingly, for biased estimators we have

EXju gu Xð Þf g ¼ uþ b uð Þ EX gu Xð Þf g ¼ Eu uf g þ Eu b uð Þf g ¼ �uþ b uð Þ; ð5:2:22Þ

respectively, for the conditional and unconditional estimators. Applying these results to

(5.2.11b), remembering that x ¼ nþ a0s, we obtain at once the following conditional and
unconditional estimators:

Conditional: a* xð Þ� �
xja0 ¼

a0Fs þ �a0=s
2

Fs þ 1=s2
; Unconditional: a*0 xð Þ� �

x; a0
¼ �a0 ð5:2:23Þ

ofwhich the last is unconditionally unbiased, whereas the first is not conditionally unbiased.

When s2 !1, the Minimax condition, then a* xð Þ� �
xja0 ¼ a0, which is conditional unbi-

ased as well.
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5.3 INCOHERENT ESTIMATION OF SIGNAL AMPLITUDE

(DETERMINISTIC SIGNALS AND NORMAL NOISE, p(H1) ¼ 1)

As our second example, let us consider the previous situation again, where now the

deterministic signal is required to be narrowband and reception involves sample uncertainty,

here with a uniform d.d. of RF epochs «c. All other signal parameters are assumed known,

except the amplitudes �a0, which are random now, with distributions unknown to the

observer, unlike the example above.

5.3.1 Quadratic Cost Function

As in detection, where Minimax (Section 1.8.3) or MAP procedures (Section 1.8.4) can

be used, we shall adopt the subcriterion of selecting an amplitude distribution that

maximizes the average uncertainty, subject to (1) a maximum value constraint

a0ð Þmax ¼ P
1=2
M or to (2) an average intensity constraint a20 ¼ 2P0. The former leads to

a uniform d.d. for a0 >0ð Þ, with am0 ¼ P
m=2
M = mþ 1ð Þ, while the latter yields a Rayleigh d.

d., with am0 ¼ 2P0ð Þm=2G m=2þ 1ð Þ. For the class of signals considered here we find from
Eqs. (3.2.30) ff. that the joint and conditional d.d.s of X and a0 are specifically

wn x; a0ð Þ ¼ s a0ð ÞWn xja0ð Þ
¼ s a0ð Þf0 xð ÞI0 a0Y

*1=2
x�inc


 �
e�a2

0
Y*

s�inc=2;
ð5:3:1Þ

with f0 xð Þ ¼ 2pcð Þ�J=2
det kNð Þ�1=2

e�1=2~xkNx. Here s a0ð Þ is given specifically by

Peak power: s a0ð Þ ¼ 1

P
1=2
M

; O < a0 < P
1=2
M ; a20

� �
m
¼ PM

Average power: s a0ð Þ ¼ a0e
�a2

0
=2PO

PO

; O < a0 < 1; a20 ¼ 2PO

9
>>>=

>>>;

: ð5:3:2Þ

From Eqs. (3.2.31) ff., we have, respectively,

Y*
s�incjn:b: � ~ak�1

N aþ ~bk�1
N b

� �
=2¼: ~aþ ~b

� �
k�1
N aþ bð Þ=2 ¼ ~sk�1

N s
� �

n:b:
=2;

Y*
x�incjn:b: � ~xk�1

N a~aþ b~b

 �

k�1
N x¼: k�1

N aþ bð Þ aþ bð Þk�1
N x ¼ ~xk�1

N s~sk�1
N x ¼ ~xk�1s

� �2
n:b:

ð5:3:3Þ
and S here in sn:b: � aþ bð Þ. Inserting Eq. (5.3.1) into Eq. (5.2.2) then gives the desired

Bayes estimator of (normalized) amplitude,with quadratic cost function, when reception

is incoherent with epoch P uniformly distributed over an RF cycle. We write accordingly

T
Nð Þ

R xð Þ ¼ a*0 xð ÞPM
¼
R1
�1 a0s a0ð ÞI0 a0Y

*1=2
x�inc


 �
e�a2

0
Y*

s�incda0
R1
�1 s a0ð ÞI0 a0Y

*1=2
x�inc


 �
e�a2

0
Y*

s�incda0

: ð5:3:4Þ

Let us consider as our first casewhere s a0ð Þ is uniform 0 < a0 < a0ð Þmax, [cf. Eq. (5.3.2)].

Then Eq. (5.3.3) becomes

a*0 xð ÞPM
¼
R P1=2

M

0 a0I0 a0Y
*1=2
x�inc


 �
e�a2

0
Y*

s�incda0

R P1=2
M

0 I0 a0Y
*1=2
x�inc


 �
e�a2

0
Y*

s�incda0

: ð5:3:4aÞ
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Although a closed form analytic evaluation of (5.3.4) is not generally possible, we can

obtain useful results in the weak and strong signal cases. Thus, for weak signals, we may

use a threshold development, obtained by expandingWn X a0j Þð in powers of a0, averaging

over a0 in both numerator and denominator, and then developing the resulting fraction.

The result for the uniform d.d. of Eq. (5.3.2) is

a*0 xð ÞPM
¼ 1

2
3a20u


 �1=2
1� a20u

4
Y*

s�inc þ � � �
 !

þ
ffiffiffi
3

p

16
a20u


 �1=2
Y*

s�inc þ O a50 ; x
4


 �
;

ð5:3:5Þ

where a20u ¼ PM=3.
With strong signals as an upper limit, on the other hand, we may set PM !1 in

Eq. (5.3.4) without seriously altering the result. Evaluation of the integrals then follows

directly giving us

a*0 xð ÞPM !1 ¼ pY*
s�inc

2

� ��1=2

1F1
1

2
; � Y*

x�inc

2Y*
s�inc

 !�1

; ð5:3:6Þ

or

eY
*
x�inc=4Y

*
s�incI0

Y*
x�inc

4Y*
s�inc

 !�1

; ð5:3:6aÞ

8
>>>>>>><

>>>>>>>:

which is essentially

Y*1=2
x�inc

Y*
s�inc

ð5:3:6bÞ

as long as Y*
x�inc 
 Y*

s�inc. Figure 5.3 shows Eq. (5.3.6) as a function of x, where

x ¼ Y*
x�inc=4Y

*
s�inc. Note that in the weak-signal case a*0 depends linearly on Y*

x�inc [cf.

Eq. (5.3.5)].Similar results are obtained for the Rayleigh d.d. of amplitudes of Eq. (5.3.2),

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

a
0
*(V)

P
max

ψ∗
s–inc

 + P
0

–1

a
0
*(V)

P
0 

×

x
 
=ψ∗

x–inc
 
/πψ∗

s–inc
 u

0 
=

 
ψ∗

x–inc
 
/(2ψ∗

s–inc  
+ P

0

–1
)

×

πψ∗
s–inc

π /2

2
(a) Uniform

(b) Rayleigh

FIGURE 5.3 Bayes estimators of amplitude with incoherent reception, a quadratic cost function,

for (a) peak-value constants and PM !1, and (b) mean-square value constraint, all signals,

Eq. (5.3.2).
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corresponding to the maximum power constraint a20R ¼ 2P0. The Bayes estimator

[Eq. (5.3.3)] now becomes

a*0 xð ÞP0
¼
R1
0

a*0I0 a0Y
1=2
x�inc


 �
e�a2

0
Y*

s�incþP�1
0ð Þ=2da0

R1
0

I0 a0Y
1=2
x�inc


 �
e�a2

0
Y*

s�incþP�1
0ð Þ=2da0

: ð5:3:7Þ

With weak signals, we can use Eq. (5.3.5) directly, where for the Rayleigh d.d. am0R ¼
2P0ð Þm=2G m=2þ 1ð Þ, or we can evaluate Eq. (5.3.7) and apply the condition P2

0 << 1. The

threshold estimator is found to be

a*0 xð ÞP0
¼:

ffiffiffi
p

p
2

a20R


 �1=2
1� a20R

4
Y*

s�inc þ � � �
 !

þ
ffiffiffi
p

p
16

a20R


 �3=2
Y*

s�inc þ O a50; x
4

� �
;

ð5:3:8Þ
which is seen to be nearly the same as a*0 xð ÞPM

for weak signals where a20


 �

u
¼ a20


 �

R
, that

is, when the mean power in the signal is the same under both constraints.

The general expression for a*0 xð ÞP0
is found once more to be specifically for all signal

strengths

a*0 xð ÞP0
¼

ffiffiffi
p

p
ffiffiffi
2

p P�1
0 þY*

s�inc

� ��1=2

1F1 � 1

2
; 1 ; � u0

� �

or

e�u0=2 1þ u0ð ÞI0 u0=2ð Þ þ u0I1 u0=2ð Þ½ �

;

8
>>>><

>>>>:

ð5:3:9Þ

where u0 � Y*
x�inc= 2Y*

s�inc þ P�1
0

� �
(cf. Fig. 5.3). For strong signals P, this becomes

a*0 xð ÞP0
D

Y*
x�inc

Y*
s�inc

ð5:3:9aÞ

as in the case of the uniform d.d. above when Y*
x�inc 
 Y*

s�inc [cf. Eq. (5.3.6b)].

The structure of the Bayes receivers for estimation of amplitude a*0
� �

, when p H1ð Þ ¼ 1,

that is, signal surely present in the dataX, is readily deduced from the results (5.3.5), (5.3.6),

and (5.3.6), (5.3.9). These may be summarized as follows:

Weak signals: a*0 xð ÞPM

P0

����
weak

¼: B0
����PM

P0

þ B2
����PM

P0

Y*
x�inc; ð5:3:10aÞ

while for the strong signal cases one has

a*0 xð Þ
����
PM

����
strong

ffi CPM1F1
1

2
; 1; �Y*

x�inc=2Y
*
s�inc

� ��1

;

Strong signals: ffi CP0 1F1 � 1

2
; 1; � u0

� �
;

i:e:; a* xð ÞjPM; P0
jstrong ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y*

x�inc

q
=Y*

s�inc;

9
>>>>>>>>=

>>>>>>>>;

ð5:3:10bÞ
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where B0, B2, CPM
, and CP0

are respectively

B0jPM
¼: 1

2
3a20u
� �1=2

1� a20u
4

Y*
s�inc þ � � �

 !

; B2jPM
¼:

ffiffiffi
3

p

16
a20u


 �3=2
;

CPM
ffi pY*

s�inc=2
� ��1=2

;

ð5:3:11aÞ

B1jP0
¼:

ffiffiffi
2

p

2
a20R


 �1=2
1� a20R

4
Y*

s�inc þ � � �
 !

; B2jP0
¼:

ffiffiffi
p

p
16

a20R


 �3=2

CP0
ffi p=2ð Þ�1=2

P�1
0 þY*

s�inc

� ��1=2

: ð5:3:11bÞ

The diagrams of Fig. 5.4 illustrate the data processing operations required for the example of

incoherent amplitude estimation. These may alternatively be expressed in terms of W-K

filters by the results of Section 3.3. We have

ðiÞ Signal: a or bð Þ; i:e:; s ¼ a ¼ Re ŝ ¼ Re Aj exp w0t�Fj

� �� �
;

ðiiÞ Y*
s�inc: ; Y*

s�inc ¼ ~ak�1
N a ¼ ~bk�1

N b
� �� ~sk�1

N s; s ¼ sinc hereð Þ:

)

: ð5:3:12aÞ

From Eq. (5.2.15b) the associated W-K filter is seen to be

w að Þ ¼ k�1
N aC0 ¼ k�1

N s=~sk�1
N s ¼ k�1

N s=Y*
s�inc: ð5:3:13Þ

For this we must use both a and b, since Y*
s�inc ¼ ~xk�1

N a
� �2 þ ~xk�1

N b
� �2

. The result is

Y*
x�inc ¼ ~w að Þx


 �2
þ ~w bð Þx

 �2� �

Y*2
s�inc; withw a;bð Þ ¼ k�1

N a or bð Þ=Y*
s�inc; ð5:3:14Þ

which expresses Y*
x�inc in terms of the W-K filters, which are required for both

a ¼ Aj cosFj

� c and b ¼ Aj sinFj

� �
. Fig. 5.5 shows Fig. 5.4 a and b in terms of these filters.

X X

B
2

B
1

: (Eqs 5.3-11a,b)

Ψ
x–inc

Ψ
x–inc ( )

½a*
0
(x)

∫WEAK
a*

0
(x)

∫STRONG

(a) (b)

FIGURE 5.4 The weak (a) and strong (b) signal cases of amplitude estimation for incoherent

reception, Eqs. (5.3.10a)–(5.3.11b).
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5.3.2 “Simple” Cost Functions SCF1 (Incoherent Estimation)

We repeat the analysis of the preceding section, Section 5.3.1, nowwith the nonstrict simple

cost function SCF1 of Eqs. (5.1.12) and (5.1.12a), in place of the quadratic cost function of

Eq. (5.1.18). From Eq. (5.1.14), we know that the Bayes estimator of amplitude here is the

unconditional maximum likelihood estimator â*0 Xð Þ, which is obtained by applying

Eq. (5.1.40) to the particular likelihood function L X; a0ð Þ ¼s a0ð Þ WJ X� a0
ffiffiffi
c

p
sð ÞN

� �
«
¼

wJx2 X; a0ð Þ [Eq. (5.3.1)]. Carrying out the indicated operations, we have

@

@a0
logL X; a0ð Þja0¼â*0

¼ s0 a0ð Þ
s a0ð Þ þY*1=2

x�inc

I1 a0Y
*1=2
x�inc


 �

I0 a0Y
*1=2
x�inc


 ��Y*
s�inca0

2

4

3

5

a0¼â*0

¼ 0 ð5:3:15Þ

as the relation from which the desired UML estimator is obtained. With the uniform and

Rayleigh d.d. [Eq. (5.3.2a)] of amplitude, we can write Eq. (5.3.15) specifically as

(1) Uniform: l
I1 lẑ*
� �

I0 lẑ*
� � ¼ ẑ* l � Y*

x�inc

Y*
s�inc

 !1=2

; ẑ* � â*0 Y*
s�inc

� �1=2
(5.3.16a)

(2) Rayleigh:
1

ẑ*
� 1þ hð Þẑ* þ l

I1 lẑ*
� �

I0 lẑ*
� � ¼ 0; h � P0Y*

s�inc

� ��1
(5.3.16b)

The solutions of Eqs. (5.3.16a) and (5.3.16b) are the desired Bayes estimators ẑ* (or a*0).

In the threshold cases, these optimum estimators can be put in the form

â*0 ¼ B̂0 þ B̂2~vG0v, as above [cf. Eqs. (5.3.5) and (5.2.8)]. For the uniform amplitude

d.d., the coefficients B̂0; B̂2 are conveniently obtained by curve fitting to the general relation

(5.3.16a), shown in Fig. 5.6. With the Rayleigh d.d., one can easily find the threshold

development of this kind directly from the weak-signal expansion of Eq. (5.3.16b). The

results in each instance are

(1) Uniform: ẑ*¼: b̂0u þ b̂2ul
2 or â*0u Xð Þ¼: � 0:80 � 2

Y*
s�inc

 !

þ 0:80Y*
x�inc

Y*
s�inc

(5.3.17a)

(2) Rayleigh: â*0R Xð Þ¼: l
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

p Y*�1=2
s�inc þY*�3=2

s�inc Y*
x�inc=4 1þ hð Þ

h i
; all h > 0

(5.3.17b)

X

W
(a)

(Ψ ∗
s–inc

)
2

Ψ ½

x–inc
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+
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1
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Ψ ∗
x–inc
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2

( )½
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0
*(x)

∫
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0
*(x)

∫
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Ψ
s–inc

x–1

FIGURE 5.5 Estimation of amplitude: equivalent diagrams to Fig. 5.4 a and b, in terms of theW-K

filters w að Þ; w bð Þ; QCF.
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For strong signals, on the other hand, where l 
 1 on the average23, one has

(1) Uniform: ẑ*D l� 1

2l
þO

�1

l3

� �
or â*0u Xð ÞD Y*

x�inc

Y*
s�inc

(5.3.18a)

(2) Rayleigh: ẑ*D l� l

1þ h
þO

1þ h

l3

� �
or â*0R Xð ÞD Y*

x�inc

Y*
s�inc

; Y*
s�inc !1
(5.3.18b)

Figure 5.6 shows ẑ* as a function of the received data � lð Þ for both (1), (2) above. Note
that for the uniform pdf of amplitudes, ẑ* and l are uniquely related, while for the Rayleigh
pdf various relationships are possible, depending on the mean signal power P0. On the

average, the curve for h ¼ 1 corresponds to a comparatively weak-signal state, while that

for h ¼ 0 exhibits ẑ in the limit of very strong signals. Observe that, as we would expect,

the strong-signal estimators are essentially independent of whether or not the amplitudes

are uniformly or Rayleigh distributed. Forweak signals, on the other hand, the character of

the amplitude distribution becomes significant. In fact, with a uniform pdf we must reject

all l0s less than
ffiffiffi
2

p
, so that, when s a0ð Þ is unknown to the observer and when l is actually

found to be less than
ffiffiffi
2

p
, it is clear that the subcriterion leading to the pdf (1), employing a

peak-value constraint, is not then appropriate. The criterion (2), leading to the Rayleigh

pdf, however, may be acceptable. The structure of these Bayes receivers is sketched once

more in Figs. 5.4 and 5.5. The only change is in the computer, which now performs its

operation on Y*
x�inc according to Eqs. (5.3.16a) and (5.3.16b), rather than Eqs, (5.3.6)

or (5.3.7).

Since these Bayes estimators are UML estimators also, we can apply Eq. (21.14) of

Ref. [2] at once for threshold reception to obtain the expected distributions of â*0u; â
*
0R.

These are accordingly asymptotically normal, with means â*0u ; â
*
0R and variances s*

u; s
*
R,

respectively, in the large-sample threshold theory, where the variances may be found as in

Eqs. (21.118) of Ref. [2].

Uniform
4.0

3.0

2.0

1.0

0

1.0 2.0 3.0 4.0 5.0

Rayleigh

(Strong signals) η = 0

(Weak signals) η ≥ 1

λ = [Ψ ∗
x – inc /(Ψ∗

s – inc
)]½

~
 λ 

→

η = 1 →
 1 + γ

λ
~

η = 3z^
*
=

 a
0*

Ψ
x

s
 –

 i
n
c

FIGURE 5.6 Bayes estimator of amplitude; incoherent reception, simple cost function, for

(a) uniform d.d., and (b) Rayleigh d.d..

23 Note that l 
 1 on the average implies strong signal. Since x ¼ a0sþ n, we have Y*
x�inc ¼

ExjH1
~xk�1

N a~aþ b~b
� �

k�1
N x

 � ¼ a20ksk
�1
N þ 2Y*

s�inc 
 Y*
s�inc with a20 
 1.
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TheBayes risk, or cost, associatedwith the incoherent estimators of Section 5.3 aremore

complex than those for the case of coherent reception (Section 5.2). However, for the

situation of strong signals the optimumestimators for both theRayleigh and uniform pdfs of

amplitude in the incoherent cases, and for the quadratic and simple cost functions, have the

same limiting form, namely,

a*0 Xð ÞD Y*
x�inc

� �1=2
=Y*

s�inc; ð5:3:19Þ
from (5.3.9a), (5.3.10b), (5.3.18a,b). The Bayes risk in the case of the QCF is found to have

the form

QCF: R*
u or Rð Þ ffi C0 a*0 � a0

� �2
u or Rð Þ ffi C0=Y*

s�inc; ð5:3:20Þ

with 1 	 Y*
x�inc=Y

*2
s�inc < 2 (cf. p. 989,Eq. (21.120e) et seq., ofRef. [2]). For the simple cost

function (SCF1) (5.1.12a), the corresponding Bayes risk is given by (5.1.15) and is found

from

SCF: R*
u or Rð Þ ffi C0 A1 �

Z

G

s a*0
� �

WJ X a*0
�� �

dX
� �

>0ð Þ;
�

ð5:3:21aÞ

with Y*
s�inc ¼ ~ak�1

N a ¼ ~bk�1
N b and Y*

x�inc ¼ ~xk�1
N a

� �2 þ ~xk�1
N b

� �2
from (5.3.12a) et seq.

for these narrowband inputs. Note that while R*
u or Rð Þ is independent of the a priori

distribution of the amplitudes a0 being estimated, it is not independent of the choice of

cost function. See Sections 21.3.2 and 21.3.3 of Ref. [2] for amore detailed discussion of the

incoherent (n.b.) cases, especially for the weak-signal forms of the optimum estimator a*0.

5.4 WAVEFORM ESTIMATION (RANDOM FIELDS)

When the signal, as well as the accompanying noise, is represented by an entirely random

field, the approach outline in Sections 5.2 and 5.3 for amplitude estimation can be readily

extended to the estimation of signal waveforms. In fact, in the case of Gaussian signals and

additive background noise fields, the Bayes estimators are often simpler than their

deterministic counterparts. Here we illustrate those cases with the following prototypical

example of simple estimation, now in space and time, where gm ¼ gmn, tl ¼ tn,

0 < gmj j 	 Rj j, 0 	 tn 	 T , and when quadratic and simple cost functions [Eqs. (5.1.18)

and (5.1.12a)] are employed.

5.4.1 Normal Noise Signals in Normal Noise Fields (Quadratic Cost Function)

Let us begin by choosing a quadratic cost function C S; gð Þ ¼ S� gsk k2 [cf. Eq. (5.1.24)]
and applying Eq. 5.1.26a) to obtain first the Bayes estimator T

Nð Þ
R Xð Þ ¼ g*

0 ofwaveformS in

0; Rj j; 0; T , when simple estimation procedures are employed, that is when gm ¼ gm, and

tn; m; n ¼ 11;. . . ;MN ¼ Jð Þ. Here specifically, we have

s Sð Þ ¼ 2pð ÞJ detKS

� ��1=2
e�1=2 ~SK�1

S S ð5:4:1aÞ

and FJ X Sj Þ ¼ WJ X� Sð ÞN ¼ 2pð ÞJ detKN

� ��1=2
e�1=2 ~X�Sð ÞK�1

N X�Sð Þ



ð5:4:1bÞ
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Applying these to Eq. (5.1.26a), we can write for the desired optimum estimator (of each

component Sj¼mn of S)

g*
0 Xð ÞS ¼

R
VS
S exp �1=2~S K�1

S þ K�1
N

� �
Sþ ~XK�1

N S
� �

dS
R
VS

exp �1=2~S K�1
S þ K�1

N

� �
Sþ ~XK�1

N S
� �

dS
; ð5:4:2Þ

where VS is the region P for each �1; 1ð Þ, Sj; j ¼ mn ¼ 11; . . . ; MN ¼ J. To evaluate

Eq. (5.4.2), let us consider the conditional characteristic function

FJ ijjXð ÞS �
Z

VS

ei
~jSs Sð ÞFJ X Sj ÞdS:ð ð5:4:3Þ

Then Eq. (5.4.2) becomes alternatively

g*
0 Xð ÞS ¼ �i

d

sj
log FJ ijjXð ÞÞSjj¼0: ð5:4:4Þ

Writing M 6¼ K�1
S þ K�1

N , we obtain from Eqs. (5.4.1a) and (5.4.1b), in Eq. (5.4.3)

FJ ijjXð ÞS ¼ 2pð ÞJ detKSKN detM
� ��1=2

exp 1=2 ~XK�1
N M�1K�1

N X
� �

� exp 1=2 ~jM�1j þ ijM�1K�1
N X


 �
: ð5:4:5Þ

Applying this to Eq. (5.4.4), we find directly that

T
Nð Þ

R Xf g ¼ g*
0 Xð ÞS ¼ S* ¼ M�1K�1

N X ¼ QEX; ð5:4:6Þ

where QE isM
�1K�1

N , or the equivalent expressions

QE ¼ KS KN þ KSð Þ�1 ¼ I þ KNKSð Þ�1 ¼ I þ KSK
�1
N

� � � KSK
�1
N

� �� ��1 6¼ ~QE: ð5:4:7Þ

Thus, theBayes estimator ofSwith respect to thequadratic cost function (5.1.24) is givenby
Eq. (5.4.6).

5.4.2 Normal Noise Signals in Normal Noise Fields (“Simple” Cost Functions)

Aswe see directly on comparisonwithEq. 21.29 ofRef. [2], theBayes estimator for theQCF,

Eq. (5.4.6), is also the unconditionalmaximum likelihood estimator ofS,whens Sð Þ is given
by Eq. (5.4.1a), for example,

S* ¼ Ŝ ¼ QEX; whereQE ¼ M�1K�1
N orM�1 ¼ QEKN : ð5:4:8Þ

Moreover, from Eqs. (5.1.41) and (5.1.4) we know that Ŝ can be interpreted as a Bayes

estimator with respect to the “strict”simple cost function (SCF2) (5.1.42), so that, in

effect, we can write Ŝ � Ŝ
* ¼ S* of Eq. (5.4.8). Finally, one can also show that, in terms of
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the less strict simple cost function (SCF1), S
*
k is equal to QEXð Þk (all k ¼ 1;. . . ; n), and

consequently Ŝ � Ŝ
*¼ QEX here as well. This is another example of a system that is

optimumwith respect to two or more different criteria, involving in this case three different

cost functions. That such an invariance can occur is clearly strongly dependent on the

statistical structure of the noise and signal processes (fields), as well as on the choice of cost

function.

5.4.2.1 Bayes Risk Before determining the Bayes risk, let us first find the characteristic

functions of S, of the estimator S*, and of S* � S. Since S and S* Xð Þ are both normal with

zero means, the former with variance KS and the latter with KS* ¼ EXjH1
S*~S

*
n o

¼
QEEX jH1

X~X
 �

~QE ¼ KS
~QE [Eq. (5.4.7)], their characteristic functions are

FJ ijð ÞS ¼ ES ei
~jS


 �
¼ e�1=2 ~jKSj ð5:4:9Þ

and FJ ijð ÞS ¼ EX jH1
ei
~jS*


 �
¼ e�1=2 ~jKSQEj: ð5:4:10Þ

For the c.f. of S* � S, we must remember that S and S* are not independent:

S* ¼ QEX ¼ QE SþNð Þ, but since both S and N or S and X are normally distributed,

we again expect a normal d.d. for S* � S. Specifically the means of S* � S vanish, and the

covariance matrix is

KS*�S � ES; N S* � S
� �

~S
* � ~S


 �n o
¼ KS I�QEð Þ; ð5:4:11Þ

wherewe have usedEXjH1
S*~S

*
n o

¼ KS
~QE andEq. (5.4.7). Again theGaussian character of

these distributions follows from the linear nature of theBayes estimatorS*
� ¼ Ŝ

*
; etc:

�
and

the normal properties of both the original signal and noise processes.Note also that the pdf of

a single estimate S*j is normal, with zero mean and variance
�
M
��1

jj
, since

F1

�
ijj
�
S
¼ FJ

�
0; 0; . . . ; ijj; . . . ; 0

�
S
, and so on.

The Bayes risk for Ŝ
*
in the case of the quadratic cost function is now easily found from

Eq. (5.4.11). Let us consider the Bayes risk associated with the single estimation of

waveform Sj at time tl ¼ tn and positions gm ¼ gm where tn n ¼ 1; . . . ; Nð Þ is any one

of the instants and gm; m ¼ 1; . . . ; M is a sample point in space, at which the data X are

acquired. From Eqs. (5.1.27a) and (5.4.8), we have for the Bayes risk here

R*
j � C0EX; Sj Sj� S*

j


 �2� 	
¼ C0 KS � KS

~QE

� �
jj
: ð5:4:12Þ

The Bayes risk associated with the simple estimation of, say, L-values of the waveform, for

example Sj1 ; . . . ; SjL ; 11 	 j1; . . . ; jL < J ¼ MN, where jl , and so on, is any one data-

sampling instant in the interval 0; Tð Þ, becomes

R*
j½ � ¼

Xj

l¼1

R*
jl
¼ C0

Xj

l¼1

KSð Þjl jl �
Xp

p¼1

KSð Þjlp ~QE

� �
pjl

" #

; ð5:4:13aÞ
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and if j ¼ p, that is, if all points 1 	 j 	 pð Þ are considered, we have

R*
p½ � � C0 tr KS � KS

~QE

� �
: ð5:4:13bÞ

The Bayes risk for j ¼ mn points gm; tnð Þ l ¼ 1; . . . ; jð Þ follows similarly from

Eq. (5.4.13a). We have

R*
l j½ � ¼ C0

Xj

l¼1

JT ½ gm; tnð Þl ; gn; tnð Þl � 11 	 j 	 J; ð5:4:14Þ

with a corresponding result for R*
l p½ � [Eq. (5.4.13b)].

Note that, as p!1, the Bayes riskR*
l p½ � for the values of S at the j sampling pointsP also

becomes infinite, since the Bayes risk for each sampling instant tl in the interval

0; Rj jð Þ; 0; Tð Þ is itself finite and there are now an infinite number of such points in this

interval. However, by modifying the definition of R*
l p½ � so as to define instead the Bayes risk

R*
l p½ � per sampling point, by

R*
l p½ � � R*

l p½ �=n; ð5:4:15aÞ

we obtain in the limit

R*
l p½ �; ð5:4:15bÞ

a finite quantity which may be used as a measure of the expected performance of the Bayes

estimator S*.

5.4.2.2 Minimax Estimators Finally, we observe here that since theMinimax estimator

is Bayes for a uniform a priori signal distribution (Sec. 5.1.4) we can obtain the specific

Minimaxextractor on settingK�1
S ¼ 0, thenullmatrix. Then,QE !QM ¼ I [cf.Eq. (5.4.7)],

and consequently

S* !S*
M ¼ Ŝ

*

M ¼ X; ð5:4:16Þ

that is, theMinimax estimates are just the sampled values themselves. TheMinimax average

risks R*
Mk, R

*
M j½ � [Eqs. (5.4.13a) and (5.4.13b)] are readily computed from Eq. (5.4.12) with

the help ofEq. (5.4.16). They are, respectively,c ¼ N2

 �

and Jc. SinceS* for quadratic cost

functions is also equal to the UMLE Ŝ
*
, these remarks apply equally well for the

corresponding simple cost functions and the associated Minimax estimators.

5.4.2.3 Extensions The temporal extension of the theory to smoothing and prediction,

for which the sample points in time are tl, where tl represents interpolation, that is,

tn < tl < tnþ1, or extrapolation (t1 > tl; or tN < tl, i.e., prediction), is discussed in

Sections 21.4.2 and 21.4.3, of Ref. [2]. The further extension of this theory to space–

time sampling is formally made by introducing the space–time points gm; tl


 �
. The m; lð Þ

now designates points in the space–time manifold which are not coincident with the sample

points gm; tnð Þ which select the data upon which the estimate at gm; tl


 �
is made. Again,

depending on the choice of cost function and then a priori distributions, these estimators

WAVEFORM ESTIMATION (RANDOM FIELDS) 303



(predictors and extrapolators)may be linear or nonlinear, even if the noise (and signal) fields

are Gaussian.

5.5 SUMMARY REMARKS

Estimation theory is necessarily less “compact” than the corresponding theory for

detection, since the system designer has more degrees of freedom at his disposal, in

particular the choice of cost function, and frequently the quantity to be estimated.

However, it is possible to make certain general observations about the results obtained

in Sections 5.1–5.4:

(1) Weak-signal or threshold estimators usually provide asymptotically sufficient

estimates, and the pdfs of these estimators are themselves usually normal. This is

true for maximum likelihood estimators of amplitude and waveform, which are

Bayes relative to simple cost functions (Sections 5.1.1 and 5.1.2), and also for

corresponding systems based on quadratic cost functions (Section 5.1.3).

(2) Strong-signal estimators of these cost functions also exhibit a similar invariance:

regardless ofwhether or not a simple or a quadratic cost function is chosen, theBayes

systemhas the same structure in this limiting situation [although theBayes risksmay

(of course) be different].

(3) Finally, the maximum likelihood approach is found to have a broader interpretation

from the viewpoint of decision theory, as Section 5.4.1 has indicated.

A brief reviewof some of the implications of (3) gives further insight into the significance

of maximum likelihood estimation. This may be seen in the case of waveform estimation if

we set g ¼ S therein, according to Eq. (5.1.4). Then we have

p gjSð Þ ¼ p g ¼ SjSð Þ ¼
Z

G

FJ X Sj Þd S� gS Xð Þ½ �dX;ð ð5:5:1Þ

which is the probability of a correct decision when the signal is S. It is clearly greatest when
for each X we choose gS Xð Þ equal to the maximum conditional likelihood estimate ĝS. In

other words, themaximum (conditional) likelihood estimatormaximizes the probability of

a correct decision, without regard to incorrect decisions or their cost. By taking the average

of both sides of Eq. (5.5.1) with respect to the a priori signal distributions Sð Þ, we obtain the
average probability of a correct estimate,

Z

VS

p S Sj Þs Sð Þ dS ¼
Z

G

Z

VS

s Sð ÞFJ X Sj Þd S� gs Xð Þ½ � dS dX;ð
�

ð5:5:2Þ

where p S Sj Þð represents p g ¼ S Sj Þð . By the same reasoning as for Eq. (5.5.2), we see that

Eq. (5.5.2) is largest when, for each X, gs Xð Þ is chosen as the particular value of S that

makes the unconditional likelihood function (or a posteriori probability of S, given X) a
maximum. Thus, the maximum unconditional likelihood estimator Ŝ maximizes the

average probability of a correct decision (here an estimate, under p H1 ¼ 1ð Þ), when all

possible signals are taken into account, and again without particular regard for incorrect

decisions and their costs.
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Because the maximum likelihood estimator effectively assigns the greatest probabilities

to the least costs, this cost of a correct decision is always less than that of any other decisions.

Thus, the closest estimates have the greatest probabilities, andmay be expected tominimize

the average risk for cost functions other than the simple one provided that certain symmetries

are present in the joint density p S; Xð Þ ¼ s Sð ÞFJ X Sj Þð and in the cost function itself.

Specifically, in the case of the squared-error cost function (5.1.18), it is found that, if the joint

distribution of X and S is symmetrical about the unconditional maximum likelihood

estimate Ŝ for every X (remember that Ŝ depends on X), then Ŝ is a Bayes solution with

respect to this cost function.24

A receiver which presents the a posteriori probability p S Xj Þð as a function of S at its

outputmay also be operated as a decision system by taking themaximumvalue of the output

as the decision or estimate. From the above, we see that such a receiver maximizes the

probability of a correct decision for each S, and also maximizes the average probability of a

correct decision [cf. Eq. (5.5.2)] when the various S appear at random. The receiver’s

limitation is that it ignores the possibly different relative importance of the various system

errors, that is, discrepancies between g and S. This is equivalent to saying that it is a Bayes
extractorwith the simple cost functionofSection5.1.On theother hand, aswehave just seen,

under certain symmetry conditions the Bayes extractor for the squared-error cost function is

also the (unconditional) maximum likelihood estimator Ŝ, so that from this point of view the

maximum likelihood receivermay be considered as onewhich penalizes incorrect decisions

according to C S; g0ð Þ ¼ C0 S� g0k k2 and simultaneously maximizes the average proba-

bility of a correct decision. It is evident, therefore, that under certain conditionsanextraction

system may minimize average risk for more than one cost function, just as in the case of

detection (cf. Section 5.4),where agiven systemmaybeoptimumformanycost assignments

provided that the thresholdK is held fixed. In fact, as we have demonstrated in Section 5.4, it

is possible for the same system S* ¼ Ŝ ¼ Ŝ
*
; to be optimum with respect to three different

cost functions, when, for example, the signal as well as the noise is a normal process25. Note,

again, cf. Section 5.4.2.2, that the conditional and unconditional maximum likelihood

estimators are also identical for uniform distributions of the quantities being estimated.
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6
JOINT DETECTION AND ESTIMATION,
p(H1) � 11: I. FOUNDATIONS

In most applications of Statistical Decision Theory (SDT) to communication problems

(and to other applications involving hypothesis testing and statistical estimation), the

basic reception processes of signal detection and parameter estimation are treated as

separate and distinct operations, albeit within the common framework provided by SDT

(Chapters 1–5 preceding).2 Accordingly, detection is considered as necessarily carried out

under uncertainty as to the presence or absence of the received signal in the accompanying

noise, with a priori probability p ¼ p H1½ �ð Þ < 1, but independently of any associated signal

waveform or parameter estimation (cf. remarks, beginning of Chapter 2). On the other

hand, for the estimation process it is usually postulated that the signal is surely present,

that is, p H1ð Þ ¼ 1, along with the noise, so that there is no requirement for detection in

such cases. It has been within this conceptual framework that an extensive and effective

body of fundamental theory and practical application has been developed, along parallel

but essentially separate tracks, as exemplified in detail by the concepts, methods, and

results of Chapters 1–5 above.

However, in many actual situations, namely those limited by accompanying noise and

interference, we cannot assume a priori that the received signal, whose features we wish to

estimate, for example by the general methods of Chapter 5, is surely present in the received

data. Rather, we have to acknowledge the fact that the received signal itself is not a priori

surely known to be present, that is, in reality p H1ð Þ < 1. Then joint estimation and detection

1 We include the previously treated cases of estimation where p H1ð Þ ¼ 1, Chapters 1 and 5, now regarded as

limiting forms of the more general situations p H1ð Þ � 1 of Chapter 6.
2 An exception is the practice of obtaining signal parameters of unknown prior distributions by conditional

maximum likelihood estimation (CMLE), cf. Sections 5.1.5. There are, however, conceptual and quantity

difficulties with this technique.
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become essential: estimation, which now must suitably account for the bias introduced by

the presence of noise alone in a certain fraction q H0ð Þ ¼ 1� p H1ð Þ > 0½ � of the received
data samples, and detection, which is needed to provide a probabilistic measure of the

signal’s presence, since p H1ð Þ < 1 here. With the latter we are able to decide whether to

retain or reject the estimate,3 depending on our desired, preselected probability of the signal

presence. The explicit structure of the detection and estimation algorithms will depend both

on the nature and extent of the coupling between the twoprocesses, ranging fromnocoupling

to strong coupling, as we shall see in the following sections.4

Accordingly, the central theme of this chapter is the extension of our earlier SDT

treatment of minimum average risk or Bayesian (i.e., optimum) and suboptimum detection

and estimation discussed inChapters 1–5. This includes specifically now the important class

of problemswhere detection (D) and estimation (E) are carried out jointly under the common

condition of uncertainty as to the presence of the received signal, for example, p H1ð Þ < 1.

A significant feature of the analysis, treated subsequently in Chapter 7, is the generalization

to include adaptive procedures, that is, “learningwith andwithout teacher” via sequences of

decisions, and extensions to include multiple hypothesis states in the detection portions of

the joint D and E process. The analysis here is based largely on the early work ofMiddleton

andEsposito [1],who initially developed the coupled (Bayes) theory for this binary “on–off”

situation explicitly from theviewpoint of SDT. This has permitted the quantitative joining of

the D and E components of the decision process in a general way. This joining in turn is

accomplished through the introduction of suitable cost functions, alongwith the subsequent

derivation of the desired optimal algorithms and associated performance measures. Exten-

sions to include adaptive procedures and sequences of decision when p H1ð Þ < 1 [2], and

multiple alternative detection regimes (Chapter 4), the latter carried out originally by

Fredriksen [3], are described in Chapter 7 following.

Following a concise general formulation in Section 6.1 below, we develop the theory,

beginning in Section 6.2 with the simplest cases: joint but uncoupled detection and

estimation under p H1ð Þ � 1, based on a data sample of fixed size, that is, “one-shot”

decision making. Two common and important criteria for optimal estimation are employed

here: (1) minimum mean square error (MMSE) (Section 5.2.3; Section 21.2.2, [4]), and

(2) unconditional maximum likelihood estimation (UMLE) (Section 5.1.2; Section 21.1.2,

[4]). The former employs a quadratic cost function (QCF) and the latter is based on “simple”

cost functions (SCFs). Next, in Section 6.3 we broaden the analysis to include the general

case of coupled detection and estimation. Section 6.4 provides some explicit examples, for

which fully developed analytic results are possible (in the uncoupled cases). These give

quantitative insights regarding the sensitivity of the estimators to departures of p H1ð Þ from
3 In the case of sequences of decisions, that is, estimates and detections, we may wish to retain individually

rejected estimates for composite evaluation, for example, for “tracking,” and other sequential decision making, cf.

Chapter 7 ff.
4 Earlier (i.e., largely pre-1968) analyses, such as those presented in classical statistics, for example in Kendall and

Stewart [5], have not fully acknowledged the interdependence of the estimation and detection phases of the joint D

and E processes, while suggesting that detection be performed first, before estimation. Such “decision-directed”

methods [6] are necessarily suboptimum because of the unavoidable possibility of errors in the first stage of this

two-stage procedure, and their effects on the second decision. In fact, as we shall see [cf. Section 6.3.1 ff.] optimal

procedures can require that estimations be considered before, or in parallel with, detection. Recognition of the

complexities of the joint D and E problem is, of course, not new: for specifics see [4], Sections 18.2.3, 21.2.5,

respectively, and Section 6.3 here, as well as Refs [6–8,12,13] in Ref. [1] of this chapter, along with Refs [3,11–14]

in Ref. [2], also of chapter 6. Details of the earlier history of the problem are more fully discussed in the

Introductions (Section 1) of Refs. [1,2].
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unity, the classical limiting case in common practice. The above analyses are then

extended in Chapter 7 to include for p H1ð Þ < 1 a number of estimation problems treated

earlier in Ref. [4] under p H1ð Þ ¼ 1. Further extensions to the adaptive or sequential

“learning” D and E processes complete Chapter 7. Several final sections in each chapter

summarize various results for both the nonadaptive (“one-shot”) systems and the adaptive

learning cases where multiple alternative hypothesis states for detection occur. A brief

discussion of the implications of the results, along with problems and selected references

[5]-[14], particularly to relevant earlier work, complete our presentation of this particular

subject in this chapter.

6.1 JOINT DETECTION AND ESTIMATION UNDER PRIOR UNCERTAINTY

p H1ð Þ � 1½ �: FORMULATION

We accordingly begin first with a general model of the reception situation, as sketched in

Fig. 6.1, specializing it subsequently to various simpler, special cases. The (real, vector)

coupling operator TAR, cf. Fig. 1.1, includes space–time sampling of the input field a and is

represented by the scalar (aperture) or vector (array) operators, R̂; R̂:

TAR ¼ Re R̂an

� � ¼ X tnð Þ½ �: time-sampled input to the detector--estimator

system from a receiving aperture;
ð6:1:1aÞ

¼ Re R̂an

h i
¼ X rm; tnð Þ½ � ¼ Xj

� �
: same as ð6:1:1aÞ; now with

spatial sampling by an array of sensors:

ð6:1:1bÞ

As noted earlier, cf. Section 1.3.1, for time samples on the data acquisition interval (T) we

have n ¼ 1;. . . ;N, and for space–time sampling, j ¼ mn ¼ 1;. . . ; J ¼ MN, in the usual

way, cf.Eq. (1.3.1),withrm the locationof themth sensor element of the array. (SeeChapter1

for details.)

We postulate next an on–off detection situation. Then the sampled input to the system is

either in state H1: an arbitrary received signal S uð Þ, corrupted in some fashion by a noise

process ðNÞ, or in state H0: the noise field alone, for example,

H1: X ¼ S�N;H0: X ¼ N; ð6:1:2Þ
where � indicates “combination,” which may be additive, or multiplicative in the case of

active systems, for example. In general, the purpose of the system depicted in Fig. 6.1 is to

Array

or

aperture

Detector γ i(X)

γS(X)

(i = 0,1)

TAR

[Xn]

Estimator

: X : Coupling 

Decisions

αS

αN

FIGURE 6.1 A general model of a coupled joint detection–estimation processor; fixed observation

interval;
�
X ¼ R̂a

�
.

JOINT DETECTION AND ESTIMATION UNDER PRIOR UNCERTAINTY 309



provide a double decision at its output: a detection decision as to the presence or absence of

the signal and, possibly, an estimate of the signal waveform S, or of the signal parameters u.
As indicated in Fig. 6.1, the detector and the estimator are in general functionally related.

For the moment we note that Fig. 6.1 includes, among other cases: (1) the usual detection

problemwhen the estimator is not present; (2) the usual estimation problemwhen the signal

is present with probability unity in the observation interval (and therefore no detection is

necessary); and (3) a new type of estimation problem when there is no detection operation

involved,5 but an estimate has to be made without certainty as to the presence of the signal,

that is, p H1ð Þ < 1.

As we havementioned at the beginning of the chapter, we shall use the familiar Bayesian

approach outlined in Chapter 1, which includes the concepts and methods of SDT to

determine systemstructure andperformance.Accordingly,weobserveagain that structure is

embodied in the decision rule d and performance is evaluated as an average risk or cost

R s; dð Þ. Specifically, we express the average risk associated with the decisions g, for both
detection and estimation, in the compact form

R s; dð ÞD�E ¼ C S; gð Þh iD;G;WS

¼
ð

WS

sJ Sð ÞdS
ð

G
FJ XjSð ÞdX

ð

D
d gjXð ÞC S; gð Þdg; ð6:1:3aÞ

where s Sð Þ once more is the a priori probability density (pdf)6 of signal waveform S ¼
S1;. . . ; SJð Þ; s uð Þ is the corresponding pdf of the L signal parameters u ¼ u1;. . . ; uLð Þ, for
S ¼ S uð Þ, namely,

R s; dð ÞD�E ¼ C u; gð Þh iD;G;Wu

¼
ð

Wu

sL uð Þdu
ð

G
FJ XjS uð Þð ÞdX

ð

D
d gjXð ÞC u; gð Þdg: ð6:1:3bÞ

The pdfs FJ XjSð Þ, FJ XjS u½ �ð Þ are respectively the conditional pdfs of the received data X
given S or S uð Þ, while C S;gð Þ, C u;gð Þ are the cost functions relating the decisions

g ¼ g1;. . . ; gJ or Lð Þ about S or u in some quantitative way, cf. Section 1.4. In any case

X and S are N or J ¼ MNð Þ dimensional column vectors, given by (6.1.1a) and (6.1.1b),

where

S ¼ S rm; tn; uð Þ; or S tn; uð Þ: ð6:1:3cÞ

The symbol D� E indicates that the decisions regarding detection (D) and estimation (E)

may be coupled and thus interactive, depending on the choice of cost functionsC, as noted in

Fig. 6.1. We shall see a general example of such coupling in Section 6.3 following. In any

case, the decision rule d gjXð Þ relating the decisions g to the data X represents the system

structure and may be specified a priori or obtained under various optimality conditions,

5 As we shall see presently, however, for the results of (3) to be used effectively, a separate detection process is

required, even though this process itself does not influence the actual quantitative value of the estimate.
6 Unless otherwise indicated we again use the convention that pdfs and functions of different arguments are

different functions or have different values, for example, s Sð Þ 6¼ s uð Þ, and so on.
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usually by minimizing the average risk, for example, symbolically limd! d� Rð Þ. The
function spaces for received signal (S and/or parameter u), received data X, and decisions

g are again denoted by W;G;D respectively (a full exposition is given in Chapter 1 at the

beginning of the book).

Equations (6.1.3) are valid both for detection and estimation considered separately

or jointly, once appropriate cost functions have been specified. It is also useful to observe

that the decision vector g is allowed to assume only a discrete set of values in detection

theory, for instance, g ¼ g0 ¼ 0; g1 ¼ 1ð Þ for an on–off situation [cf. Section 1.6].

In estimation problems the decision rule g may generally have a continuum of values

d gjXð Þ ¼ d g � gu Xð Þð Þ, and the estimators gu are L-dimensional vectors gu ¼
gu Xð Þ‘
� �

; ‘ ¼ 1;. . . ; L, corresponding to the L parameters u ¼ u‘½ � being estimated; cf.

Chapter 5.

Usually we seek an optimum, that is, here a Bayes system, by suitable choice of decision

rule d, that is, we seek the optimum structure, d�, such that d! d�ð ÞR!R� s; d�ð Þ, when an
appropriate pdf s is assigned for S or u. Accordingly, we write7

s Sð Þ ¼ qd S� 0ð Þ þ pwL Sð Þ; ð6:1:4Þ

where once more p ¼ p H1ð Þ, q ¼ q H0ð Þ ¼ 1� p are the a priori probabilities that the data

sample does or does not contain a signal; d .ð Þ is theDirac delta function; andwL Sð Þ is the pdf
of S under hypothesis H1. By analogy with (6.1.4) we can also write7

s uð Þ ¼ qd u� 0ð Þ þ pwL uð Þ ð6:1:4aÞ

for the pdf of those parameters (like the signal amplitude), which are directly related to the

received signal energy, so that S ¼ 0 implies u ¼ 0.7

A similar relation cannot be written, however, for other parameters (like phase or

frequency) whose values are not defined when S ¼ 0: in this case it is meaningless to use

the transformations Sð ÞdS ¼ s uð Þdu under the hypothesisH0, since the pdf of the u,wL uð Þ,
is only defined under hypothesis H1. This, of course, does not prevent our using (6.1.4b)

below in our estimation of u when p H1ð Þ < 1, with the understanding that q H0ð Þ always
refers to S ¼ 0 regardless of u, namely,

s uð Þ ¼ qd S� 0ð Þ þ pwL uð Þ: ð6:1:4bÞ

As noted abovewe are concerned herewith the problem of Bayes systems for joint signal

detection and estimation, where in all cases the prior probability p H1ð Þ is less than (or equal
to) unity, that is, 0 � p H1ð Þ � 1. We begin with a number of reasonable assumptions and

restrictions, most of which can either be removed, modified, or mitigated in subsequent

extensions of the theory. These assumptions are

(1) a fixed amount of a priori data: no adaptivity or “learning”;

(2) a single set of terminal decisions;

(3) binary detection of a signal in noise H1ð Þ versus noise alone H0ð Þ in the detection

portion of the decision process;

7 The number of random variables in s Sð Þ is J and in s uð Þ is L.
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(4) at least one signal parameter unknown at the receiver (so that signal estimation is a

meaningful operation);

(5) 0 � p H1ð Þ � 1: This is the critical new feature of the theory. [The limiting situation

p H1ð Þ ¼ 1 is the classical estimation case, cf. Chapter 5.]

It is worth noting that for estimation under prior uncertainty as to the presence of the signal,

for example, p < 1, two data ensembles are now potentially involved, as in the usual case of

binary detection: one set, Xf gH1
, under hypothesis state H1: S� N, and the other, Xf gH0

,

under H0: N. In applications, however, only one representation, X, from one or the other

ensemble, is actually employed.Which one, of course, is not known a priori. This is the new

feature for estimation when p < 1.

As mentioned previously, we seek an optimum, or Bayes system for the combined

operationsofdetectionandestimation,withappropriate choicesofcost functionsandcoupling

between the two operations. Because of themanyways in which detection and extraction can

be coupled together, we next briefly note a series of situations of increasing complexity. There

are several types of coupling that we can assume. In the present section we discuss only the

following cases because of their comparative analytical and conceptual simplicity:8

6.1.1 Case 1: No Coupling

The two operations of detection and estimation are done in parallel and independently; (see

Fig. 6.2). Since the two operations are independent, the total average risk (6.1.3) is clearly

R ¼ RD þ RE; ð6:1:5Þ
and the two components of the total risk can beminimized separately. TheBayes optimumor

minimization of the average detection risk p < 1 (with the usual constant cost functions, cf.

Section 2.2.1) yields the well-known generalized likelihood ratio (GLR) test,9 Eqs. (2.17a)

8 See Section 6.3 ff. for the general formulation.
9 This is also sometimes called the “average likelihood ratio (ALR) test.” When the unknown parameters uð Þ are
replaced bymaximumlikelihood estimators

�
û
�
in logL Xð Þ, this latter quantity in (6.1.6) is then sometimes called a

“generalized likelihood ratio test,” not to be confused with (6.1.6)–(6.1.6b) here. However, conceptual problems

arise because of the assumption that estimates under p H1ð Þ ¼ 1 can be safely used in detection, where p H1ð Þ < 1

necessarily. See Section 1.8 for a discussion.

Detection

(aperture)
      or

(D)

Rα=X

Rα=X

Estimation
(E)

γ p < 1:

α(R,t )

(array)

H1 vs. H0 :
N vs. N

Estimate

S

*

FIGURE6.2 Joint detection and estimationwithout coupling. The dotted line represents acceptance

or rejection of the biased (underH1) estimator g�
p<1 upon the detection decisionH1 orH0. (D) and (E)

here are separate operations based on the same data input and signal, for fixed observation intervals.

312 JOINT DETECTION AND ESTIMATION, p(H1) � 1: I. FOUNDATIONS



and (2.17b):

DecideH1; signal and noise: S� N; if logL Xð Þ � log K; or

DecideH0; noise alone: N; if L Xð Þ < log K;
ð6:1:6Þ

where the “threshold” logK is a simple function of the assigned costs of correct and incorrect

decisions:

Eq: ð1:7:3Þ:
log K � log

C
0ð Þ
1 � C

0ð Þ
0

C
1ð Þ
0 � C

1ð Þ
1

" #

¼ log
Ca � C1�a

Cb � C1�b

� �
;

C
0ð Þ
1 � Ca > C1�a;C

1ð Þ
0 � Cb > C1�b; etc:;

ð6:1:6aÞ

and the GLR is

Eq: ð1:7:2Þ: L Xð Þ � m FJ XjS uð Þð Þh iu=FJ Xj0ð Þ;m � p=q;

with FJ XjS uð Þð Þh iu ¼
ð

W
FJ XjS uð Þð ÞwL uð Þdu ¼

ð

W
WJ�L X; uð Þdu

9
=

;
; ð6:1:6bÞ

which defineswJ�L X; uð Þ, whereL is the familiargeneralized likelihood ratio,10Eq. (1.7.2).

Here a� ¼ a S� NjH0ð Þ�, b� ¼ b NjH1ð Þ� are respectively the (optimum) conditional

probabilities of Type I and II errors, namely, of deciding H1 ¼ S� N or H0: N when the

reverse H0; orH1ð Þ is true.
The (constant) costs in (6.1.6a) are

Ca � C
0ð Þ
1 : cost of deciding incorrectly that a signal is

present when only noise occurs

C1�a � C
0ð Þ
0 : cost of deciding correctly that only noise occurs;

8
><

>:

9
>=

>;
ð6:1:6cÞ

and

Cb � C
1ð Þ
0 : cost of deciding incorrectly that only noise is

present when actually a signal and noise occurs

C1�b � C
1ð Þ
1 : cost of correctly deciding a signal is present in the noise:

8
><

>:

9
>=

>;
ð6:1:6dÞ

Of course, for meaningful results the costs of decision errors must exceed those of correct

decisions, cf. (6.1.6a) and Section 1.6.

For optimal detection, L Xð Þ is the processing algorithm,11 that is, the detector, and it

embodies the operations to be performed on the received data X to achieve either of the

decisionsH1 orH0, according to (6.1.6). Evenwhen there isweak coupling, by proper choice

of the cost functions coupling detection and estimation it is still possible separately to

minimize the average risks RD, RE (6.1.5), and use (6.1.6) for detection, with appropriate

10 See footnote 7.
11 It is convenient formost analytical and practical purposes to use logL rather thanL, the former beingmonotonic

in L and as shown in Section 1.9.1.1, the error probabilities a�;b�, and so on, remain unchanged.
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adjustments of the threshold K; see Section 6.3 ff. and Section 4.1 of Ref. [1]. Specifically,

note that the Bayes risk itself, R�
D ¼ limd! d� RDð Þ for detection here, may be written

explicitly [Eq. (1.7.1)] as

R�
D ¼ R0 þ p Cb � C1�b

� �ð

G
d� g0jXð Þ L� Kð ÞdX

¼ R0 þ p Cb � C1�b

� �
Ka� þ b�ð Þ;withR0 � qCa þ pC1�b:

ð6:1:7Þ

Now the decision is to make d�1;0 obey d
�
0 þ d�1 ¼ 1, with d�0 ¼ 1, d�1 ¼ 0, forH0, and d

�
1 ¼ 1,

d�0 ¼ 0, for H1, from which the decision process (6.1.6) above follows. The details are

developed in Section 1.7.

The minimization of the estimation risk RE, however, involves an essentially new

problem, since the estimator’s performancemust nowbeoptimized in the face of uncertainty

as to the signal’s presence, for example, p H1 � 1ð Þ. Results for this problem are developed

in Section 6.2 ff.

6.1.2 Case 2: Coupling

In this case there is coupling between the detection and estimation, and it consists in the

estimation being directed by the result of the detection operation.By thiswemean that either

the estimator does not act on the data unless the detector has decided that the signal is present,

or that the two operations are still done in parallel, but that the estimate is rejected if the

detector’s decision is that only noise is present at the input. These two cases are illustrated in

Fig. 6.3a and b. Different orders of complexity are possible here, according to the amount of

knowledge that the detector has of the estimator’s structure and according to the selection of

the cost functions. In general, the total risk cannot bewritten as the sum of two independent

components, and its minimization leads to a joint optimization. This, in turn, involves

tests that have more complicated statistics than the usual generalized likelihood ratio.

Detector
γ 1

γ 1

γθ

γθ

γ 0

γ 0

Estimator

X
S

N

(a)

Detector

Estimator

X
S

N

(b)

Reject

Accept

FIGURE 6.3 “No coupling”: (a) detection-directed estimate, p < 1; (b) detection-directed estima-

tion with decision rejection.
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The general problem is examined in Section 6.3 ff. Its specific applications to joint D and E

problems in telecommunications largely remain to be explored.

Accordingly, we begin our analysis with a treatment of the “no-coupling” cases

(Section 6.2 ff.), and then extend it to the general situations of “strong” and “weak” coupling

(Section 6.3 ff.).

6.2 OPTIMAL ESTIMATION [P(H1) � 1]: NO COUPLING

“No coupling” is defined as the situationwhen p H1 � 1ð Þwhere the costs of detection do not
depend on the signal or its parametersandwhere the detection (D) and estimation (E) portion

of the average cost decision (6.1.5) can be independently treated, that is, minimized in most

instances. (“Weak coupling,” on the other hand, permits cost functions in detection that do

depend on the signal, while also maintaining a detector structure independent of the

estimator, vide Section 6.3.2 ff.). Figure 6.3 illustrates the uncoupled cases of detection-

directed estimation. This means that estimation is either carried out after the detector has

decided that the signal is present, or that the estimation (done in parallel with detection) is

then accepted or rejected, depending on the detector’s decisions. In either instance, the D

cost functions do not depend on the signal, so that the D and E processes are uncoupled.

Thus, for “no coupling” the average risk RE associated with signal or parameter

estimation follows at once from [(6.1.3a) and (6.1.3b)] and (6.1.5). The average risk RD

attributable to the detection process, with the usual constant cost assignments of [(6.1.6a),

(6.1.6c), (6.1.6d)] is determined in the customary way from (6.1.6), (6.1.6a–d), as described

more fully in Section 1.7 earlier. For this reason we direct our attention here solely to the

estimation portion of the overall decision process in this new situation where p � 1.

Accordingly, let C0 gð Þ and C S; gð Þ be the cost functions under hypothesis H0 and H1,

respectively, and apply the decision rules d gjXð Þ ¼ d g � gS Xð Þð Þ for waveforms, inte-

grated over decision space D, for example,
Ð
Dð Þd gjXð ÞdX in Eq. (6.1.3). Then, the average

risk RE becomes for waveform estimation, p < 1:

RE ¼ RS s; dð Þ ¼
ð

G
qFJ XjSð ÞC0 gð Þ½ �S¼0 þ p

ð

WS

FJ XjSð ÞC S; gð ÞwJ Sð ÞdS
� �

dX:

ð6:2:1aÞ
The corresponding expression for the average risk associated with the estimation of the L

signal parameters u ¼ u1;. . . ; uLð Þ, where now the decision rule is analogously d gjXð Þ ¼
d g � gu Xð Þð Þ, is explicitly

RE ¼ Ru s; dð Þ ¼
ð

G

qFJ XjS uð Þð ÞC0 guð Þ½ �S¼0

þ p

ð

Wu

FJ XjS uð Þð ÞC u; guð ÞwL uð Þdu

8
><

>:

9
>=

>;
dX: ð6:2:1bÞ

To obtain the Bayes estimators of waveform S, namely g�
S ¼ g� SjXð Þ, or of the signal

parameters u, for example, g�
u ¼ g� ujXð Þ, we first evaluate the variation dRE of the average

risk, (6.2.1a) or (6.2.1b), setting it equal to zero for an extremum in the usual way, namely,

dRS ¼
ð

G
dg q FJ

@C0

@g

� �

S¼0

þ p FJ

@C

@g

	 


S6¼0

( )

dX ¼ 0; ð6:2:2aÞ

OPTIMAL ESTIMATION [P(H1) � 1]: NO COUPLING 315



which becomes the J or Lð Þ set of equations12 in g

q FJ

@C0

@g

� �

S¼0

þ p FJ

@C

@g

	 


S or u

� �

g!g�
¼ 0: ð6:2:2bÞ13

The solutions (when they exist) of the Eqs. (6.2.2a) and (6.2.2b) are not only extremal

solutions but areminimizing solutions for the average riskRE, that is,RE !R�
E, theminimum

average or Bayes risk, provided the Hessians of the integrands G gð Þ of [(6.2.1a) and

(6.2.1b)] here are positive, that is, H Gð Þ ¼ @G jð Þ=@gj

� �
> 0, with G jð Þ ¼ @G=@gj

� �
, the

Hessian being the Jacobian of the derivative of G ¼ G g1;. . . ; gJ or Lð Þ, namely, H Gð Þ ¼
@2=@gi@gj

� �
G

� �
.

Here we note as expected that when p ¼ 1, q ¼ 0ð Þ, we have the “classical” cases of

estimation when the signal is a priori known surely to be present, so that [(6.2.2a) and

(6.2.2b)] reduce at once to the familiar relations for determining g�
p¼1, cf. Section 5.2

preceding. Alternatively, when p ¼ 0 and q ¼ 1, only the first terms of (6.2.2) determine g�.
Then g�

p¼0 must vanish, since it is surely known that there is no signal present. This puts a

condition on the cost function C0, namely, @C0=@gjg¼0 ¼ 0, a condition that is satisfied by

most cost functions.Wenote that in the case ofwaveformor amplitude estimation itmay also

be reasonable to assume that C0 guð Þ ¼ C 0; guð Þ. This assumption introduces some simpli-

fication in the solutions of (6.2.2). (The examples of Section 6.4 ff. illustrate this point.)

Finally, because there is no coupling between estimator and detector we can estimate aswell

as detect on the whole data space G, rejecting or putting aside an estimate if the detector

decides H0. (See also the discussion in Section 6.3.2.)

6.2.1 Quadratic Cost Function: MMSE and Bayes Risk

We next specialize the extremal relation (6.2.2b) to the cases of waveform and parameter

estimation with a QCF, that is, from (6.1.3a) and (6.1.3b) on averaging over decision space

D, CS becomes

CS ¼ C0jS� gSj2; or Cû ¼ C0jû� gûj2: ð6:2:314Þ
Here û ¼ û‘

� �
, ‘ ¼ 1;. . . ; L, are theL parameters to be estimated out ofLM � Lð Þ parameters

û ¼ �û; u0�, LM ¼ Lþ L0ð Þ, where u0 are other random parameters not subject to estimation

here ([4], p. 966), with C0 gð Þ ¼ C 0; gð Þ. These quadratic cost functions yield MMSE

estimators.

6.2.1.1 TheBayes Estimatorg�
p�1jQCF Putting the second relationof (6.2.3) into (6.2.2b)

and solving for g�
û
, we readily obtain the Bayes estimator g�

p�1 of û. Our initial result is

g�
p�1

�
ûjX�

QCF
¼ p

ð

Ŵ
ûWJ�L

�
X; û

�
dû

,

qWJ

�
X
�
0
þ p

ð

Ŵ
WJ�L

�
X; û

�
dû

� �
; ð6:2:4Þ

12 It is assumed that @C=@g exists and C is a convex cost function, so that the decision rule d is not randomized

[Section 5.1 and Section 21.2, p. 961 of Ref. [4]; also 6.3.1.1].
13 Depending on the structure of the cost functions, the solutions of (6.2.2b) are either simultaneous joint solutions

(cf. Section 6.2.2.2) or L separate solutions (Section 6.2.2.3).
14 For convenience û; u0; g�

û
, and so on, are all normalized to be dimensionless and C0 is simply a “cost”; S and gS

may not be normalized, so that C0 has the dimensions of (“cost/waveform”).
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where the various pdfs WJ�L, WJ are defined by the equivalent forms

WJ�L

�
X; û

� � FJ XjS�û�
 �

wL

�
û
� � WJ

�
Xjû�wL

�
û
�
;

; WJ Xð Þû �
ð

Ŵ
WJ�L

�
X; û

�
dû ¼ FJ XjS�û�

 �D E

û
;

WJ Xð Þ0 � FJ XjS ¼ 0ð Þ � FJ Xj0ð ÞS¼0 6¼ FJ XjS 0ð Þð Þ

9
>>>>=

>>>>;

: ð6:2:4aÞ

We note also that the GLR (6.1.6b) may be expressed here alternatively as

L Xð Þ ¼ mWJ Xð Þû=WJ Xð Þ0 ¼ m FJ XjS�û�
 �D E

û

.
FJ Xj0ð Þ; ð6:2:4bÞ

with m ¼ p=q as before. The frequently occurring denominator of (6.2.4), (6.1.6b)

et. seq.,

WJ

�
Xjp;q

� � qWJ Xð Þ0 þ p

ð

Ŵ
WJ�L

�
X;û
�
dû; ð6:2:4cÞ

may be interpreted physically as the pdf of the a priori uncertainty-weighted data.

Equation (6.2.4) can be put into amuchmore compact and revealing formwith the help of

the classical result of (5.1.22) or (21.62) [4]):

g�
p¼1

�
Xjû�

QCF
¼
ð

Ŵ
ûWJ�L

�
X; û

�
dû
.ð

Ŵ
WJ�L

�
X; û

�
dû: ð6:2:5Þ

We see that (6.2.4) can now be written

g�
p�1

���
QCF

¼
ð

Ŵ

ûWJ�LðX; ûÞdû
WJðXÞû

	 pWJ

�
X
�
û

qWJ

�
X
�
0
1þ mWJ

�
X
�
û
=WJ

�
X
�
0

h i ; ð6:2:6Þ

or,

g��û
�
p�1jQCF ¼ L

1þ L
g��û

�
p¼1jQCF; ð6:2:7Þ

where once more L is the GLR (6.1.6b). (Equation (6.2.7) was originally obtained by

Middleton and Esposito [1] in 1968.)

An alternative representation of g�
p¼1jQCF, (6.2.5), for estimating the û‘

� �
; ‘ ¼ 1;. . . ; L;

of parameters of S uð Þ from the complete set u ¼ �û; u0�, is given by

g�
p¼1

�
ûjX�

QCF
¼
ð

Ŵ
ûwL

�
û
�
e
‘ 21ð Þ Xjûð Þ

QCFdû; ð6:2:8Þ

with15

‘ 21ð Þ�Xjû�
QCF

� log FJ

�
XjS�û; u0�

D �
iu0 � log FJ XjS�û�

 �D E

u
; ð6:2:8aÞ

15 Of course, if the u0 are deterministic, that is, are a priori known, the pdf wL0 u
0ð Þ ¼ d u0 � uð Þ ¼ Pkd u0k � uokð Þ,

with a consequent simplification of [(6.2.8a) and (6.2.8b)].
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where specifically

FJh iu0 ¼
ð

W0
FJ

�
XjS�û; u0�ÞwL0 u

0ð Þdu0 � WJ

�
Xjû�; cf:ð6:2:4aÞ: ð6:2:8bÞ

Our result (6.2.7) applies as well for estimators of waveform S on replacing û by S in

(6.2.5a) for the components of g�
p�1jQCF, namely,

g�
p¼1 SjXð ÞQCF ¼

ð

W
SWJ�J X;Sð ÞdS

ð

W
WJ�J X;Sð ÞdS;

�

withWJ�J X;Sð Þ ¼ FJ XjSð ÞwJ Sð Þ

9
=

;
; ð6:2:9Þ

where specifically the GLR (6.2.4b) becomes directly

L Xð Þ ¼ mWJ Xð ÞS=WJ Xð Þ0 ¼ m FJ XjSð Þh iS=FJ Xj0ð Þ: ð6:2:9aÞ

Equation (6.2.7) shows that to obtain the Bayes or optimum estimate under a QCF, of the

general parameters û when the signal, S
�
û; u0

�
, is not known to be surely present, for

example, p < 1, we must first determine the “classical”
�
p ¼ 1

�
Bayes estimate, (6.2.5a) or

(6.2.8), and weight it with a scalar factor that is a simple function of what a binary on–off

Bayes detector produces for the same input data X, just before the detector’s decision d1,
“yes” or d0, “no.” The schema of this estimation strategy, along with the accompanying

detection process, is shown in Fig. 6.4. Observe that whenm!1 (i.e., p! 1)we obtain the

expected classical result, g�
p¼1, and that when m! 0 (i.e., p! 0) we have the expected null

estimator g�
p¼0 ¼ 0, since only noise is a priori known to be present at all times.

6.2.1.2 The Bayes Risk, with QCF The estimator g�
p�1jQCF, (6.2.7), is a minimummean

square estimator, which minimizes the average risk RE

�
s; d

�
, [(6.2.1a) and (6.2.1b)]. The

resultant Bayes risk is accordingly given by

R�
E

�
s; d�

�
p�1jQCF ¼ C0 g�

p�1jQCF � û
���

���
D E2

H
; ð6:2:10Þ

where C0

�
>0
�
is an appropriate cost factor,16 and where now R�

E has the expanded form

R�
E

�
s; d�

�
p�1jQCF ¼ C0ÊH g�

p�1jQCF� û
���

���
2

¼ C0ÊH g� 	 g� � 2û 	 g þ û 	 û
n o

p�1jQCF
;

ð6:2:10aÞ

(Likelihood ratio) 

γ p=1

Λ

X Λ/(1+ Λ)

QCF γ p<1QCF
**

FIGURE 6.4 No-coupling case: Bayes estimation with QCF of parameters û, or waveform S, when

p � 1.

16 See footnote, Eq. (6.2.3).

318 JOINT DETECTION AND ESTIMATION, p(H1) � 1: I. FOUNDATIONS



in which the averaging (or “expectation”) operator ÊH is now explicitly

ÊH ¼ h iH ¼ qh iH0: X;S¼0 þ ph iH0: X;S
: ð6:2:11Þ

In more detail, we can write (6.2.11), with the help of (6.1.4), (6.1.4a), as

ÊH ¼
ð

G
dX

ð

Ŵ
FJ

�
XjS�û��sL

�
û
�� �

X;û
dû

¼
ð

G
dX

ð

Ŵ
FJ

�
XjS�û�� qd

�
û� 0

�jS¼0 þ pwL

�
û
�h i� �

X ; û
dû

9
>>=

>>;
; ð6:2:11aÞ

where the component averages are

h iH0
�
ð

G
FJ

�
Xj0�

S¼0

� �
X
dX;

h iH1
�
ð

G
dX

ð

W
FJ

�
XjS�û��wL

�
û
�� �

X;û
dû:

ð6:2:11bÞ

In the case of waveform estimation (6.2.10a) becomes

R�
E

�
s; d�

�
p�1

��QCF ¼ C0ÊH S� 	S� � 2S 	S� þ S 	Sf gp�1: QCF; ð6:2:12Þ

and the expectation operator (6.2.11a) is correspondingly

ÊH jS ¼
ð

G
dX

ð

Ŵ
FJ

�
XjS� qd

�
S� 0

�jS¼0 þ pwJ

�
S
�� �� �

X;S
dS: ð6:2:12aÞ

Amajor task here, of course, is the evaluation of the estimators (6.2.7) and the associated

Bayes risk (6.2.10), (6.2.12). This is usually not achievable in explicit analytic form,

although some special cases of interest can be carried out, as discussed in Section 6.4.

Practicable analytic results are generally obtainable only in the threshold or weak-signal

regimes. However, numerical results in specific cases are always achievable in principle, by

computational methods, once the governing probability distributions (pdfs) have been

specified.

6.2.2 Simple Cost Functions: UMLE and Bayes Risk

As we have already seen in Section 5.2.2 earlier, “simple” cost functions are particularly

important in the classical theory of RE

�
s; d

�
described in Chapter 5, since they lead to

several forms of unconditional maximum (i.e., Bayes) likelihood estimators. There are

two main types of SCF: the “nonstrict” simple cost function for the parameters REu

�
s; d

�
,

namely,

SCF1 C
�
û; g
�
1
� C0

XL

‘¼1

A‘ � d
�
g‘ � û‘

�� �
; g! gSCF1

; ð6:2:13aÞ
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and the “strict” form of simple cost function

SCF2

C
�
û; g
�
2
� C0 A‘ � d

�
g � û

�n o

¼ C0 AL � P
L

‘¼1
d
�
g‘ � û‘

�
� �; g! gSCF2

: ð6:2:13bÞ

Although the former SCF1 (6.2.13a) is less strict and does not impose so severe a penalty as

can the strict formSCF2, (6.2.13b),we shall begin our extension of the classical theory here

using the latter. We do this since the analysis is somewhat more involved, and can in turn

bemore easily specialized to the simpler cost function (6.2.13a). [Again, unless otherwise

indicated, we require g and û to be suitably normalized, so that the d-functions and AL are

dimensionless.]

6.2.2.1 Bayes Risk (SCF) Equation (6.2.13b) is now applied to (6.2.1), where we have

averaged over decision space D, in (6.1.3b) noting that now that this average becomes

d
�
g � g�

u

�
d
�
g � û

�D E
D: g ¼ d

�
g�
u

�
X
�� û

�
, cf. (6.2.1b). This yields a Bayes risk of the

form

C
�
û; g
�
2

D E

Ŵ;G;D
¼ RE

�
s; d�

��
SCF2

¼ C0 	 AL � d
�
g�
u

�
X
�� û

�D E

H

n o
; ð6:2:14Þ

where now h iH
� � ÊH

�
is given by (6.2.11) and [(6.2.11a) and (6.2.11b)] or (6.2.12a). The

Bayes risk for p � 1 then becomes specifically

R�
E

�
s; d�

�
SCF2
p�1

¼ C0 	 AL � q d
�
g�
SCF2

� 0
�D E

H0: X
þ p d

�
g�
SCF2

� û
�D E

H0: X;û

� �� �
;

ð6:2:14aÞ
which may be expressed in still more detail as

R�
E

�
s; d�

�
SCF2
p�1

¼ C0 	 AL �
ð

G

qFJ

�
Xj0�

S¼0
d
�
g�
p�1

�
X
�� 0

�

þ p

ð

Ŵ
FJ

�
Xjû�wL

�
û
�
d
�
g�
p�1

�
X
�� û

�
dû

2

64

3

75dX

8
><

>:

9
>=

>;

ð6:2:15aÞ

¼ C0 	 AL �
ð

G

qFJ

�
Xj0�

S¼0
d
�
g�
p�1

�
X
�� 0

�

þpFJ

�
Xjg�

p�1

�
X
��
wL

�
g�
p�1

�
X
��

" #

dX

( )

; ð6:2:15bÞ

which reduces, as required (see Section 5.2 or Eq. (21.85) of Ref. [4]) when q ¼ 0
�
p ¼ 1

�
.

Equations (6.2.14), [(6.2.15a) and (6.2.15b)] can be formally evaluated by using [(6.2.4a)

and (6.2.4b)] as needed, with [(6.2.13a) and (6.2.13b), by employing the integral represen-

tation of the d-functions:

d
�
g�
p�1 � û

� ¼
ð
	 	 	
1

�1

ð
exp i

X
j‘g

�
p�1

�
X
�� i

X
h‘û‘

h i
dj dh=

�
2p
�2L

: ð6:2:16Þ

320 JOINT DETECTION AND ESTIMATION, p(H1) � 1: I. FOUNDATIONS



Averaging overX 2 G and û 2 Ŵ, using [(6.2.4a) and (6.2.4b)] in [(6.2.15a) and (6.2.15b)],

we see at once that the
�
j;h
�
-integral of d is simply the characteristic function (c.f.)

FL�L

�
ij;�ih

�
g�
u
;û
¼
ð

Ŵ
dû

ð

G
dXWJ�L

�
X;û
�
ei
P

‘ðj‘g�
p�1

Xð Þ�h‘û‘Þ; ð6:2:17Þ

so that

d g�
p�1 � û

 �D E

H1

¼
ð
	 	 	
1

�1

ð
FL�L ij;�ihð Þdj dh= 2pð Þ2L

¼ wL�L g�
p�1; û

 �

g�
p�1

;ûð Þ¼0
¼ wL�L 0; 0ð Þ:

ð6:2:18Þ

This is just the joint pdf of g�
p�1; û at 0; 0ð Þ, sketched schematically in Fig. 6.5 for L ¼ 1.

Since
�
g�; û

�
are dimensionless, cf. remarks following (6.2.13b) above,wL�L is dimension-

less, as required. Similarly, we obtain for the first term of [(6.2.15a) and (6.2.15b)]

d g�
p�1 � 0

 �D E

H0

¼
ð
	 	 	
1

�1

ð
FL ijð Þdj= 2pð ÞL ¼ wL g�

p�1

 �

g�
p�1

¼0ð Þ ¼ wL 0ð Þg�
p�1
:

ð6:2:19Þ
Accordingly,wecannowwrite for thedesiredBayes risk for the “strict” cost function SCF2ð Þ
(6.2.13b),

R�
E s; d�ð Þ SCF2

p � 1

¼ C0 	 AL � qwL 0ð Þg�
p�1

þ pwL�L 0; 0ð Þg�
p�1

;û

h i� �
: ð6:2:20Þ

FIGURE 6.5 Schematic illustration of w1�1 g�; û
�� ��

, showing w�
1�1 > w1�1

� �
0;0
.
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Evaluation of (6.2.20) depends on our ability to specify the estimators g�
p�1 and then to

obtain wL and wL�L explicitly. This is generally a difficult task. A less difficult and usually

tractable problem is offered in threshold operation.

6.2.2.2 Bayes Estimators g�
p�1jSCF To obtain g�

p�1jSCF, which minimizes the average

risk, we must maximize the integrand of
Ð
Gð ÞdX in (6.2.15b). This is equivalent to the

condition17

max
g! g� qWJ�L

�
X; gp�1jS ¼ 0

�
û¼0

n o
þ pFJ XjS�gp�1

� �
wL

�
gp�1

�
û
; ð6:2:21Þ

where explicitly from (6.2.15b)

WJ�L

�
X; gp�1jS ¼ 0

�
û¼0

� FJ

�
Xj0� P

L

‘¼1
d
�
gp�1

�
X
�
‘
� 0
�
;wL

�
û
�!wL

�
gp�1

�
û
;

ð6:2:21aÞ

WJ�L

�
X; gp�1

� ¼ FJ

�
XjS�gp�1

��
wL

�
gp�1

�
; ð6:2:21bÞ

in which WJ�L (6.2.21a) here is the probability that the system makes the (estimation)

decisions gp�1 when S ¼ 0 and therefore û ¼ 0 and where wL

�
gp�1

�
is the pdf of û with û

replaced by the estimators gp�1. BothWJ�L and wL are, of course, functions of the received

dataX. From (6.2.21) it is at once evident that unless the first term vanishes, g�
p�1 is not the

classical UMLE of Sections 5.1.2 and 5.2.1. However, (6.2.21) is a generalized form of

maximum likelihood, wherein both terms of (6.2.21) taken together can be considered as

an extension of the classical form for g�
p¼1. Here the operation max

�
g! g�� requires that

this likelihood function be maximized for all possible choices of g. Any monotonic

function G of the expression in brackets ½ � in [(6.2.15a) and (6.2.15b)] may be chosen,

for example,

@

@g
Gf g

� �

g¼g�
¼ 0 ð6:2:22Þ

in the usual way, where the choice of G is a matter of analytic convenience. In the present

case
�
p < 1

�
, G
�
y
� ¼ y appears to be the simplest choice, whereas for the classical

situation
�
p ¼ 1

�
, G
�
y
� ¼ log y is usually selected, cf. Section 5.1.2. Accordingly, even

when p < 1 and amplitude or waveform estimation is carried out, the SCF once again

leads to a maximum likelihood interpretation of the resulting Bayes estimators (with the

Hessian ofG,H
�
G
�
< 0 now, cf. remarks after (6.2.2b). Thus, the maximizing conditions

determining the L-component vector g�
p�1jSCF2 is now from (6.2.21) the set of L equations:

SCF2: q
@WJ�L

�
X;gPjS ¼ 0

�

@gP

þ p
@WJ�L

�
X; gP

�

@gP

� �

gP¼gp�1 !g�
p�1

¼ 0; gp�1 ¼ gp�1

�
X
�

P � S or û:

ð6:2:23aÞ

17 See the discussion in the paragraph following Eq. (6.1.4a). Note that the integrations over X should be deleted

from the original derivation in Eqs. (5.15)–(5.17) of Ref. [1].
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These L-extremal equations of (6.2.23a) can be alternatively written (for gS or gû):

@

@g
d
�
g � 0

�þ @L̂L

@g

" #

g! g�
p�1

¼ 0: ð6:2:23bÞ

Note that in Eqs. [(6.2.23a) and (6.2.23b)] a joint optimization of the g1;. . . ; gL components

of g is indicated, requiring the simultaneous solution for the optimum estimators g�
1;. . . ; g

�
L.

This is, of course, the consequence of the choice of the “strict” form of the simple cost

function SCF2, (6.2.13b). Here the likelihood ratio form L̂L is specifically

L̂L

�
Xjgp¼1

� � mFJ

�
Xjgp�1

�
wL

�
gp�1

�
û
=FJ

�
XjS ¼ 0

� � L: ð6:2:23cÞ

(Note that L̂L 6¼ L, (6.2.4b), where L is the GLR for binary (on–off) detection. L̂L is a

“likelihood function” for estimation here, which only under special circumstances

quantitatively equals L (6.1.6b), vide Chapter 5).

To obtain the structure of theL-component vector estimatorg�
p�1, let us begin by setting

18

g�
p�1jH0

¼ aQ��X
�
; g�

p�1jH1
¼ bg�

p¼1

�
X
�
;
�
a; b � 0

�
; ð6:2:24Þ

and apply the expectation operator ÊH, [(6.2.11a) and (6.2.11b)] to (6.2.24) to get directly

�
g�
p�1

�
H
¼ q
�
aQ��

H0
þ p
�
bg�

p�1

�
; pþ q ¼ 1;

�
1 � p; q � 0

�
: ð6:2:25Þ

Next, incorporating the condition that g�
p�1 be unbiased under

� �
H
, or unconditionally

unbiased, for example,
�
g�
p�1

�
H
¼ p
�
û
�
; ð6:2:26Þ

cf. the discussion in Section 6.3.4 ff, we have (on absorbing a into Q�):

q
�
Q��

H0
þ �b� 1

�
p
�
g�
p¼1

� ¼ 0; ð6:2:27Þ

since
�
g�
p¼1

�
H1

¼ �û�, cf. Eq. (6.2.26)). When
�
p ¼ 0; q ¼ 1

�
, it follows that

q
�
Q��

H0
¼ �Q��

H0
¼ 0; q ¼ 1; ð6:2:28aÞ

and

; b ¼ 1;
�
0 � p � 1

�
; with ;

�
g�
p�1

�
H
¼ p
�
g�
p¼1

�
H1

¼ p
�
û
�
: ð6:2:28bÞ

Consequently, (6.2.25), (6.2.28b) give

g�
p�1 ¼ qQ� þ pg�

p¼1; or g
�
p�1 ¼ pg�

p¼1jH1

¼ qQ�jH0

)

; ð6:2:29Þ

18 Estimation is carried out on the whole data space G, for H0 and H1 each, it being understood that the estimate

is rejected, or not used, if the detector decides H0;X 2 G. See the discussion following Eqs. (6.1.6a) and (6.1.6b).
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for the structure of the optimum estimator p � 1. We now note from (6.2.28a) that

Q�h iH0
¼
ð

G
Q
�
X
��
FJ

�
Xj0�

S¼0
dX ¼ 0; ð6:2:30Þ

and sinceFJ > 0 (for at least someX 2 G), it follows thatQ� ¼ 0, allX 2 G, orQ�,X 2 G, is
both positive and negative in such a way that Q�h iH0

is zero. In either case Q� is unbiased
Q�h iH0

¼ q
�
û
� ¼ 0, underH0 from (6.2.30) or equally from the fact that

�
g�
p�1

�
H
,
�
g�
p¼1

�
H1

are both unbiased, cf. (6.2.28b) and therefore
�
Q��

H0
must be also. In fact, it is at once

evident that Q� vanishes, all X 2 G: H0, by observing from [(6.2.23a) and (6.2.23b)] that

here d0
�
g � 0

�! d0
�
Q� � 0

� ¼ 0.19

Accordingly, Eq. (6.2.29) allows us to write

g�
p�1jSCF2 ¼ pg�

p¼1jSCF2 ¼ g�
p¼1 � qg�

p¼1

h i

SCF2
; q ¼ 1� p ; ð6:2:31Þ

where �qg�
p¼1

�
X
�
SCF2

is the sample bias vis-à-vis H1, for example, and the (average)

bias ¼ �q
�
g�
p¼1

� ¼ �q
�
û
�
. A nonzero bias (vis-à-vis H1) is the result of assuming that

X 2 G: H1, that is, the received data contain a signal, under estimation, whereas actually

(withaprioriprobabilityq > 0ð Þ) thedata donot contain a signal, cf. remarks inSection 6.3.4

ff. The presence of the bias, of course, affects the Bayes risk, through qwL 0ð Þg�
p�1

in (6.2.20),

with g�
p�1jSCF now given by (6.2.31). The actual structure of g�

p�1jSCF2 is obtained from

the “classical” form g�
p¼1jSCF2 [cf. Section 6.4.1 ff.], which is repeated here, namely,

p ¼ 1:
@

@g
WJ�L X; gð Þ

� �

g! g�
p¼1

��
SCF2

¼ 0; cf: ð6:2:23bÞ: ð6:2:32Þ

An illustrative analytic example for g�
p�1jSCF2, along with the associated Bayes risk, is

included in Section 6.4.2 ff.

6.2.2.3 Nonstrict “Simple” Cost Function SCF1: Bayes Risk and Estimators We

return now to the cost function (6.2.13a), which is the less strict form of simple cost

function. This is more commonly employed in practice because it does not excessively

penalize the user by yielding too high an average risk in the minimization process (see the

comments following Eq. (5.1.37)). The Bayes risk (6.2.15b) is now modified to

R�
E s; d�ð Þ SCF1

p � 1

¼ C0

XL

‘¼1

AL �
ð

G

qFJ Xj0ð ÞS¼0d gp�1 Xð Þ�‘ � 0
� �

þ p

ð

Ŵ
WJ Xjû‘
� �

w1 û‘
� �

d gp�1 Xð Þ‘ � û‘

 �
dû‘

2

64

3

75dX

8
>>><

>>>:

9
>>>=

>>>;

:

ð6:2:33Þ

19 We assume throughout that d y� að Þ is symmetric positive about a, that is, is not one-sided. Thus d0 y� að Þ is
antisymmetric and passes through zero at y ¼ a; similar remarks apply to d y� að Þ in (6.2.13) et seq.
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The extreme (maximizing) condition determining g�
p�1j‘ is found from (6.2.23b), which is

similarly modified to

@

@g‘

d g‘ � 0ð Þ þ @L̂1 X; g‘ð Þ
@g‘

" #

g‘ ! g�
p
1

j‘
¼ 0; ‘ ¼ 1;. . . ; L; ð6:2:34Þ

where

L̂1 Xjgp�1;‘

� � � mWJ Xjgp�1;‘

� �
w1 gp�1;‘

� �
=FJ XjS ¼ 0ð Þ ð6:2:34aÞ

[cf. (6.2.23b) and (6.2.23c)] withWJw1 ¼ WJ�1 X; p � 1ð Þ. Finally, g�
p�1;‘jSCF1 is obtained

by the procedure of (6.2.24)–(6.2.31), now for each component ‘ ¼ 1;. . . ; L separately, as a
consequence of our choice of the “nonstrict” form of the simple cost function, SCF1,

(6.2.13a). We now have the scalar form of (6.2.31), which is the solution of (6.2.34),

namely,20

g�
p�1

 �

‘
jSCF1 ¼ p 	 g�

p¼1

 �

‘
jSCF1 ; ‘ ¼ 1;. . . ; L: ð6:2:35Þ

The evaluation of (6.2.33) parallels Eqs. (6.2.16)–(6.2.19) above: the resulting forms are

d g�
p�1;‘ � û‘

 �D E

H1

¼ w�
1�1 g�

‘ ; û‘
� ����

g�
‘
¼û‘¼0

� w�
1�1 0; 0ð Þ g�

‘
;û‘ð Þ;

d g�
p�1;‘ � 0

 �D E

H0

¼ w�
1 g�ð Þg�

‘
¼0 ¼ w�

1 0ð Þg�
‘
;

ð6:2:36Þ

with the Bayes risk (6.2.33) now represented compactly here by

R�
E s; d�ð Þ SCF1

p � 1

¼ C0

XL

‘¼1

AL � qw�
1 0ð Þg�

‘
þ pw�

1�1 0; 0ð Þg�
k
;û‘

h i

p�1

� �
: ð6:2:37Þ

Of course, the quantitative evaluation of R�
E, (6.2.37), still requires that we obtain the joint

pdfs of g�
‘ and û‘ from the corresponding versions of (6.2.16)–(6.2.20) above. The task is

easierwith theSCF1, (6.2.13a), than for the stricter cost functionSCF2, (6.2.13b), but can still

be formidable, particularly for non-Gaussian environments.

PROBLEMS

P6.1 Carry out the evaluations of d g�
p�1 � û

 �D E

H0;H1

, outlined in Eqs. (6.2.16)–(6.2.20).

P6.2 Show that the Hessian H Gð Þjg� < 0, G ¼ qWJ�L X;gPjS ¼ 0ð Þ þ pWJ�L X; gPð Þ,
P ¼ S or uð Þ and discuss the conditions on G that ensure that H Gð Þjg� is negative.

P6.3 Carry out the evaluation in the case of the nonstrict cost function of Bayes risk

R�
EjSCF1 , obtaining Eq. (6.2.36) in the text.

20 Compare (6.2.34), (6.2.34a) with Eq. (6.2.23b).
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6.3 SIMULTANEOUS JOINT DETECTION AND ESTIMATION:

GENERAL THEORY21

We are now ready to extend the simpler, no-coupling analysis of Section 6.2 above to the

general formulation of coupled detection (D) and estimation (E), still on the fixed

observation interval (0,T). In this situation, we do not assume that the average risks for

D and E necessarily can be separately minimized.

We begin with the general model of the joint detection and estimation situation to be

considered here, shown in Fig. 6.6. As before, we assume two possible, mutually exclusive

hypothesesH0;1 for the received data in the interval (0,T): either (1)H0: the signal is absent,

and therefore only noise is present or (2) H1: the signal is present together with the noise

process. Again, let N be the noise process and let the signal be described by the functional

form S ¼ S rm; tn; uð Þ½ � or S ¼ S tn; uð Þ½ �, cf. after (6.1.3a), where u is a vector representing
the set of parameters which are to be estimated. At the end of the observation interval (0,T)

the receiver is required to make two functionally related decisions: (1) a detection decision,

gi i ¼ 0 or 1ð Þ, as to the presence or absence of the signal and (2) an estimation decision, gu,

as to the value of the (parameter) vector u. As explained in Section 6.1 above, the relation

between the two decisions can be of different types. For example, the two decision

processes may be entirely independent, cf. Fig. 6.2 (but even in this case estimation must be

performed without certainty that the signal is present, that is, p H1ð Þ < 1). Or the decision

rules may couple estimation and detection in such a way that the two operations are

mutually dependent.

6.3.1 The General Case: Strong Coupling

Our first step is to select a reasonable set of cost functions, Ck‘f g, k; ‘ ¼ 0; 1ð Þ, defined as
follows [2].

C00 ¼C1�a ¼ C
0ð Þ
0

h i
: cost of correctly deciding;when

H0 is true; f00 ¼ 0;

C10 guð Þ ¼ Ca ¼ C
0ð Þ
1

 �
þ f10 gu Xð Þ½ �: cost of incorrectly deciding

d1 ¼ H1 and making an estimate;
gu ¼ gu Xð Þ;when H0 is true;

C01 uð Þ ¼ Cb ¼ C
1ð Þ
0

 �
þ f01 S uð Þ½ �: cost of incorrectly deciding d0 ¼ H0;

when in fact H1 is true and u
is the true value of the signal
parameters: Cb � C1; ð6:1:6aÞ;

C11 u; guð Þ ¼ C1�b ¼ C
1ð Þ
1

 �
þ f11 u; gu Xð Þ½ �: cost of correctly deciding d1 ¼ H1

and making an estimate; gu ¼ gu Xð Þ;
whenH1 is true and u is the true value
of the signal parameters:

9
>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>;

ð6:3:1Þ22

21 In this Section and subsequently, unless otherwise indicated, u represents only those parameters that are to be

estimated, for example, the u here are equivalent to the û of Section 6.2.1 above. Any other parameters u0ð Þ are not
explicitly represented, unless they are specifically needed in the analysis.
22 Equation (6.3.1) is equivalent to items (1) and (2), Section 4.2 [1].
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With these general cost functions in hand, we proceed concisely as follows. Again, we let

p ¼ p H1ð Þ be the a priori probability of the state H1 and let q ¼ q H0ð Þ be the a priori

probability of the state H0, with pþ q ¼ 1. Next, define also the following probabilities

and probability density functions (pdfs): d0 H0jXð Þ, probability of choosing H0 if X is the

vector of the observed data; dg gujXð Þ, the pdf for the estimate gu when X is the vector of

the observed data. Then d0, dg are, in effect, decision rules. Clearly, since at least a detection
decision is made, d0 H0jXð Þ þ d1 H1jXð Þ ¼ 1, where d1 H1jXð Þ is the probability of making

the decision that H1 is true. Furthermore, we make the reasonable postulate that

dg gujXð Þdgu ¼ d1 H1jXð Þ ¼ 1� d0 H0jXð Þ; ð6:3:2Þ

that is, an estimate is accepted as an output if and only if, at the same time, the detector

declares that the signal is present. (Note that for the time being, d0,d1,dg maybe randomized

decision rules.)

Next, for notational convenience in developing the general case, let us condense our

earlier definitions [(6.2.4a) and (6.2.4b)], and rewrite them as

F0 Xð Þ � FJ Xj0ð Þ ¼ the unconditional pdf of the dataX underH0: N; ð6:3:3aÞ23

and

F1 Xjuð Þ � FJ XjS uð Þð Þ ¼ the pdf of the dataX underH1: S� N; ð6:3:3bÞ23

andwL uð Þ as before, cf. (6.2.4a), is theaprioripdf of theLparametersuwhenH1 is true.With

these definitions, the average cost per decision [(6.1.3a), (6.1.3b)] for this general coupled

detection and estimation procedure is

RD�E ¼ q

ð

G
d0 H0jXð ÞC00F0 Xð ÞdXþq

ð

D

ð

G
C10 guð Þdg gujXð ÞF0 Xð ÞdXdgu

þ p

ð

W

ð

G
wL uð Þd0 H0jXð ÞC01 uð ÞF1 Xjuð ÞdXdu

þ p

ð

D

ð

W

ð

G
wL uð ÞC11 g0; uð Þdg gujXð ÞF1 Xjuð ÞdXdudgu

ð6:3:4Þ

23 Thus, we have equivalently, with û! u here

F0 Xð Þ ¼ FJ XjS ¼ 0ð Þ ¼ FJ Xj0ð ÞS¼0 ¼ wJ Xð Þ0; and ð6:3:iÞ;

F1 Xjuð Þ ¼ FJ XjS uð Þð Þ ¼ WJ�L X;uð Þ=wL uð Þ; ð6:3:iiÞ:

Receiver
γ = Estimation

γ 1,0 = (γ 0,γ 1)

(D+E)

p(H1)≤1

X
S

N

FIGURE 6.6 The general coupled joint detection and estimation situation, for fixed observation

intervals.
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where G;W;D are respectively the (usual) data, signal (parameter), and decision spaces ([4],

Chapter 18, and Section 6.1 here). Note that from Bayes’ theorem, we can write for the

Fu ujXð Þ ¼ F1 Xjuð ÞwL uð Þ=F1 Xð Þ � wL ujXð Þ; ð6:3:5Þ

with

F1 Xð Þ ¼
ð

W

F1 Xjuð ÞwL uð Þdu; ð6:3:6Þ

where the unconditional pdf of u under H1 is wL uð Þ, with w1 ujXð Þ the conditional or

a posteriori pdf of u, given X.
With the help of (6.3.4)we can alternatively express the average risk in amore convenient

form as

RD�E ¼ q

ð

G
d0 H0jXð ÞC00F0 Xð ÞdXþ p

ð

G

ð

W
d0 H0jXð ÞC01 uð ÞF1 Xjuð ÞwL uð ÞdXdu

þ q

ð

D

ð

G
dg gujXð Þ qC10 guð ÞF0 Xð Þ þ pF1 Xð Þ

ð

W
C11 g0; uð ÞF0 ujXð Þdu

� �
dgudX :

ð6:3:7Þ

Minimization of this average risk yields the two simultaneous equations determining the

jointly optimumdecision rules d��0 (ord��1 , by (6.3.2)), andd��g , respectively, for detection and

estimation, namely,

dg ! d��g dRD�E½ � ¼ 0; so that d
dg ! d��g

RD�E þ l0

ð
dg gujXð Þdgu

� �
¼ 0; ð6:3:8Þ

where we must include the logical constraint (6.3.2); here l0 is a Lagrange multiplier.

Although the simultaneous solution of (6.3.8) yields the desired d�0, d
��
g , an equivalent and

more revealing approach is chosen inwhat follows,which employs a “series” or step-by-step

optimization. For this we need first to establish the result that the optimum estimation rule

d�g for an arbitrarily selected detection decision ruled0 ¼ 1� d1ð Þ is not randomized, and can

therefore be written

d�g gujXð Þ ¼ d1 H1jXð Þd gu � g�
u

� �
; ð6:3:9Þ

where d a� bð Þ is the usual Dirac delta function and g�
u is the optimum estimator (a relative

optimum, because d1 is a specified decision once d0 is).

6.3.1.1 Nonrandomized Decision Rules: d�g , d
��
g Let us now show that the optimum

decision rules (d�g,d
��
g ) for estimation are nonrandomized here, that is, that d�g, d

��
g obey

Eq. (6.3.9) above.We start with (6.3.8) and use that portion of (6.3.7) containing dg, namely

the third term. For notational simplicity, let us write dg gjXð Þ ¼ g gjXð Þ ¼ g. We next fix d0
(and therefore d1) for all X. Then, (6.3.8) becomes, compactly

dg

ð

D
dg

ð

G
g gjXð ÞH g;Xð ÞdXþ l0

ð

D
gdg

� �
¼ 0: ð6:3:10Þ
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Carrying out the variation and noting that dg ¼ @g=@gð Þdg since g is a function of g,
we obtain

ð

D

dg dg

ð

G

@

@g
gHð ÞdXþ l0

@g

@g

2

4

3

5 ¼ 0; ð6:3:10aÞ

and for arbitrary dg 6¼ 0ð Þ the extremal relation, now on g, becomes

ð

G

@

@g
gHð ÞdXþ l0

@g

@g

2

4

3

5

g¼g�

¼ 0: ð6:3:10bÞ

This determines a g�, which is taken to be that value (there may be others) which absolutely

minimizes the third term of (6.3.7).

Next, we note from the postulate (6.3.8), for example, the constraint in (6.3.8), that

ð

D

gdg ¼ d1 H1jXð Þ ¼ constant; here 0 � d1 � 1ð Þ: ð6:3:11Þ

We have

; dg

ð

D

gdg ¼ 0 or

ð
@g

@g
dgdg ¼ 0; ð6:3:12Þ

and since dg 6¼ 0, we have for any g, and particularly for g�, as determined by (6.3.10), the

relation

dg

dg

� �

g¼g�
¼ 0: ð6:3:13Þ

But since there is no constraint on the magnitude of the estimators g�ð Þ, that is, the domain

of each component g�
‘ is �1 < g�

‘ < þ1, Eq. (6.3.13) in conjunction with (6.3.11)

implies that

g ¼ d1 H1jXð Þd g � g�ð Þ ¼ dg�; ð6:3:14Þ

which shows that the estimator rule is nonrandomized. Incidentally, applying (6.3.13) to

(6.3.10b) gives at once the determining relation for g� [see Eq. (6.3.8)]:

dH

dg

� �

g¼g�¼g��
¼ 0: ð6:3:15Þ

Here g� ¼ g��, since the decision rule gg for estimation is always proportional to a constant

(since d1 is specified)� d g � g�ð Þ, namely, gg is functionally independent of the detection

decision rules d0;1.

6.3.1.2 An Alternative Approach to Eq. (6.3.8) Returning now to our alternative

approach to the direct evaluation of Eq. (6.3.8), having established that for estimation,
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decision rules d�g, d
��
g are nonrandomized, we see that if (6.3.9) is inserted in (6.3.7), the

average risk (now Bayes risk with respect to estimation) can be rewritten as

RD�E ¼ q

ð

G
d0 H0jXð ÞC00F0 Xð ÞdXþq

ð

G
d1 H1jXð ÞC10 g�

u

� �
F0 Xð ÞdX

þ p

ð

W

ð

G
d0 H0jXð ÞwL uð ÞC01 uð ÞF1 Xjuð ÞdX du

þ p

ð

W

ð

G
d1 H1jXð ÞwL uð ÞC11 u; g�

u

� �
F1 Xjuð ÞdX du :

ð6:3:16Þ

Wewant further to minimize R�
D�E, by choosing the optimum detection rules for a fixed

g��
u . As in the standard treatment [cf. [4], Section 19.1.2], we observe from (6.3.16) that the

optimum detection rules are also not randomized and are

Choose d��1 H1jXð Þ ¼ 1; if Lg � 1;

Choose d��0 H0jXð Þ ¼ 1; if Lg < 1;
ð6:3:17Þ

with d��1 þ d��0 ¼ 1 (6.2.13). Here Lg is now a modified likelihood ratio (functional) having

the form, from (6.3.2):

Lg ¼ m

Ð
wL uð Þ C01 uð Þ � C11 u; g��

u

� �� �
F1 Xjuð Þdu

C10 g��
u

� �� C00

� �
F1 Xð Þ ð6:3:18Þ

withm ¼ p=q as before, (6.1.6b). It is clear from (6.3.9) here that now the optimumestimator

g��
u corresponds to the optimum decision rule d��1 for detection, that is,

d��g gujXð Þ ¼ d��1 H1jXð Þd gu � g��
u

� �
: ð6:3:19Þ

The form of g��
u can be derived from solving (6.3.8). This corresponds to the minimization

equation

gu ! g��
u

� �
d qC10 guð ÞF0 Xð Þ þ pF1 Xð Þ

ð

W

C11 u; guð ÞFu ujXð Þdu
8
<

:

9
=

;
¼ 0; ð6:3:20Þ

cf. Eq. (6.3.15) above, which is the generalization of (6.2.21) and (6.2.23) to the strong

coupling cases. It is important tonote again that the structure of the estimator doesnot depend

on the detection rule (except for the relation (6.3.9)), whereas the value of the optimum

estimate g��
u must be employed in the evaluation of the GLR, Lg, (6.3.18). Thus, in these

strongly coupled cases it is the operation of estimation (E) which must logically be

performed first, before detection (D).24 Of course, if the detector’s decision is that H0 is

the true hypothesis state, then the estimate is not accepted (butmaybe stored for “tracking” in

the sequential decision situations, cf. Chapter 7).

24 For an earlier, alternative development of the strong coupling situation, see Section 4.2 of Ref. [1], also Problem

6.11 ff.
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Finally, a number of interesting observations can be made regarding the processing

structures (6.3.18) and (6.3.20):

(1) Together these structures comprise the receiver of Fig. 6.6. The output of this

receiver is either the decisions that a signal is present, along with an estimate of the

parameters u, or the decision that only noise is present. From (6.3.18), we can expect

structures �Lg

� �
much more complex than those required for detection alone,

without accompanying estimation.

(2) We see also when C01, C10, and C11, (6.3.1) are constants, that the extended GLR

(6.3.18), as expected, reduces to the familiar GLR (6.1.6b) of independent Bayes

detectors.

Whatever the choice of cost functions, the structure of the detector and estimator are

embodied in their respective decision rules.

6.3.2 Special Cases I: Bayes Detection and Estimation With Weak Coupling

If we set f10 ¼ C0
10, a constant, and chose f11 ¼ 0 in (6.3.1), so that these cost functions

reduce to

C00 ¼ C1�a;C11 ¼ C1�b;C10 ¼ Ca þ C0
10;C01 ¼ Cb þ f01 S uð Þ½ �; ð6:3:21aÞ

we have at once the weak-coupling cases, so defined by the fact that the coupling of

the detector and estimator now is independent of the estimator’s structure. Accordingly, the

average risks RD and RE associated with detection and estimation can be minimized

separately, as is done in Section 6.2 above, cf. Eqs. (6.1.5) et seq. It is thus easily shown

(Problem 6.5) that the decision rule for detection is nonrandomized and is specifically a

modified form of a GLR test, where a likelihood ratio functional L0
g is compared with a

threshold of unity:

L0
g Xð Þ ¼ K 0Lþ

ð

W

f01 S uð Þ½ �L̂0
Xjuð ÞwL uð Þdu= Ca � C1�a þ C0

10

� � � 1: decideH1

< 1: decideH0

� �
:

ð6:3:22Þ
Here again, like L̂L (6.2.23c), L̂0 Xjuð Þ is a likelihood function ( 6¼ L, (6.1.6b)), defined
now by

L̂0 Xjuð Þ � mFJ XjS uð Þð Þ=FJ Xj0ð Þ;m � p=q: ð6:3:22aÞ
The scale factor K 0 is the (positive) cost ratio

K 0 � Cb � C1�b

� �
= Ca � C1�a þ C0

10

� �
: ð6:3:22bÞ

As the results of Problem 6.6 show, the Bayes risk for detection using L0
g as test statistic in

these weakly coupled cases can be expressed in several forms:

R�
D-weak ¼ qC1�a þ pR01 þ q Ca � C1�a þ C0

10

� � ð

G

F0 Xð Þ L0
g Xð Þ � 1

� �
d�1 H1 Xj ÞdX;ð

ð6:3:23aÞ
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or as

R�
D-weak ¼ qC1�a þ pR10 þ q Ca � C1�a þ C0

10

� �þ
ð

G

F0 Xð Þ 1� L0
g Xð Þ� �

d�0 H0 Xj ÞdX;ð

ð6:3:23bÞ
where

R01�

ð

G

ð

W

Cb þ f01 S uð Þð Þ� �
wL uð ÞF1 Xjuð ÞdXdu ; R10 �

ð

G

F0 Xð Þ L0
g Xð Þ � 1

� �
dX:

ð6:3:23cÞ
Clearly, if f01 ¼ C0

01, a constant, (6.3.22) reduces to the usual form of a generalized

likelihood ratio, with the modified threshold

K 00 ¼ Ca � C1�a þ C0
10

� �
= Cb � C1�b þ C0

01

� �
; ð6:3:24Þ

in which C0
10 and C0

01 must be chosen such that “failure” � Ca þ C0
10;Cb þ C0

01

� �
>

“success” � C1�a;C1�b

� �
, respectively. This is the simplest joint detection and estimation

situation and the one considered in Section 6.2 explicitly. Note that now with the

appropriately weak or no coupling here [C0
01;C

0
10 constant or zero, cf. (6.3.8)], then both

operations (DandE) can be performed simultaneously, or in any order, cf.Figs. 6.2 and 6.4.

This is not true in the general case described in Section 6.3.1, cf. remarks after Eq. (6.3.20).

Proceeding next to the estimation process, we see that because the detection process is

now independent of estimator structure, we can use estimator-dependent cost functions

separately in the estimation process. For the latter, we accordingly employ C0
10 guð Þ and

C0
11 u; guð Þ ¼ C1�b þ f11 u; gu Xð Þ½ �, the respective costs of estimating the signal when it is

not or is present, cf. (6.3.1). The structure of the optimumestimator g�
p�1 follows in the usual

way from minimizing the average risk R10, cf. (6.3.5), where s uð Þ [(6.1.4a) and (6.1.4b)] is
again applied in (6.1.3). We write

RE ¼ q

ð

G0

FJ Xj0ð Þ C10 guð Þ½ �dXþ p

ð

G0

ð

W

FJ XjSð ÞC11 u; gu Xð Þ½ �wL uð Þdu dX; ð6:3:25Þ

whereG0 « G is the data region specifiedby the decision rule of the detector’s operation,when
the detector’s decision is H1. The first integral represents the average risk due to a (Bayes)

error of the first kind (probability qa) in the detector and resulting in the estimate of a signal

which is not present. The second integral is the average cost of estimating the signal when

indeed it is present in theobservation interval (with probabilityp 1� bð Þ), vide.Section6.4.3
ff, for example.

Remembering that the cost assignments Ca;C1�b, as well as C1�a;Cb, are constant

costs [(6.1.6a) et seq.], we observe that minimization of (6.3.7) over gu gives us directly

dRE ¼ q

ð

G0

FJ Xj0ð Þ @f10
@g

jg¼g�dX dgu þ p

ð

G0

ð

W

FJ Xjuð ÞwL

@f11
@g

jg¼g�du dX dgu ¼ 0:

ð6:3:26Þ
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The optimum (vector) estimator gu, when it exists, is then the one which satisfies the set of

equations

qFJ Xj0ð Þ @f10
@g

þ p

ð

W

du wL uð ÞFJ Xjuð Þ @f11
@g

2

4

3

5

gu¼g�
p�1

¼ 0: ð6:3:27Þ

We observe that (6.3.27) is similar to the previous result [(6.2.2a) and (6.2.2b)] derived for

the optimum estimator with uncertainty as to the presence of the signal. In fact, (6.3.27) and

(6.2.2b) are identical if we set

f10 guð Þ ¼ C0 gð Þ ¼ C 0; gð Þ ;
f11 u;guð Þ ¼ C u; gð Þ

)

; ð6:3:28Þ

vide (6.2.2b) et seq. Consequently, the results of Section 6.2 above also apply specifically for

Bayes estimation with the QCF and SCF choices, yielding the same estimators and

corresponding Bayes risks R�
E. However, the Bayes risk for detection is modified to

R�
D-weak (6.3.23), because of f01 uð Þ in C01 uð Þ (6.2.22).
We also note that since the detector’s decision rule does not depend on the estimate, the

structureof the optimumestimatorg�
p�1 is not a function of the data domainofG, as is evident

from (6.3.27). Consequently, the structure of the estimator and its associated average risk do

not depend on the form of the “weak” coupling used here in the detection-directed

estimation. One can choose, for instance, to estimate only when the detector has decided

that the signal is present or, instead, to estimate on the whole data space G , rejecting the

estimate if the detector’s decision is H0. In both cases the optimum estimator is given by

(6.3.27) and the associated minimum average risk by (6.3.25) when gu is replaced by g
�
p�1.

The same results apply for waveform (S-) estimation, with obvious changes. If quadratic

cost functions are used, for instance in amplitude estimation, and we set f10 ¼ f11 0;Sð Þ, a
very reasonable choice, we can derive again the result of (6.2.7), that is, also in this case the

optimum estimator has the form (6.2.7) and the interpretation shown in Fig. 6.4.

6.3.3 Special Cases II: Further Discussion of g�
p<1jQCF for Weak or No Coupling

The general structure of the estimator (6.3.27) is of great interest, namely a structure that is

independent of whether or not a detection is actually performed, cf. Eq. (6.3.28) et seq.

However, we shall confine our detailed treatment here specifically to the two interesting

special cases involvingweak or no coupling. These occur specifically when (1)C11 u; guð Þ is
a quadratic cost function, in which it is meaningful to assume that C0 gð Þ �½ �
C10 guð Þ ¼ C11 u; guð Þ and (2) where the UMLE, p < 1, in the weak (or no coupling) case,

is obtained (Section 6.3.2).

The condition C10 ¼ C11 on these QCFs estimators deserves some discussion. We recall

(6.3.1) that C10 guð Þ is the cost of declaring the signal present (and therefore making the

estimate gu) when only noise is present, while C11 u; guð Þ is the cost of a correct detection
decision and of the estimate gu when u is the true value of the parameter. We observe that

the above condition is only reasonable for the so-called “energy” parameters, i.e., for those

parameters u for which S ¼ 0 implies u ¼ 0 and vice versa. These parameters, such as scale

factors, waveform values, or signal duration, are all of paramount importance. On the other
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hand, the above condition is not reasonable for those other parameters (the so-called

“nuisance” parameters in statistical terminology), such as phase or frequency, where

u ¼ 0 does not necessarily imply S ¼ 0.

The solution of (6.3.27) in the uncoupled cases, or equivalently, from (6.2.2) earlier, as

expected is seen to be

Eq: ð6:2:7Þ: g�
p�1jQCF ¼ L

Lþ 1
g�
p¼1jQCF; ð6:3:29Þ

cf. Section 5.1 of Ref. [1], discussed already in Section 6.2.1 and illustrated by the examples

of Section 6.4 ff.

Equation (6.3.29) can also bewritten in a different but equally suggestive form if we note

that the correction factorL= Lþ 1ð Þ is the a posteriori probability that the signal is present.
This can easily be established by observing that

L
Lþ 1

¼ p
Ð
WF1 Xjuð ÞwL uð Þdu

p
Ð
WF1 Xjuð ÞwL uð Þduþ qF0 Xð Þ ¼

pF1 Xð Þ
pF1 Xð Þ þ qF0 Xð Þ : ð6:3:30Þ

Next, according to Bayes’ theorem we can write

pF1 Xð Þ
pF1 Xð Þ þ qF0 Xð Þ ¼ P H1jXð Þ; ð6:3:31Þ

where P H1jXð Þ is the a posteriori probability that the signal is present, given the data X.
Thus, (6.3.29) can be rewritten in the form

g�
p�1

��QCF ¼ P H1jXð Þg�
p¼1

��QCF: ð6:3:32Þ

6.3.3.1 Relation to Sherman’s Theorem [7] For the “classical” cases,where it isapriori

certain that a signal is present p H1ð Þ ¼ 1ð Þ, g�
p¼1jQCF is also known to be optimal for other

useful cases of cost function (with, of course, different resulting Bayes risks), as a

consequence of Sherman’s theorem ([7], and Chapter 21 of Ref. [4]). Accordingly, it is

useful to see whether and under what conditions g�
p�1jQCF (6.3.29) and (6.3.32), p � 1

(obtained under the conditions C10 guð Þ ¼ C11 u; guð Þ ¼ C0jgu � uj2, (6.2.3)) may still be

valid for other classes of cost functions, for instance the class of cost functionswhich are even

in gu � u and monotonic in jgu � uj, when p < 1.

As we shall see below, this extension of (6.3.29) and (6.3.32) unfortunately does not hold

for other than the quadratic cost function. The consequence is that Sherman’s theorem [7]

and Theorem II, p. 974 of Ref. [4], which is so useful in conventional estimation, p ¼ 1ð Þ,
does not generalize to this new situation of estimation under uncertainty.

To show this, let X in the usual fashion be the vector of the received data, u an unknown
parameter to be estimated, gu the corresponding estimator, and C u; guð Þ the chosen cost

function. It is well known that if C u; guð Þ is a QCF, that is, C u; gð Þ ¼ C0ju� guj2, the
optimum estimator g�

ujQCF is the a posteriori mean

g�
u Xð ÞQCF ¼

ð

W
uW1 u Xj Þdu;ð ð6:3:33Þ
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where W1 ujXð Þ is the posterior pdf of u given the data X. Sherman’s theorem states that

if the pdf WL ujXð Þ is unimodal and symmetric about the mode, the estimator (6.3.33) is

still optimum for the class of cost functions C u; guð Þ satisfying the following conditions:
(i) C u;guð Þ is an even function of u� g and (ii) C u; guð Þ is a nondecreasing function of

u; gu. Here, the aim is to prove that ifW1 ujXð Þu is not symmetric, then (6.3.30) and (6.3.32)

do not hold for the general class of cost functions mentioned above. This follows

immediately if we note that in the situation of estimation under uncertainty p < 1ð Þ the
a posteriori pdf W1 u Xj Þð must contain a delta function at zero (and therefore cannot be

symmetric) since a delta function u ¼ 0 is present in the corresponding a priori

distribution.

Now we chose C u; guð Þ to be a cost function satisfying the two conditions mentioned

above, and assume that it posses a Taylor expansion25 around gu. Then we can write

C u; guð Þ ¼
X1

n¼1

a2n u� guð Þ2n: ð6:3:34Þ

For each X the conditional risk RE Xð Þ corresponding to the estimation process is

R Xð ÞE ¼
X1

n¼1

a2n

ð

W

u� guð Þ2n W1 ujXð Þdu: ð6:3:35Þ

The form of the optimum estimator follows from the extremal condition @R Xð Þ=dgu ¼ 0, or

@RE

@gu

¼
X1

n¼1

2n a2n

ð

W

u� guð Þ2n�1
W1 ujXð Þdu ¼ 0: ð6:3:36Þ

Since this relation must be satisfied for any arbitrary set of coefficients a2nf g, it is clear that
(6.3.33) cannot hold in this case, unless the summations in (6.3.34)–(6.3.36) collapse to the

single term n ¼ 1, namely for the QCF.

6.3.3.2 A Limited Generalization There is, however, a less useful generalization of

(6.3.29) [or (6.3.32)] which can be rather easily derived: it is possible to show that if gp¼1

is any (not necessarily optimum, e.g., Bayes) estimator yielding an unbiased estimate of u,
an “energy” parameter under p ¼ 1, then this property of unbiasedness is preserved in a

situation of uncertainty as to the signal’s presence p < 1ð Þ if the vector u is estimated by an

estimator of the form (6.3.29), that is,

gp�1 ¼
L

Lþ 1
gp¼1; ð6:3:37Þ

where gp¼1 is an arbitrary estimator, unbiased under H1.

Proof: We express this unknown, arbitrary estimator, which is designed to keep the

estimate unbiased under certainty p ¼ 1ð Þ as gu;p�1 ¼ H Xð Þgujp¼1, where H Xð Þ is an

25 Other expressions can be employed if a Taylor’s series is not possible, for example, a Fourier series. The proof

remains essentially unchanged.
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unknown function of the dataX, to be determined. Since it is required that this estimator be

unbiased, under H; p < 1, as well, we have

ð

G
H Xð Þgu;p¼1 Xð Þ qF0 Xjuð Þ þ p

ð

W
F1 Xjuð ÞwL uð Þdu

� �
dX � gu;p�1 Xð Þ

D E

H0þH1

; ð6:3:38Þ

where the brackets indicate an averaging operation under the joint hypotheses H ¼
H0 þ H1ð Þ (6.2.11). However, since the u are energy parameters, their expected value under

the hypothesis H0 is zero. Therefore

gu;p�1 Xð Þ
D E

H0þH1

¼ p�u ¼ p
�
gu;p¼1

�
H1
: ð6:3:39Þ

From (6.3.38), (6.3.39), and the expression for L (6.2.4b), we have
ð

G

qF0 Xj0ð Þ Lþ 1ð ÞH Xð Þgu;p¼1 Xð Þ � Lgu;p¼1 Xð Þ
h i

dX ¼ 0: ð6:3:40Þ

Since F0 Xj0ð Þ is a pdf and therefore a non-negative quantity, it follows that

Lþ 1ð ÞH Xð Þ � L ¼ 0; orH Xð Þ ¼ L
Lþ 1

; ð6:3:41Þ

which is our stated result (6.3.37).

Finally, the proof has been presented in Section 6.3.1.1 that the optimum decision rules

d�; d�� (6.3.8) generally and in the uncoupled cases in particular, are nonrandomized.

6.3.4 Estimator Bias p � 1ð Þ
There remains the important question of estimator bias. By definition, if the average of the

estimator gu under the appropriate hypothesis, for example, H1 if p H1ð Þ ¼ 1 or

H ¼ H0 þ H1ð Þ if p H1ð Þ � 1, is equal to the expected value of the quantity(ies) being

estimated, namely, that is,
�
gu

�
H1

¼ �u�whenp ¼ 1, or
�
gu

�
H
¼ p
�
u
�
whenp � 1, thenwe

say that the estimator is unbiased. Otherwise, it is biased, that is,
�
gu

� 6¼ p
�
u
�
H
, and the

resulting estimate can be noticeably distant from the “true” (i.e., ensemble) value ��u�� �
.

However, if the bias is a known function of the parameters, b uð Þ, the bias can be removed

from the data so that the new estimator, gu � b uð Þ, is then unbiased.26

In any case, to determine estimator bias, it is necessary to establish the relations

�
gu

�
H1

¼ �u�; p ¼ 1;
�
gu

�
H
¼ p
�
u
�
; p � 1;H ¼ H0 þ H1; as before: ð6:3:42Þ

Thus,weneed to evaluate
�
gu

�
Hð Þ

derived for the cost functions,Cð Þ u; gð Þ, (6.3.1),whichare
appropriate to the type of coupling employed between detector and estimator, whether

“strong” (Section 6.3.1), “weak” (Section 6.3.2), or “none” (Section 6.2). For the “simple”

cost functions (SCF), (6.2.13), p � 1, Eq. (6.2.26) is a condition imposed upon gp�1jSCF, but
for the QCF of Section 6.2.1 we need to determine whether or not gp�1jQCF is indeed

unbiased.

26 Bias and its lack play an important role in establishingmaximum lower bounds on the estimator’s variance. See

Sections 5.1.1.1 and 5.1.1.2.
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6.3.4.1 No Coupling Accordingly, let us consider first the case of “no coupling”

(Section 6.2) and thus apply the averaging operator ÊH ¼ ĜH ¼ � �
H: X;u

(6.2.11) to the

classical relation (6.2.9) for g�
p¼1jQCF, as (6.3.42) requires. This gives us

�
g� uð Þp�1jQCF

�
H
¼
ð

G

dX
L

Lþ 1
g�
p¼1jQCF qFJ Xj0ð ÞS¼0 þ p

ð

W

FJ XjS uð Þð ÞwL uð Þdu
2

4

3

5:

ð6:3:43aÞ

Multiplying and dividing by FJ Xj0ð ÞS¼0, and using (6.2.4) with (6.2.4a–c) for g
�
p¼1jQCF, we

obtain

�
g� uð Þp�1jQCF

�
H
¼
ð

G
dX

L
Lþ 1

ð

W
uWJ�L Xjuð Þdu p qFJ Xj0ð ÞS¼0

p
�
FJ XjS uð Þð Þ�

u

( )

Lþ 1½ �

¼ p

ð

G

ð

W
uWJ�L Xjuð ÞdX du ¼ p

�
u
�
H
;

ð6:3:43bÞ
which establishes the desired result. A similar procedure for the (vector) estimator g�

S of the

received waveform S, (6.2.2b), produces the analogous relation here for these no-coupling
cases, namely,

�
g� Sð Þp�1jQCF

�
H
¼ p
�
S
�
H
; ð6:3:43cÞ

(cf. Problem 6.8).

The estimators (6.3.32) are thus unconditionally unbiased. From the viewpoint of the

H1: S� N state alone, however, it is clear that the estimators are biased, since we are

assuming that the signal, and the parameters to be estimated, are present in all ensemble

members, that is, p ¼ 1, when actually they are not. The bias stems from the fact that a

fraction (q > 0) of the data ensemble contains noise only. The bias underH1 is directly found

by writing g�
p�1jQCF alternatively as

g�
p�1jQCF ¼ 1� 1

L Xð Þ þ 1

� �
g�
p¼1jQCF ¼ g�

p¼1jQCF � B Xð Þg�
p¼1jQCF; ð6:3:44Þ

B Xð Þ � Lþ 1ð Þ�1; 0 � B Xð Þ � 1: ð6:3:44aÞ

Clearly,B Xð Þvanisheswhen p ¼ 1 (orm ¼ 1) and is unitywhenp ¼ 1 (m ¼ 0), as required

for these limiting cases.HereB Xð Þg�
p¼1jQCF is the sample bias ofg�

p¼1jQCF due to the fact that
p � 1. The sample bias (6.3.44a) depends on the particular sample X, and, of course,
structurally on the cost functions chosen,27 cf. (6.2.2b). Similarly, wemaywrite (6.3.43b) as

�
g�
p�1jQCF;SCF

�
H0þH1

¼ p�u ¼ �u� q�u; ð6:3:44bÞ

27 For the SCF, the explicit structure ofg�
p�1 ¼ pg�

p¼1 depends in turn on the explicit statistical formof L̂, (6.2.23c),
unlike our result (6.2.7) for g�

p�1jQCF, which depends on L (6.1.6b).
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where now q�u is the average bias, that is, the average under H1 of the sample bias, or more

simply “the bias,” from the usual definition [cf., Sections 5.1.1.1 and 5.1.1.2].

Thus, the effect of neglecting the average bias q�u, whatever the cost function employed

in estimation here, is always erroneously to increase the true average estimate of the para-

meter(s) u under H ¼ H0 þ H1, by the amount q�u, which can be significantly large when q
is large (�1). Neglect of the sample bias Bg�

p¼1 can likewise erroneously increase the

true sample estimate, namely g�
p<1 Xð Þ, by the amount Bg�

p¼1, which can lie in the range

ð0� 1Þ 	Bg�
p¼1 for the QCF, cf. (6.3.44). Analogous increases (errors) occur in the sample

bias for SCF1,2, [cf. (6.2.31) and (6.2.35)]. The reductions of g�
p¼1 when p < 1 represent

compensation for theapriori absence (q > 0) of the signal in the receiveddataX. Section 6.4
following presents some numerical examples with the QCF and SCF1,2 under the no-

coupling condition.

6.3.4.2 Weak Coupling Our results above apply also in the situation of weak

coupling when the cost functions of (6.3.28) are employed, specifically for the QCF

and SCF of Section 6.2, cf. (6.3.27), (6.3.28). However, with other cost functions

( f10; f11) it is not evident that the resulting estimators are unbiased (under H), although

we suspect that the Bayesian optimality requirement may so ensure. Each situation has

to be explored individually, for the given statistical distributions L and L̂
0
, (6.3.22a),

(6.2.4b).

6.3.4.3 Strong Coupling The generally unbiased nature of the (coupled) estimators

here is similarly an open question. As in the cases above we suspect that unbiasedness

may also be conditioned on Bayesian optimality, but no proof or disproof appears as yet

available.

6.3.5 Remarks on Interval Estimation , p H1ð Þ � 1

A frequently useful concept in evaluating the accuracy of our estimates g
�ð Þ
p�1 of model

parameters u is the interval estimate, which we have already discussed briefly in Section

5.1 for the classical situation where the signal containing the set of parameters in

question is a priori known surely to be present, that is, g�
p¼1. This estimate set is defined

now as the (joint) probability PI, that the particular set of estimates under p H1ð Þ ¼ 1 falls

within (1 l) 100% of the true value of the parameter(s) û
�
of û; u0

�
being estimated, [8].

Here we extend the concept of the interval estimate PI to the uncertain case, p < 1,

namely,

PI p�1ð Þ ¼ PI 1� lð Þ 	 û � gu Xjuð Þp�1 � 1þ lð Þ 	 û
h i

¼
ð 1þl1ð Þû1

1�l1ð Þû1
dluð Þ1 	 	 	 	

ð 1þlLð ÞûL

1�lLð ÞûL
dluð ÞLPL gujû

 �

p�1

9
>>>=

>>>;

; ð6:3:45Þ

where 1 l‘; ‘ ¼ 1;. . . ; L denote the bounds of the various intervals chosen for the

different parameters gujp�1 ¼ gu1;. . . ; guLð Þp�1. Frequently, the same interval factors are

used, that is, l‘ ¼ l > 0ð Þ. For weak or no coupling, where detection and estimation are

separate operations, cf. Sections 6.2 and 6.3.2, the conditional pdf PL of the estimators,

given û, may be obtained formally from the inversion of the following characteristic
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function eij 	 gujp�1 , namely,

PL gujû
 �

p�1
¼
ð1

�1
e�ij 	 gu

dj

2pð ÞL
ð1

�1
eij 	 gu Xjuð Þp�1 qFJ Xjuð Þû¼0 þ pFJ XjS�û�

 �h i
dX:

ð6:3:46Þ

In our applications one possible choice of “true values” of the parameters û may be

their sample means, p
�
û
�
sample

, cf. (6.3.42), established from the data for which positive

detection has been registered. For example, if our particular value of
�
gujp�1

�
‘
lies

inside
�
1 u‘

�
û‘, and we choose a particular value of l‘, say 0.95, namely 95%

confidence limits, and the detector decides “yes, S� N: signal present,” we accept the

estimate
�
gujp�1

�
‘
as a satisfactory value. Otherwise, we can reject the estimate, even

though the detector indicates the presence of a signal, cf. Section 6.3.6 ff. Alternatively,

if we can show that our estimates are unconditionally unbiased (Section 6.3.4), then�
gu

�
H0þH1

¼ p�u, 0 � p � 1, and limJ!1 var:H0þH1
gujp�1 ! var: u ¼ 0. This supports

the notion that it is reasonable to replace the usually unknown “true” values û
with their ensemble mean equivalents. (See Problem 6.16 for the resulting interval

estimate for the example of Section 6.4.4, where one selects for gu XjHð Þ ¼ a�p�1 Xð ÞSCF,
Eq. (6.4.20).)

6.3.6 Detection Probabilities

As we have pointed out in preceding sections, in all cases where estimation is carried out

with uncertainty as to the presence of the signal p H1ð Þ < 1ð Þ, we must also conduct a

parallel detection. This concomitant detection operation, performed simultaneously for

weak or no coupling or subsequently with strong coupling to estimation, is embodied in

the various likelihood ratios Lð Þ ¼ L;Lg;L0
g

� �
in our present cases of binary on–off

detection.28 Whatever the degree of coupling in our Bayesian formulation, the detection

process still involves the comparison of some form of likelihood ratio with an appropriate

threshold K >0ð Þ.
Accordingly, we can write for detection here the following set of binary decisions:

1: No Coupling:
DecideH1: S� N; signal and noise

DecideH0: N; noise alone

if logL � logK

if logL < logK

�
; Eq:ð6:1:6Þ; ð6:3:47aÞ

2: Weak Coupling:
DecideH1: S� N

DecideH0: N

if logL0
g � log K ¼ 0

if logL0
g < log K ¼ 0

�
; Eq:ð6:3:22Þ; ð6:3:47bÞ

28 L̂L, Eq. (6.2.23c), and L̂1, Eqs. (6.2.34) and (6.2.34a), are likelihood ratios which, however, do not arise in the

detection process, unlike L;Lg;L0
g, cf. (6.3.47).
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5: Strong Coupling:
DecideH1: S� N;

DecideH0: N

if logLg � log K ¼ 0

if logLg < log K ¼ 0

)

; Eqs:ð6:3:17Þ; ð6:3:18Þ ð6:3:47cÞ

The decision processes for detection in (1) and (2) are independent of the accompanying

estimationprocedures, cf. Sections6.2 and6.3.2, butdependon the (optimum)estimatorg��
u ,

(6.3.5), in Case 5 above as noted in Section 6.3.1. In all cases logL embodies the detector

structure or data Xð Þ processing algorithm (see Section 3.1). We also observe here that the

accompanying estimate is accepted provided the probability of correct detectionP�
D is equal

to or greater than some preassigned lower limit P�
D-accept:, namely,

P�
D ¼ p 1� b �ð Þ� � � P�

D-accept:

¼ pp�D-accept:
ð6:3:48Þ

The probability P�
D then depends on the (conditional) false rejection probability, or Type II

error probability b S� NjNð Þ�, as well as directly on p H1ð Þ.
In the no-coupling cases (6.3.47a), logK is nonzero, generally, which implies a preset

value of the “false alarm” probability aF in what is then a Neyman–Pearson (NP) class of

detector (Section 3.3.1). As we have seen in Section 3.3.1, such a detector minimizes the

adjustable part of theType II error probability contained in the average riskRD (e.g., that part

which contains d1 H1jXð Þ), according to

d1 !min
d�1 pbþ l0aFð Þ ¼ pb�

NP þ KqaF; l0 !K;b!b�
NP: ð6:3:49Þ

On the other hand, for the weak- and strong-coupling cases [(6.3.47b) and (6.3.47c)], the

thresholdK is unity, which in turn indicates that these detectors belong to the Ideal Observer

(IO) class, cf. Section3.3.2.This requires jointminimizationof theType I að ÞandType II bð Þ
error probabilities in the associated Bayes risk R�

D, (6.3.7), (6.1.7), now according to

d1 !min
d�1 pbþ qað Þ ¼ pb�

I þ qa�
I ; l0 !K ¼ 1: ð6:3:50Þ

[All the decision rules d1; d
�
1; d

��
1 , and so on, are nonrandom, as we have already shown in

preceding sections.]

From Section 3.2.1 we have the following generic forms for the various (Bayes) error

probabilities a ¼ a�
F;b

�, and so on, above:

a�
F ¼

ð1

log K

Q1 xð Þdx; 1� b� ¼
ð1

log K

P1 xð Þdx; etc:; ð6:3:51Þ

where

Q1 xð Þ ¼ Q1 xjH0ð Þ ¼
ð

G
FJ Xjuð ÞS¼0 d x� logL Xð Þf gdX;

P1 xð Þ ¼ P1 xjH1ð Þ ¼
ð

G

�
FJ Xjuð ÞS

�
u
d x� logL Xð Þf gdX;

with P1 xjH1ð Þ ¼ m�1exQ1 xjH0ð Þ or P1 xð Þ ¼ m�1exQ1 xð Þ;

9
>>>>>>>=

>>>>>>>;

ð6:3:51aÞ
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these last from Section 3.4.1. The NP detectors (6.3.49) are commonly used in radar and

sonar applications. On the other hand, the IO detectors K ¼ 1ð Þ, for which p ¼ q ¼ 1=2ð Þ
is associated with the so-called “symmetric channel,” are typically required in tele-

communications, where a common aim is to minimize bit-error probabilities Pe. Figure

6.7 shows the pdfs Q1 and P1 for both types of detector L ¼ LNP; or LIO ¼ L0g;Lg

(6.3.47).

6.3.7 Waveform Estimation p � 1ð Þ: Coupled and Uncoupled D and E

In Sections 6.3.1–6.3.6, we have focused primarily on parameter estimation when p � 1.

An important special case arises when waveform S � S;. . . ; SJ½ � itself is the desired

“parameter.” The preceding analysis of the coupled D and E cases is easily carried over

to handle this situation.

Formally, the following transformations are indicated:

In ð6:3:7Þ et seq::

g�
u ! g�

S; F0 ujXð Þdu!F0 SjXð ÞdS; with
F1 Xjuð Þ!F1 XjSð Þ and

F1 Xð Þ ¼
ð

W
F1 XjSð ÞwJ Sð ÞdS ð6:3:6Þ:

ð6:3:52Þ

FIGURE 6.7 Conditional error probabilities a�
ð Þ;b

�½ �
ð Þ, Eq. (6.3.51), for the on–off signal detection

cases (6.3.47) of no coupling, K > 1ð Þ; weak and strong coupling K ¼ 1.
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The cost functions (6.3.1) are modified now to

C00 ¼ C1�b ¼ C
0ð Þ
0

h i
: cost of correctly deciding d0 ¼ H0;

whenH0 is true;

C10 gSð Þ ¼ Ca ¼ C
0ð Þ
1

 �
þ f10 gS Xð Þ½ � : cost of incorrectly deciding d1 ¼ H1

and making an estimate gS ¼ gS Xð Þ
whenH0 is true;

C01 Sð Þ ¼ Cb ¼ C
1ð Þ
0

 �
þ f01 S½ � : cost of incorrectly deciding d0 ¼ H0;

when in factH1 is true and S is the
true value of the signal waveform;

C11 S; gSð Þ ¼ C1�b ¼ C
1ð Þ
1

 �
¼ f11 S; gS Xð Þ½ � : cost of correctly deciding d1 ¼ H1 and

making an estimate gS ¼ gS Xð Þ;
whenH1 is true and S is the true
value of the signal waveform:

9
>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>;

ð6:3:53Þ

Applying the above modifications [(6.3.52) and (6.3.53)] to (6.3.7) et seq., we see that,

finally, the optimumdetection process is still represented by (6.3.17),whereLg, Eq. (6.3.18),

becomes explicitly here for the detection process in waveform estimation when p < 1ð Þ:

Lg ¼ Lg Xð Þ ¼ m

Ð
WwJ Sð Þ C01 Sð Þ � C11 S; g��

S

� �� �
F1 XjSð ÞdS

C10 g��
S

� �� C00

� �
F1 Xð Þ : ð6:3:54Þ

The correspondingminimization equation forg��
S Xð Þunder p � 1ð Þ is givenbyEq. (6.3.20),

with gu ! gS, u!S, du! dS therein [cf. (6.3.15) and the steps (6.3.10) et seq.]. Again, the

estimationoperationmust be carried outbeforedetection in these strongly coupledcases. For

weak couplingwe haveLg !L0
g, Eq. (6.3.22), withS uð Þ!S, u!S, and so on, alongwith

(6.3.22a) and (6.3.22b). Here the D and E operations, with p � 1ð Þ, can be performed in any

order as before, since now the detection process is independent of estimator structure.

Moreover, estimator-dependent cost functions, vide (6.3.53), can still be employed.

Equations (6.3.25)–(6.3.28) likewise hold on replacing u by S formally.

The same formal substitutions involving u!S, applied to the material of Sections 6.3–

6.6, similarly provide the explicit general structures and results for waveform estimation.

Table 6.1 remains applicable, with the appropriate formal substitution of S for u, as do the
various degradation criteria (vis-à-vis p ¼ 1) of Section 6.3.9.1. For the uncoupled D and E

cases of Section 6.2, the indicated replacement of u by S are made to provide analogous

results for estimation as well as detection (Section 6.1). An analytic example is presented in

Section 7.1 presently, but for the most part numerical evaluation is required for quantitative

results, as in the more common situations involving parameter estimation.

6.3.8 Extensions and Modifications

The present general theory is nowextended to include a threshold on the estimators,which in

turn are used to (1) improve detection and (2) provide estimates of the parameters

themselves. Estimation is still required preceding detection, in which the estimates are
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found with the help of a detector, and are accepted (or rejected) according to whether or

not they are passed by the M-ary detector used now as an estimator. They are also used to

improve detection and are accepted (or rejected) according to the binary outcomeof themain

detection. The extension, and modification (the M-ary detector), is shown in Fig. 6.8.

Let us expatiate onE!DM.As in the general theory the estimation processmust be done

first, consistent with the strong coupling condition of the general theory, that is, Eq. (6.3.18)

applies: E!DBinary. However, for the E!DM we have KE, and for this we chose a

maximum likelihood estimator, which is for p < 1, pg��
p (for the M-ary estimator

(¼ detector) we refer the reader to Chapter 4). Accordingly, for KE we select m estima-

tors out of M for which p
�
g��
p¼1

�
m

is greater than KE, or equivalently, m estimators�
g��
p¼1

�
m
� KE=p. In this way, we dodge the issue of having to know p, putting it into the

new thresholdKE=p ¼ K 0
E. (Of course, it is still inK

0
E, butwe can adjustK

0
E towhateverwe

like, subject to whatever is the false alarm probability, in conjunction with what is an

10

8

0.5

0.4
0.3

0.2
η0 = 0.1

η0 = 0.1

η0 = 1

0.6
0.7
0.8
0.9
1.0

6

F (u)

u

4

2

0
0.1 10 100 1000

FIGURE 6.8 The scaling function F uð Þ, Eq. (6.4.26b), for the SCF examples, and for weak

ho � 0:1ð Þ to strong fading ho ¼ 1ð Þ; u � s2Fs, (6.4.15).
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acceptable probability of pD, the probability of a signal (see the remarks in the last paragraph

of this section).)

Thus, having selected 0 � m � M estimators, we form the binary detector

DBinary ¼ L X;
�
g��
p<1

�
m

 �

¼ m

ð

umð Þ

wm u½ �m
� �

C01f g u½ �m
� �� C11 u½ �m; g��

u m

� �
F1 Xj uð Þm
� �

dum

C10 g��
p<1

h i

m

 �
� C00

 �
F0 Xj0ð Þ

lKD

decide

H1: S� N

or

H: N

��������

ð6:3:55Þ

inwhichm ¼ p=q ¼ p= 1� pð Þ. Equation (6.3.55) is nowmodifiedby inserting the estimates�
g��
p<1

�
m
into wm

�
u
�
m

h i
and S

�
u½ �m
�
, by means of the relation

wm

�
u
�
m

h i
¼ d um � �g��

p<1

�
m

 �
;
�
g��
p¼1

�
m
� K 0

E; ð6:3:56Þ

to obtain the required binary test for acceptance or rejection of the detection process, and

including the presence of those estimates which exceed the thresholdK 0
E. The estimators are

found from

gu

max ! g��
p<1

wM uð ÞFJ Xjuð Þm
FJ Xj0ð Þ

� �

m

¼ 0; ð2:1:54aÞ of Ref: 4½ �; g��
p¼1

 �

m
� K 0

E: ð6:3:57Þ

[We can also proceed as follows: we first apply to all the estimates

gu

max ! g��
p<1

wM uð ÞFJ Xjuð Þ
FJ Xj0ð Þ

� �

M

¼ 0; ð2:1:54cÞ of Ref: 4½ �; ð6:3:57aÞ

and then select the m estimates which have the threshold K 0
E.]

Finally, we need to discuss the thresholds K 0
E, K

0
D ¼ KD=m. If K

0
E > K 0

D we have a

situation where too few estimates are included and the binary detector is deprived of the

needed number, while the reverse is the case forK 0
E < K 0

D. The solution is to equate the two:

K 0
E ¼ K 0

D or KE ¼ pKD=m ¼ 1� pð ÞKD: ð6:3:58Þ

This also exhibits the required limiting behavior:

p ¼ 1: KE ¼ 0 ¼ KD: no detection is needed; and ; no threshold on the estimates:

p ¼ 0: KE ¼ KD and K 0
E ¼ KE=p!1; and K 0

D ¼ KD=m!1; no signal present

and thus no estimator at all and only noise is passed :

Therefore;

H0 is decided; consistent with K
0
E !1:

ð6:3:58aÞ

Equation (6.3.58) establishes the required relationship between the M-ary threshold KE

and the estimators, and the accept/reject threshold region in the binary detector.We note that
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only for the case of maximum likelihood estimators, where the dependence on p is linear,

does this approachwork. For example, it does notwork for estimators based on the quadratic

cost function, as then the threshold is not a linear function of p.

A simpler variant of the general case, where the cost functions are all constant in the

binary detector, can be constructed. Equation (6.3.55) is now

DBinary ¼ L X;
�
g��
p<1

�
m¼1

 �

¼ m

ð

umð Þ

wm u½ �m
� �

F1 Xj uð Þm
� �

dum

F0 Xj0ð Þ
����
� KD: H1: S� N

< KD: H0: N

ð6:3:58bÞ

but (6.3.56) remains, with (6.3.57) and (6.3.57a) as do the relations (6.3.58).

An example procedure for implementing this estimator-detector is the following. Select

thekthDoppler scenario if it has one energy that exceeds all the rest ‘ ¼ 1;. . . ; k; 6¼ kð Þ. The
threshold for the estimator isK 0

E and themaximum estimate above this threshold is regarded

as a p ¼ 1 estimate. Now, K 0
E ¼ K 0

D so there is one threshold for the two operations

D;Eð Þ. This estimate is fed into the detector, with all other Dopplers in the kth scenario,

since once one is known, the others are determined. The detector then employs

logL XjSð Þ; g 1ð Þ
p¼1;. . . ; g

kð Þ
p¼1 in making its decision. The environment against which it works

is not the same for the estimator, hence for the same thresholdK 0
D ¼K 0

E

� �
we obtain a certain

false alarm probability aFð ÞD which in turn leads to a certain detection probability pD. For

one acceptable value of aFð ÞD, pD may be too low, or it may be acceptable. If too low, lower

the threshold K 0
D ¼K 0

E

� �
and get a larger value, at some larger false alarm rate. The reverse

procedure is used if pD is larger than just acceptable, and K 0
D can then be made smaller. So,

adjusting K 0
D ¼K 0

E

� �
between an acceptable value of aFð ÞD may yield an acceptable pD. Of

course, it may not, and in such a case the detector rejects the estimate.

6.3.9 Summary Remarks

In the preceding three sections, we have presented in some detail a theory of the joint binary

detection and estimation of signals and their parameters,when there is prior uncertainty as to

the presence of the signal [1,2]. The basic approach is Bayesian, that is, fully implemented

by a priori probabilities, and based on themethods of SDT.Here optimization is determined

by averaging appropriately selected cost functions to obtain a minimum average cost or

“risk” (i.e., a Bayes risk). Detection is now required, to permit the observer the choice of

accepting or rejecting (or not using) the accompanying estimate, based on some preselected

probability of a correct decision that the signal is truly present in the accompanying noise.

So far, our attention here has been directed to the generic fixed sample, or “single-shot”

decision situation. This extension of the classical fixed sample theory (Chapters 1–5)

generally leads to more complex detectors and estimators than the classical Bayes

approaches provide, since now the detection and estimation processes can mutually

interact and influence the two types of process. Even when there is no explicit coupling

between the two, the fact that there is prior uncertainty regarding signal presence in the

received data can strongly influence the resulting estimates, i.e., can create a significant

and unknown bias in the estimate, unless the effect of p H1ð Þ < 1 is properly accounted for.

Table 6.1 summarizes our results in the case of single, fixed sample sizes, showing the type

of decision, choices of cost function, reference to detector and estimator structures, and

the joint D and E strategies involved. As to the acceptance or rejection (or filing) of the

SIMULTANEOUS JOINT DETECTION AND ESTIMATION: GENERAL THEORY 345



T
A
B
L
E
6
.1

J
o
in
t
B
a
y
es

D
et
ec
ti
o
n
a
n
d
E
st
im

a
ti
o
n
,
p
�

1
:
H

1
V
er
su
s
H

0

N
o
C
o
u
p
li
n
g
:
(S
ec
ti
o
n
6
.2
)

C
o
st
F
u
n
ct
io
n
s
(C
.F
.s
)

W
ea
k
C
o
u
p
li
n
g
:
(S
ec
ti
o
n
6
.3
.2
)

C
o
st
F
u
n
ct
io
n
s

S
tr
o
n
g
C
o
u
p
li
n
g
:
(S
ec
ti
o
n
6
.3
.1
)

C
o
st
F
u
n
ct
io
n
s

I.
D
et
ec
ti
o
n

d
� 1
:
C

0ð
Þ

1
¼

C
a
>

C
1
�a

ð
Þv

s:
H

0
;q

ð
Þ

d
� 0
:
C

1ð
Þ

0
¼

C
b
>

C
1
�b

�
�
v
s:

H
1
;p

ð
Þ

d
� 0
:
C

0ð
Þ

0
¼

C
1
�a

;
H

0
;q

ð
Þ

d
� 1
:
C

1ð
Þ

1
¼

C
1
�b

;
H

1
;p

ð
Þ

d
� 1
:
C
1
0
¼

C
a
þ
C

0 1
0
v
s:

H
0
;q

ð
Þ

d
� 0
:
C
0
1
uð
Þ¼

C
b
þ
f 0
1
S
uð
Þ

½
�v
s:

H
1
;p

ð
Þ

d
� 0
:
C
0
0
¼

C
1
�a

;
H

0
;q

ð
Þ

d
� 1
:
C
1
1
u;
g
u

ð
Þ¼

C
1
�b

;
H

1
;p

ð
Þ

d
�� 1
:
C
1
0
g
u

ð
Þ¼

C
a
þ
f 1
0
g
u

½
�v
s:

H
0
;q

ð
Þ

d
�� 0
:
C
0
1
uð
Þ¼

C
b
þ
f 0
1
S
uð
Þ

½
�v
s:

H
1
;p

ð
Þ

d
�� 0
:
C
0
0
¼

C
1
�a

;
H

0
;q

ð
Þ

d
�� 1
:
C
1
1
u;
g
u

ð
Þ¼

C
1
�b

þ
f 1
1
u;
g
u

½
�;

H
1
;p

ð
Þ

S
tr
u
ct
u
re

þ
te
st

lo
g
L

�
lo
g
K
:
H

1
:
d
� 1

<
lo
g
K
:
H

0
:
d
� 0

(

K
¼

C
a
�
C
1
�a

ð
Þ=

C
b
�
C
1
�b

�
�
>

0

E
q
s:
ð6
:1
:6
aÞ

an
d
ð6
:1
:6
b
Þ

lo
g
L
0 g

�
0
:
H

1
:
d
� 1

<
0
:
H

0
:
d
� 0

(

E
q
:ð6

:3
:2
2
Þ

lo
g
L
g

�
0
:
H

1
:
d
�� 1

<
0
:
H

0
:
d
�� 0

(

E
q
:ð6

:3
:1
8
Þ

II
.
E
st
im

a
ti
o
n

p H
1

ð
Þ;q

:
C

u;
g
u

ð
Þ

¼
C
0
ju
�
g
u
j2 ;

Q
C
F

¼
C
0

A
L
�
YL ‘¼

1

	d
g
‘
�
û
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estimate following the decisionH0 of the detector, this is governed bywhat our choicemay

be of an acceptable probability PD or pDð Þ for the D and E process in question. This is

discussed above in Section 6.3.6. We shall illustrate these methods with some specific

analytic examples in Section 6.4 following.

6.3.9.1 Performance Degradation Finally, there is the question of the extent to which

performance, that is, the estimation process here, is degraded by the familiar assumption that

the quantities to be estimated are actually present, that is, that the signal containing them is

present in the noise, p H1ð Þ ¼ 1, q H0ð Þ ¼ 0. Clearly, optimal estimators under p ¼ 1 are not

optimal under H ¼ H0 þ H1 p < 1ð Þ. Thus, a natural measure of degradation compares the

average errors �REð Þ incurred by using the optimumestimators for p ¼ 1, now suboptimum

underH, p < 1, with the Bayes errors �R�
E

� �
produced by the optimal estimators under the

true state of operation, H, p � 1; q � 0ð Þ. For this purpose we introduce the relative Bayes
error, D R�

Ejp�1, defined by

D R�
Ejp�1 �

�
REjp�1 � R�

Ejp�1

�
=R�

Ejp�1

� �0
�
; ð6:3:59Þ

now with the suboptimum estimators specified by gujp�1 ¼ g�
ujp¼1 here.

In general, R�
Ejp�1 is usually more difficult to evaluate, cf. Section 6.4.2.3, than REjp�1.

This suggests that we use a simpler criterion of performance degradation. One such is the

fractional mean difference or mean relative error between the estimators g�
ujp�1 and

gujp�1

� ¼ g�
ujp¼1

�
, defined by

D g�
u �

�
g�
ujp¼1

�
‘

D E

H
� �

g�
ujp�1

�
‘

D E

H

�
g�
ujp�1

�
‘

D E

H

. i
; ‘ ¼ 1;. . . ; L:

h
ð6:3:60Þ

Wheng�
ujp�1 is unbiasedunderH, i.e.,

�
g�
ujp¼1

�
H
¼ p
�
u
�
, (6.3.43b), as is the case for theQCF

and SCF1,2 with no coupling, the mean relative error (6.3.60) becomes

D g�
u ¼

�
g�
ujp¼1

�
‘

D E

H
� p u‘h i

p u‘h i

2

4

3

5 ¼
�
g�
ujp¼1

�
‘

D E

p u‘h i � 1‘

2

4

3

5; ‘ ¼ 1;. . . ; L: ð6:3:60aÞ

Similar relations can be employed to compare the performance of a pair of suboptimum

systems when detection and estimation are separable, namely,

D R
21ð Þ
Ejp�1

¼ R
2ð Þ
Ejp�1

� R
1ð Þ
Ejp�1

���
���=R 1ð Þ

Ejp�1
� 0ð Þ; ð6:3:61Þ

with the corresponding form for (6.3.60a).

Finally, we observe that when detection and estimation are coupled, cf. Section 6.3.1

above, measures of degradation like (6.3.59)–(6.3.61) must be suitably extended, to include

the effects of the joint detection process. This means that REjp�1, R
�
Ejp�1 (6.3.59), and so on,

are to be replaced by RD�Ejp�1, R
�
D�Ejp�1, vide (6.3.14) et. seq. Again, the choice of the

coupling cost functions C10, C11 (6.3.1) is critical. Theory (and application) here remain to

be developed. In the above, whether D and E are coupled or not, we must not forget the

requirement of an accompanying detection process, discussed in Section 6.3.6, which

establishes our acceptance or rejection of the estimate in question.We shall encounter some

illustrative examples in Section 6.4 following.
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PROBLEMS

P6.4 Obtain the Hessian associated with Eq. (6.3.10b) and with (6.3.13), (6.3.15),

(6.3.20), and verify that the resulting estimators g�; g�� do indeed minimize the

Bayes risk (6.3.7). Discuss the conditions necessary and sufficient for this purpose.

P6.5 Show that the optimum detection rules d��0 ; d�1, (6.3.16), (6.3.17), are

nonrandomized.

P6.6 Obtain the results Eqs. (6.3.23) and (6.3.24) of the text, and give the condition that

the results of (6.3.27) are optimal, that is, yield the minimum (average or Bayes)

risk R�
E here.

P6.7 If the cost function C u; guð Þ in Eq. (6.3.34) does not posses a Taylor’s expansion,
show that Sherman’s theorem ([7]; [4], p. 970) cannot be attained.

P6.8 Show that for theMMSEvector estimateg�
S, (6.3.43c), of the receivedwaveformS,

(6.2.2b), p � 1, is

g� Sð Þp�1jQCF
D E

H¼H0þH1

¼ p Sh iH : ð1Þ

P6.9 Obtain the class of cost functions f10; f11ð Þ in the weak coupling cases, p � 1, such

that the resulting Bayes estimators are unbiased. (See Section 6.3.4.2)

P6.10 Explore the condition on the cost function in the strong coupling cases p � 1ð Þ,
such that the resulting Bayes estimators remain unbiased.

P6.11 (a) Starting with the average risk (6.3.4) for the strong coupling cases (Section

6.3.1), show that

RD�E ¼
ð

G
As Xð ÞdXþ

ð

G
dXd g1jXð Þ Bs g;Xð Þ � As Xð Þf g; ð1Þ

where

Bs g;Xð Þ ¼ qC10F0 Xð Þ þ pC1�b

ð

W
wL uð ÞF1 Xjuð Þdu

þ p

ð

W
f11 S uð Þ; gu Xð Þ½ �F1 Xjuð ÞwL uð Þduþ qf10 g Xð Þð Þ

9
>>=

>>;
; ð2aÞ

and

As Xð Þ ¼ d0 H0jXð Þ qC1�aF0 Xð Þ þ pCb

ð

W
F1 Xjuð Þ þ f01 S uð Þð ÞF1 Xjuð Þf gwL uð Þdu

� �
:

ð2bÞ
The choice of cost functions ensures that As;Bs are always positive.

(b) For the Bayes risk from the estimation process, show that g ¼ g� is determined

by

@ Bs g;Xð Þ
dg

jg¼g� ¼ 0; ð3Þ

so that evenwith strongcoupling the structure of the estimator is identical to that

derived for the case of weak coupling [cf. Eq. (6.3.27) and remarks following it].
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(c) Show, also, that the optimum decision rules d��0;1 for the detection portion of these
coupled joint D and E operations are

Decide d�� H1jXð Þ ¼ 0: no signal; if Bs � As > 0

Decide d�� H1jXð Þ ¼ 1: signal present; if Bs � As � 0

)

: ð4Þ

The detector’s structure is in general very complex. This is evident even when

one employs the simple cost assignmentsC1�a ¼ C1�b ¼ C00 ¼ f10 ¼ 0. Then,

show that the resulting likelihood ratio becomes

L00
g ¼ Cb

Ca
Lþ 1

Ca

ð

W
f01 S uð Þ½ � � f11 S uð Þ; g�

u Xð Þ� �
L̂ Xjuð ÞwL uð Þdu; ð6Þ

which is a generalization ofL0
g, Eq. (6.3.22). Show also that the strong coupling

case of Section 6.3.1, cf. Eq. (6.3.18), reduces to theweak coupling caseL0
g, Eq.

(6.3.22), on setting C00 ¼ 0; f01 ¼ C01 þ S uð Þð Þ; f10 ¼ C10, independent of g,
with Ca ¼ C1�b, in Eq. (1) above.

P6.12 Carry out the various steps indicated in the explicit development of the joint,

strongly coupled D and E formalism outlined in Section 6.3.7 for estimation of

waveform, S.

6.4 JOINT D AND E: EXAMPLES–ESTIMATION OF SIGNAL

AMPLITUDES [P(H1) � 1]

The purpose here is to illustrate the general theory of joint detection and estimation, outlined

in preceding Sections, with a selection of specific examples which are both analytically

tractable and useful. Accordingly, theses examples are limited to the no-coupling cases

treated generally in Section 6.2 above. In addition, these examples provide some quantitative

as well as qualitative insight into the degradation of the estimation process when there is

uncertainty regarding the presenceof the signal in the received data sample, namely,when the

a priori probability p H1ð Þ is less than unity. Accordingly, one of the important desired results

here is the dependence of the accuracy of estimation on p H1ð Þ when p H1ð Þ < 1, as well as

when p H1ð Þ ¼ 1. Again, when p < 1, acceptance of the estimates depends on an acceptable

probability PD of correct detection of signal presence in the noise, cf. Section 6.3.6 above.

The simplest illustrative and useful examples involve estimation of (normalized) signal

amplitude ao and signal intensity I0 ¼ a20, under the following specific conditions:

ðiÞ Additive signal and homogeneous and stationary normal noise N r; tð Þ;with zero

mean N r; tð Þh i ¼ 0; intensity c ¼ N2
� �

; and covariance KN r2 � r1; t2 � t1ð Þ:
ðiiÞ Coherent observation; that is; signal epoch «0 is known a priori:

ðiiiÞ All other features of the signal are also a priori specified:

ðivÞ Estimation ðEÞ and detection ðDÞ are uncoupled; cf : Table 6:1:

ðvÞ Signal amplitude a0 is normally distributed about a0 ; with variance

s2 ¼ a20 � a0
2 and�1 � a0 � 1:

ðviÞ Signal and noise fields are uniform over the receiving array or aperture:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð6:4:0Þ
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These conditions are not so academic as theymay appear at first glance. Normal noise is

quite prevalent; so is amplitude fading, from small amounts to large; a0 ¼ 0 is a common

phenomenon, and a Gaussian model here is often reasonable. Coherent reception is

achievable inmany applications. Although one is dealing generally with space–time fields

in practical cases (vide Chapter 1 et seq.), one important subclass of operation occurs

when noise and signal fields can be treated as being essentially uniform over the receiving

array or aperture, that is, c mð Þ ¼ c and a
mð Þ
0 ¼ a0. Conditions (iii) and (vi) are invoked

simply to keep the treatment less complex, without in any way diluting the essential

concepts involved. Likewise, condition (iv) allows a fully analytic implementation of the

basic analysis and serves as the starting point for more advanced, and largely numerical

investigations.

Accordingly, under (i)–(v) above, we can write for the pdf of signal amplitude a0
explicitly

Condition ðvÞ: w1 a0ð Þ ¼ 2ps2
� ��1=2

e� a0�a0ð Þ2=2s2

;s2 ¼ a20 � a0
2; ð6:4:1Þ

with lim
s2 ! 0

w1 a0ð Þ ¼ d a0 � a0ð Þ: ð6:4:1aÞ

Thepdfof the J ¼ MNð Þ samplesof additive signal a0sð Þandnormalnoise Nð Þgives thewell-
known relation29

Condition ðiÞ--ðiiiÞ; ðviÞ:
FJðxja0sÞ ¼ wJ x� a0sð Þ ¼ e� ~x�a0~sð Þk�1

N x�a0sð Þ=2

2pð ÞJdet kN
� �1=2 ;

u ¼ a0s ¼ S=
ffiffiffi
c

p
x ¼ X=

ffiffiffi
c

p
)

;

ð6:4:2Þ

where now u ¼ a0 is the (only) quantity to be estimated here, for example, L ¼ 1, and

kN ¼ KN=c¼ KN rm � rm0 ; tn � tn0ð Þ=c½ �, j; j0½ � ¼ mn;m0n0ð Þ � J; J0ð Þ, is the normalized

noise covariance. With no signal (6.4.2) reduces at once to

wJ xð Þ ¼ e� ~xk�1
N xð Þ=2

2pð ÞJdet kN
� �1=2 ¼ wJ xj0ð Þ ¼ FJ x S ¼ 0j Þð �; cf: ð6:2:34aÞ;½ ð6:4:3Þ

which is needed in determining the specific detection statistic (6.1.6b) in the detection

phase of the joint D and E operation here.

Combining (6.4.1) and (6.4.3) then gives

wJ�1 x; a0ð Þ ¼
exp �ð1=2Þ ~x-a0~sð Þk�1

N x� a0sð Þ � ð1=2Þ a0� �a0ð Þ2=2s2
n o

2ps2 	 2pð ÞJdetkN
� �1

2:=
ð6:4:4Þ

This relation is also needed in determining the estimators of the scale parameter a0 under the

familiar condition p H1ð Þ ¼ 1, both for the minimum mean square error estimator from

29 Note that here, and throughout Section 6.4, we use the normalized data form x ¼ X=
ffiffiffi
c

p
.
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the QCF and for the unconditional maximum likelihood estimator from the “simple” cost

functions (SCF1,2). [These latter, as seen above in (6.2.13a) and (6.2.13b) are equivalent

here.] The desired Bayes estimators a�p�1 then follow directly from (6.2.7) and (6.2.31),

respectively. A second, more complex evaluation is that of the minimum expected (Bayes)

error in the estimator a�p�1, obtained from the relations (6.2.10), (6.2.11) for the QCF and

from (6.2.20) or (6.2.37), all for the SCF, with L ¼ 1.

6.4.1 Amplitude Estimation,30p H1ð Þ ¼ 1

We begin with a summary treatment of the classical cases where p H1ð Þ ¼ 1. The results are

then to be applied to the general situation of signal uncertainty, p < 1.

6.4.1.1 Bayes Estimators From (6.4.4) in (6.2.5)with q ¼ 0, û ¼ u ¼ a0, on completing

the square (in a0) we readily obtain the earlier result for theMMSE (Bayes) estimator of a0:

p ¼ 1: g� a0jxð ÞQCF � a�p¼1 xð ÞQCF ¼ s2Fx þ �a0
s2Fs þ 1

; withFx � ~xk�1
N s;Fs � ~sk�1

N s;

ð6:4:5Þ

cf. (21.97) of Ref. [4] and Problem 6.13. Here x ¼ nþ u ¼ nþ a0s, with n ¼ N=
ffiffiffi
c

p
for

the normalized noise.

In a similar fashion wemay use the following modified forms of (6.2.32), (6.2.34a), with

(6.4.3), to obtain the UMLE of a0, namely,

p ¼ 1:
@

@g1

log m�1L̂1

 �� �

g1¼g�
1

¼ 0 or
ð@=@a0ÞlogWJ�1 x; a0ð Þ

WJ xj0ð Þ
� �

a0¼a�
0

¼ 0; L ¼ 1;

ð6:4:6aÞ
which becomes

@

@a0
� 1

2
�2a0Fx þ a�0Fs

� �� 1

2
a0� �a0ð Þ2=s2

� �� �

a0¼a�
0

¼ 0; ð6:4:6bÞ

or

p ¼ 1: g � a0jxð ÞSCF1;2 � a0 xð Þ�SCF ¼ s2Fx þ �a0
s2Fs þ 1

¼ a0 xð Þ�QCF; cf: ð6:4:5Þ: ð6:4:6cÞ

Thus, for p ¼ 1 the UMLE andMMSE of amplitude a0 are equal.Moreover, whens2 !1,

then a�0jSCF;QCF ¼ Fx=Fs ¼ a�0jminimax: the a priori pdf of a0 is uniform, cf. (21.72) of

Ref. [4]. On the other hand, whens2 ! 0, a�0jSCF;QCF ¼ �a0, as expected, since this is the only

value of a�0 and therefore no estimation is needed, only detection.

6.4.1.2 Pdfs of a�p¼1 xð Þ To evaluate performance, as represented by the Bayes risk or

error R�
E, for p ¼ 1 and subsequently for p < 1 (Section 6.4.2 ff.), we shall require various

30 For further analytic details and discussion here, see Section 21.3.1 of Ref. [4].
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first-order pdfs of a�p¼1 ¼ yð Þ, among them w1 yjH0ð Þ, w1 yjH1ð Þ, and w1 yja0ð Þ. These are

readily obtained for the present example, since from (6.4.5), and (6.4.6c), a�p¼1 is a linear

function of the data setx and is consequently itself normally distributed, in asmuch as bothx
and a0 are postulated to obey normal statistics, cf. (6.4.1), (6.4.3), (6.4.4). We note, en

passant and also as expected, that a�p¼1, (6.4.6c) is unbiased p ¼ 1ð Þ:

�
a�p¼1

�
H1

¼
s2 ~nþ a0~sð ÞkNs
D E

n;a0
þ �a0

� �

s2Fs þ 1ð Þ ¼ �a0: ð6:4:7Þ

Moreover, in the strong-signal cases, that is, when s2Fs >> 1 and s2Fs >> �a0ð Þ it is

readily shown that a�p¼1 is a0 	 1þ O s2Fsð Þ�1
h i �

, cf. Problem 6.13b.

We beginwith the first-order pdfs of y ¼ a0 xð Þ�p¼1 and y� a0, underH1, which are found

to be (Problem 6.13),

w1 yjH1ð Þ � w1

�
a�p¼1jH1

� ¼ e� a�
0
��a0ð Þ2=2s2

0

2ps2
0

� �1=2 ; with a�0
� � ¼ �a0;s

2
0 � a20 � �a20 ¼

s4Fs

1þ s2Fsð Þ

¼ l

2ps4Fs

� �1=2

e�l y��a0ð Þ2=2s4Fs ; l � 1þ s2Fs:

9
>>>>>=

>>>>>;

ð6:4:8Þ
The first and second moments of y under H1 are respectively

yh iH1
¼ �a0; y2

� �
H1

¼ �a20 þ
s4Fs

1þ s2Fsð Þ : ð6:4:8aÞ

Similarly, the first-order pdf of D a�0 � a�p¼1 � a0

 �
becomes (Problem 6.13)

w1 y� a0jH1ð Þ � w1 D a�0jx
� �

p¼1
¼ e� Da�

0ð Þ2=2Ds�2
0

2pDs�2
0

� �1=2 ; with Ds
�2
0 ¼ s2

s2Fs þ 1ð Þ ; ð6:4:9aÞ

¼ 2ps2

l

� ��1=2

e�l y�a0ð Þ2=2s2

; ð6:4:9bÞ

which reduces as s2 !1 to the minimax pdf

lim
s2 !1

w1 D a�0jx
� �

p¼1
¼ Fs

2p

� �1=2

e� a�
0
�Fx=Fsð Þ2Fs=2 ¼ w1 y� a0 H1j Þ��

s2 !1;


ð6:4:10Þ

from (21.103c) of Ref. [4]. Other needed pdfs of y ¼ a�0 xð Þp¼1

h i
may be obtained in the

same way [cf. Problem 6.13]. We have

w1 yjH0ð Þ ¼ 2ps4Fs

� ��1=2
le� ly��a0ð Þ2=2s4Fs ; y � a�p¼1; ð6:4:11Þ
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and with the help of (6.4.4), we obtain

w1 yja0ð ÞH1
¼ w1 y; a0jH1ð Þ

w1 a0ð Þ ¼ 2ps4Fs

� ��1=2
le� ly��a0�a0s

2Fsð Þ2 2s4Fs= ð6:4:12Þ

and

w1 y; a0jH1ð Þ ¼ l 2ps3Fs

� ��1
e� ly��a0�a0s

2Fsð Þ2þ �a0�a0ð Þ2s2Fs

� �
2s4Fs:= ð6:4:13Þ

(The associated characteristic functions are specified in Problem 6.14, Table 6.2.)

The quantity s2Fs ¼ a20 � �a20

 �
~skNs, cf. (6.4.5), has an important physical interpre-

tation for the present (coherent) D and E example: it is the “output signal-to-noise ratio

for estimation,” namely S=Nð Þ2outjE for this example. Thus, using the fading factor h0,

defined by

h0 � 1� �a20

a20

; so that s2 ¼ h0a
2
0 ; ; �a20 ¼ 1� h0ð Þa20 ; ð6:4:14Þ

we can write

s2Fs ¼ h0a
2
0Fs � S

N

� �2

outjE
¼ h0Fs

S

N

� �2

in

� P�
E-coh

S

N

� �2

in

;
S

N

� �2

in

� a20 : ð6:4:15Þ

The quantity P�
E-coh ¼ h0Fsð Þ is a processing gain associated with coherent estimation

here. The limits 0; 1ð Þ within which h0 is confined need clarification. For “deep fading,”

a0 ¼ 0 and;h0 ¼ 1, s2 ¼ a20 . As we shall see presently (Section 6.4.3), detection can be

carried out at all levels of S=Nð Þ2in ¼ a20 > 0ð Þ, so that h0 ¼ 1 is a valid value of the fading

factor for the present example of this section, including the accompanying estimation

process. On the other hand, forh0 ¼ 0, that is,s2 ¼ 0,we have the casewhere a0 ¼ �a0, and
so on, from the limiting pdfw1 a0ð Þ ¼ d a0 � �a0ð Þ, (6.4.1a), which states that the parameter

a0 to be estimated is in fact a priori known, cf. remarks after Eq. (6.4.6c). There is thus no

longer an estimation problem, as reflected in the fact that now S=Nð Þ2outjE ¼ 0, but only one

of detection, cf. Section 6.4.3 ff. Accordingly, for joint detection and estimation here h0

must satisfy the condition

0 < h0 � 1; ð6:4:16Þ
with S=Nð Þ2outjE defined in (6.4.15) above.

6.4.1.3 Bayes Risk: Minimum Average Error In order to compare our results when

p < 1 with the classical cases p ¼ 1ð Þ we need the latter to begin with. Most of these are

available in Section 21.3.1 of Ref. [4]. We have (Problem 6.15):

Eq: ð21:102cÞ: R�
EjQCFjp¼1 ¼ C0 a�20

� �
H1

� 2 a�0a0
� �

H1
þ a20

h i
¼ C0s

2

1þ s2Fsð Þ ;

ð6:4:17aÞ
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Eq: ð21:102dÞ: R�
EjQCF: minimax ¼ C0F�1

s ; p ¼ 1; ð6:4:17bÞ

Eqs: ð6:2:20Þ; ð6:2:37Þ:
R�
EjSCFjp¼1 ¼ C0 A1 � w1 y; a0jH1ð Þ��

a�
0
¼a0¼0

h i

¼ C0 A1 � 1þ s2Fsð Þ
2ps3F1=2

s

e��a2
0
1þs2Fsð Þ=2s4Fs

" #;

ð6:4:17cÞ

this last with the help of (6.4.13). We note that although a�0-QCF ¼ a�0-SCF here, vide (6.4.6a),
the corresponding Bayes risks, or minimum average errors, are generally quite different,

as a consequence of the strongly different cost functions chosen. As expected, R�
E ! 0

whens! 0, sincea�0 ! �a0, a knownquantity.Also,
�
R�
EjSCF

�
minimax

¼: �2psF1=2
S

��1
,s2 � 1,

here, with exp ��a20=2s
2Fs

� �¼: 1, cf. (6.4.17b) and Section 6.4.2.2 ff.

6.4.2 Bayes Estimators and Bayes Error, p H1ð Þ � 1

We are now ready to extend the analyses of our illustrative examples of Section 6.4.1

above to the critical cases when p H1ð Þ � 1, namely, estimation of signal amplitude

when the signal is not surely known to be present in the noise. In addition, we confine

our attention to the uncoupled cases of Section 6.2, where estimation is detection-

directed, but where both operations can be independently carried out. Accordingly, for

this we need first the optimum detector structure, which is obtained by applying (6.4.4)

to the likelihood ratio (6.1.6b). This in turn gives us the Bayes “on–off” detection

processor expressed in terms of the Bayes estimators a�0 xð ÞQCF; SCF (6.4.6c). Thus

we write

L xð Þ ¼ m

ð

½ao�

Eq:ð6:4:4Þ dao
Eq:ð6:4:3Þ

¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Fs

p e��a2o=2s
2þ 1þs2Fsð Þa�p¼1

xð Þ2=2s2

; m ¼ p=qð Þ;s > 0

¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Fs

p e��a2o=2s
2þ s2Fxþ�aoð Þ2=2s2 1þs2Fsð Þ :

9
>>>>>>>>>=

>>>>>>>>>;

ð6:4:18Þ

Equation (6.1.6) provides the desired optimal binary test for signal presence or absence in

the usual way. Equation (6.4.18) applies in the uncoupled situation: no coupling between

detection and estimation. For the cases of weak coupling (Section 6.3.2), the more

complicated likelihood ratio L0
g xð Þ (6.3.22), must be employed, namely,

L0
g xð Þ ¼ K 0L xð Þ þ m

ð

½ao�
f01 S aoð Þ½ �

Eq:ð6:4:4Þ
Eq:ð6:4:3Þ

Ca � C1�a þ C0
10

� � dao; ð6:4:19Þ
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which depends of course on our choice of f01.We shall limit our present analysis here to the

uncoupled D and E modes. In any case, the procedures of Section 6.3.6 above govern

detection and the acceptance or rejection of the associated estimates.

Finally, when s! 0 (no fading), (6.4.1a) applies, with ho ¼ 0, cf. (6.4.14) and

;a�p¼1 ¼ ao ¼ �ao are known a priori. Consequently there is no need for the estimation

process, and the Bayes detector (6.4.18) here then reduces to the exact and well-know

classical result31

Eq: ð20:117aÞ; ½4�: L xð Þjs¼0 ¼ me�a2oFs=2þaoFx ; with ao ¼ �ao ¼
ffiffiffiffiffi
a2o

q
; etc: ð6:4:19aÞ

In fact, we obtain from (6.4.18) through O s4ð Þ the result

logL ¼ log m� �a2oFs=2
� �þ �aoFx þ s2

2
Fx� �aoFsð Þ2 �Fs

h i

� s4Fs

2
Fx� �aoFsð Þ2 �Fs

2

� �
þ O s6

� �
;

ð6:4:19bÞ

which shows the complex structure (in Fx) of the threshold expansion (in s2). [See the

remarks following Section 6.4.4 ff.]

6.4.2.1 Bayes Estimators, p � 1 For the Bayes estimators of amplitude a�p� 1 here we

apply the results (6.4.6c) under the condition p ¼ 1 for a�p�1jSCF to (6.2.31), L ¼ 1, or

(6.2.35), and (6.4.5) for a�p� 1jQCF to (6.2.7), to write at once

SCF1;2: a�p� 1 xð ÞSCF ¼ p
s2Fs þ �ao
s2Fs þ 1

� �
¼ pa�p¼1; 0 � p � 1; ð6:4:20Þ

QCF: a�p�1 xð ÞQCF ¼ L xð Þ
1þ L xð Þ a

�
p¼1 xð ÞQCF

¼ a�p¼1 xð ÞQCF 	 1þ
ffiffiffi
l

p

m
e�a

2
o=2s

2� s2Fxþ�aoð Þ2=2s2l

( )�1

;

l � s2Fs þ 1;m ¼ p=q;

ð6:4:21Þ

¼ a�p¼1 xð Þ�QCF
1þ C xð Þ � a�p¼1jQCF; ð6:4:21aÞ

so that alternatively

C xð Þ ¼
ffiffiffi
l

p

m
e�a

2
o=2s

2�a�
p�1

xð ÞQCF=2s2 ¼ L xð Þ�1: ð6:4:21bÞ

31 We can also obtain (6.4.19a) by expanding 1þ s2Fsð Þ�1¼: 1� s2Fs þ 	 	 	 in (6.4.18).
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The data dependent quantity C xð Þ may also be expressed from (6.3.44) in terms of the

coefficient B xð Þ, (6.3.44a), representing the QCF sample bias here, as

C xð Þ ¼ B xð Þ
1� B xð Þð Þ ; 0 � B xð Þ � 1; and; 0 � C xð Þ � 1; ð6:4:21cÞ

where from (6.3.44a) and (6.4.18)

B xð Þ ¼ 1þ L xð Þ½ ��1 ¼ 1þ m
ffiffiffi
l

p e��a2o=2s
2þ s2Fxþ�aoð Þ2=2s2l

� ��1

ð6:4:22Þ

explicitly in this example. Note that although a�p¼1 xð ÞQCF is linear in the data x, a�p<1 xð ÞQCF
is not. On the other hand, a�p�1 xð ÞSCF is linear in x, all 0 � p � 1.

From (6.3.44b), or using (6.2.11a) directly for the averages, we see that the estimators

of ao are unconditionally unbiased, that is,

a�p� 1jQCF
D E

H
¼ a�p� 1jSCF1;2
D E

H
¼ p�ao; H ¼ H0 þ H1: ð6:4:23Þ

The corresponding average bias is now q�a0, from (6.3.44b). These results hold not only for

the no-coupling cases but also for the situation where the coupling is weak, in the sense of

Section 6.3.2 above, provided the cost functions used in (6.3.26) are employed. [For other

cost functions and for the cases of strong coupling (Section 6.3.1, where the D and E

processes are not separable), it is not generally known whether the estimators remain

unconditionally unbiased, that is, under h iH each example must be examined separately,

Sections 6.3.4.2 and 6.3.4.3.]

6.4.2.2 Bayes Error, SCF1;2; p � 1 We begin with the analytically simpler case of the

SCFBayes error associatedwith a�p� 1jSCF. From (6.2.37),L ¼ 1, andw1 y; aojH1ð Þ, (6.4.13),
w1 yjH0ð Þ, (6.4.11), we note that if we set z � a�p� 1jSCF, we obtain from (6.4.20) the relation

z ¼ py and therefore the newpdfs of z,which are needednow in the determinationofR�
E : SCF,

(6.2.37), where p � 1. Specifically, from the relation y ¼ z=p these are

W1 z; aojH1ð Þ ¼ p�1w1 y ¼ z

p
; aoj H1

� �
;W1 zjH0ð Þ ¼ p�1w1 y ¼ z

p
j H0

� �
; ð6:4:24Þ

so that the Bayes error for the SCF becomes here, since m � p=q (6.1.6b):

R�
EjSCFjp�1 ¼ C0 A1 � m�1W1 zjH0ð Þz¼0 þW1 z; aojH1ð Þz¼ao¼0

n o

p� 1

� �

¼ C0 A1 � B pð Þ� 1þ s2Fs

s2F1=2
s

 !
e��a2o=2s

4Fs

ffiffiffiffiffiffi
2p

p
" # ð6:4:25Þ

in which with (6.4.14),

B pð Þ� � m�1 þ 2ps2
� ��1=2

e��a2o=2s
2 ¼ m�1 þ 2phoa

2
o

 ��1=2

e� 1�hoð Þ=2ho ;m ¼ p=q:

ð6:4:25aÞ
[Observe that when p ¼ 1, that is,m!1,R�

EjSCFjp�1 here reduces to (6.4.17c), as required.]
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Theactual evaluationof theBayes error (6.4.17c) here, as defined in (6.2.14) for theSCF2,

and in (6.2.33) for SCF1, is somewhat arbitrary, depending as it does on the choice of the

constantAL¼1.However, the choice ofA1 is not quantitatively very critical, since the concern

is primarily with the relative minimum error, which in turn is based on comparisons with

the classical Bayes estimator a�p¼1 under H1. This, of course, is suboptimum under

H ¼ H0 þ H1, p < 1. A useful reasonable choice of A1 is made by selecting some (finite)

maximum value of the output signal-to-noise ratio S=Nð Þ�out ¼ s2Fs, (6.4.15), such that

R�
E s2Fs�maxð Þ ¼ 0, with R�

E s2Fs ¼ 0
� � ¼ C0A

�
1 > 0ð Þ, so that, necessarily, smaller values

of S=Nð Þ�out produce larger errors, on average. It is not difficult to show (Problem 6.15) that

this is achieved by using (6.4.14) in (6.4.25) and setting

A�
1 � B pð Þ�F uoð Þ; uo ¼ s2Fmax; ð6:4:26aÞ

so that

F uð Þ � 1þ u
ffiffiffi
u

p
� �

e� 1�hoð Þ=2hou

2phoa
2
o

 �1=2 ;F uoð Þ � F uð Þ � 0; ð6:4:26bÞ

since 0 � u � uo, with u ¼ s2Fs ¼ S=Nð Þ2outjE (6.4.15). The result is that the Bayes error

here for SCF1;2, (6.4.25), can be written compactly as

R�
EjSCFjp� 1 ¼ C0B pð Þ� F u0ð Þ � F uð Þ½ �uo>u > 0; ¼ 0; u ¼ uo: ð6:4:27Þ

[Note incidentally that B pð Þ� ¼ m�1 þ 1=2ð ÞF 1ð Þ.] Figure 6.8 illustrates the function F uð Þ
(6.4.26b).

6.4.3 Performance Degradation, p < 1

We are interested in most instances in the error incurred when we assume that the signal

containing the parameters being estimated is present, that is, under the assumption that

p ¼ 1. When this is actually not the case, that is, p < 1, we naturally choose the H1�optimum

estimator p ¼ 1ð Þg�
ujp¼1 for what is now the suboptimum estimator under H ¼ H0 þ H1,

p < 1. Accordingly, for this purpose we use the relative Bayes error D R�
Ejp� 1jSCF1 , which

from (6.3.59) is defined by the relation

D R�
Ejp� 1 �

REjp� 1 � R�
Ejp� 1

R�
Ejp� 1

� 1ð Þ
 !

; ð6:4:28Þ

where R�
Ejp� 1 is the average error associated with the suboptimum estimator gu (or

estimators, gu) in question. The definition (6.4.28) is quite general and applies for all

estimators, optimum and suboptimum for which it is possible to optimize the D and E

processes separately, as discussed in Sections 6.3.2–6.3.6.

6.4.3.1 Relative Bayes Error; p � 1 Accordingly, for the present example involving the

SCF estimators (6.4.23), where now y ¼ a�p¼1jH1
is chosen to be the suboptimum estimator

underH ¼ H0 þ H1,wemust use the pdfsw1 of (6.4.11), (6.4.13) in (6.2.37),L ¼ 1, in place
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of SCF1;2 ¼ W1jH0;H1
, (6.4.24). Then,

B pð Þ ¼ pB pð Þ�; ð6:4:29Þ

and with A1 ¼ A�
1, (6.4.26a), the suboptimum average error is here

REjp�1jSCF ¼ C0B pð Þ� F u0ð Þ � pF uð Þ½ � ð6:4:30Þ

for the now suboptimum estimator a�p¼1 under H.

Applying (6.4.27) and (6.4.30) to (6.4.28) givesus the relativeBayes error in simple form:

SCF1;2: D R�
Ejp�1jSCF ¼ 1� pð Þ F u0ð Þ

F uð Þ � 1

� ��1

; ð6:4:31Þ

cf. (6.4.26b) for F uð Þ, 0 � u � u0. As expected, when p ¼ 1, D REjp�1jSCF ¼ 0; u < u0ð Þ:
a�p¼1 is now optimum, while for p ¼ 0, D R�

E is maximal and a�p¼1 can be noticeably

suboptimum. Figure 6.9 illustrates the behavior of D R�
E as a function of the a priori signal

probability p.

A number of general and expected results32 can be noted at once for estimation of

amplitude and intensity
� ¼ a2p� 1

�
here: (1) increasing u ¼ �S=N�2

out

� � u0
�
leads to lower

Bayes error and lower suboptimum average error (6.4.30), but a slower rate for the latter, as

u! uo, since p F
�
u
� � F

�
u
�
. (The relative Bayes error here (6.4.31), however, increases

with increasing
�
S=N

�2
out

as u! uo (Fig. 6.9)
33, because of the way the average risks are

defined); (2) larger values of p
�� 1

�
also yield less (relative) Bayes error, for given

u ¼ �S=N�2
out
; (3) p ¼ O

�
0:9� 1:0

�
can give values of the estimators often acceptably

close to the usually postulated situation of p ¼ 1, provided
�
S=N

�2
out

is large enough. This in

turn implies a concomitant probability of detection
�
PD

�
which is equal to or above the

threshold of acceptability
�
PD-accept:

�
, (6.3.47) et seq.

In addition, the suboptimum estimator ap<1

� ¼ a�p¼1

�
here for the SCF1,2 is biased with

respect to H ¼ H0 þ H1, since

ap�1jSCF
� �

H
¼ p�a0 þ q

a0

s2Fs þ 1ð Þ ¼
�
a�p�1jSCF

�þ q
�a0
l
; ð6:4:32Þ

where the bias is q�a0=l, unlike the optimum estimator (6.4.23).

6.4.3.2 Bayes Error and Relative Bayes Error, p � 1, QCF This quantity is

QCF: R�
Ejp� 1jQCF ¼ C0 a2o � 2

�
aoa

�
p�1

�
H
þ �a�2p�1

�
H

n o

QCF
; ð6:4:33aÞ

32 Ref. [8] contains a wider spectrum of numerical results.
33 Note from (6.4.15) that u ¼ 4Fs for the two fading cases illustrated in Fig. 6.9.
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where a�p�1jQCF is given by (6.4.21) and (6.4.21a–c). This in turn can be expressed

compactly by

R�
Ejp� 1jQCF ¼ C0 qI2 H0ð Þ þ p a2o � I11 H1ð Þ þ I2 H1ð Þ

n oh i
; ð6:4:33bÞ

following [(3.27a) and (3.27b)] of Ref. [1], or by direct substitution using [(6.4.21) and

(6.4.21a–c)]. The components of (6.4.33b) are explicitly

I2 H0ð Þ �
a�
p¼1jQCF

1þ L�1

� �2H0

¼
ð1

�1
y2

1þ A

m
e�y2=2B2

��2

w1 yjH0ð Þ dy; ð6:4:34aÞ
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FIGURE6.9 The relative (SCF)Bayes error (6.4.31) versus p, for the casesa2o ¼ 40,ho ¼ 0:1 (weak
fading——),; ao ¼ 6, and a2o ¼ 4, ho ¼ 1 (heavy fading - - - - - - ),;�ao ¼ 0, cf. (6.4.14); u � s2Fs,

(6.4.15).
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I11 H1ð Þ �
2a0a

�
p¼1jQCF

1þ L�1

� �H1

¼
ð1

�1
2y2

1þ A

m
e�y2=2B2

��1

w1 yjH1ð Þ dy; ð6:4:34bÞ

I2 H1ð Þ �
a�
p¼1jQCF

1þ L�1

� �2H1

¼
ð1

�1
y2

1þ A

m
e�y2=2B2

��2

w1 yjH1ð Þ dy; ð6:4:34cÞ

in which, cf. (6.4.21), (6.4.21b):

A �
ffiffiffi
l

p
e�a

2
o=2s

2

;B2 ¼ s2

l
; l � 1þ s2Fs; ð6:4:34dÞ

and where we have used w1 yjH1ð Þ ¼ Ð w1 yjaoð Þw aoð Þdao to integrate over ao in (6.4.34b),
remembering that xjH1 ¼ nþ aos in a

�
p¼1jQCF. The pdfs w1 yjH0ð Þ and w1 yjH1ð Þ are given

respectively by (6.4.11), (6.4.8). When A=m < 1, and in particular for p >> q, that

is, large m in relation to A, termwise integration of I2 H0ð Þ, and so on is practical.

However, generally (for all finite A=m) numerical integration is recommended and is

readily carried out [9],34 some results of which are shown in Fig. 6.10. When m!1, that

is, p ¼ 1, (6.4.33a) and (6.4.33b) reduce at once to a�p�1 ! a�p¼1, as required, and

; R�
Ejp�1jQCF !C0s

2= 1þ s2Fsð Þ, (6.4.17a), also as expected. (This may be verified

by observing that R�
Ejp¼1jQCF ¼ C0 a20 � y2

� �
H1

h i
and by evaluating y2

� �
H1

directly, noting

that a2o ¼ �a2o þ s2, cf. Problem 6.13.)

Next, we determine the suboptimum average risk REjp� 1jQCF for the now suboptimum

estimator ap� 1jQCF ¼ a�p¼1jQCF. Applying [(6.2.11)–(6.2.13)] to ap�1jQCF we easily show

(Problem 6.15) that the QCF analogue here of (6.4.30) is

REjp� 1jQCF ¼C0

�
ao�a�p¼1

�2
QCF

D E

H
¼C0 q ao� a�p¼1

 �2	 


H0

þ p ao� a�p¼1

 �2	 


H1

( )

QCF

¼ C0 q
s4Fs þ �a2o
s2Fs þ 1ð Þ2 þ p

s2

s2Fs þ 1ð Þ

( )

QCF

:

9
>>>>>=

>>>>>;

ð6:4:35Þ

Figure 6.11 illustrates the suboptimum case RE p�1j jQCF (6.4.35), for the same parameters

used in Fig. 6.10. The suboptimum estimator ap¼1 QCFj under H is also biased, since

ap� 1jQCF
� �

H
¼ p�ao þ q

�ao
s2Fs þ 1ð Þ ¼ ap�1jSCF

� �
H
; ð6:4:36Þ

which is the same bias as ap� 1jSCF, cf. (6.4.32). This follows, of course, from (6.4.6c) above,

namely from the fact that a�p¼1jSCF ¼ a�p¼1jQCF here. (We remark that REjp¼0lREjp¼1

according to hoa
2
ol�a2o.)

34 The author is indebted to Dr. A. H. Nuttall, NUWC, for the calculations of Figs. 6.8–6.12.
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Applying (6.4.33b) and (6.4.35) to (6.4.28) gives us the relative Bayes error for the

amplitude estimator under the QCF:

D R�
Ejp�1jQCF ¼ ps2=lþ q s4Fs þ �a2o

� �
=l2

p a2o � I11 H1ð Þ þ I2 H1ð Þ
n o

þ qI2 H0ð Þ
� 1 � 0ð Þ: ð6:4:37Þ

[It is not difficult to show that D R�
E ¼ 0 when p ¼ 1 q ¼ 0ð Þ, as required from the definition

(6.4.28). At the other extreme, when p ¼ 0 q ¼ 1ð Þ, then I2 H0ð Þjq¼1 ! 0 and

D R�
Ejp¼0jQCF !1, as indicated in Figs. 6.12a–c ff.]
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FIGURE 6.10 Bayes risk, R�
Ejp�1jQCF, Eq. (6.4.33b), for a

�
p�1jQCF, (6.4.21), as a function of the

a priori probability p, with I0 ¼ a2oFs ¼ S=Nð Þ2outjE=ho, (6.4.15). Here S=Nð Þ2outjE ¼ 10I0;

s2 ¼ 4; ao ¼ 6; ;a2o ¼ 40 ; ho ¼ 0:1.
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For the Figs. 6.10–6.12a–c ff., it is easily seen from (6.4.15) that

I0 � a2oFs ¼
S=Nð Þ2outjE

ho

; P�
E-coh � hoFs;with S=Nð Þ2outjE ¼ hoa

2
oFs: ð6:4:38Þ

(The specific numerical values employed are s2 ¼ 4; ao ¼ 6; ; ho ¼ 0:1; a2o ¼
40 ¼ S=N2

in

� �
.) P may be interpreted as a processing gain; see Section 3.4.9.

Several observations can bemade: as processing gain,
� � Fs or

�
S=N

�2
out

�
, is increased,

the average quadratic error decreases for the Bayes and suboptimum cases, for all values

of the a priori probability p � 1. This is to be expected, inasmuch as the interfering effects
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FIGURE 6.11 Suboptimum average risk REjp�1jQCF, (6.4.35), for ap�1jQCF ¼ a�p¼1jQCF under H.

Same parameters as Figure 6.10.
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of the noise on estimation decrease relative to the signal. However, there is always some

(average) error as long as S=Nð Þ2out is finite, even as p! 1, again due to the presence of the

noise. For the suboptimumsituation (Fig. 6.11), the average risk increasesnonmonotonically

with decreasing values of p, also, for the same reasons, in spite of the pdf, w1 a0ð Þ, of the
amplitude, which does specifically exhibit its influence in the optimum cases (Fig. 6.10),

through the nonmonotonic behavior ofR�
E with p. The relative Bayes errorD R�

EjQCF (6.4.37)

300

1(a)

0

–1

–2

–3

–4

–5

–6

P

0.99

0.98

0.97

0.96
0.95
0.94

0.92
0.90

0.85

0.80

0.70

0.60

0.50
0.40

0.30

0.20

0.10
0.07
0.04
0.02
0.01

100
30
10

R* = 3

log (           )R - R*
R*

FIGURE 6.12 (a) The relative Bayes error R�
Ejp� 1jSCF (6.4.37) versus the a priori probability p, for

heavy fading: ao ¼ 0 and ;ho ¼ 1:0; Io ¼ a2oFs ¼ 4Fs ¼ S=Nð Þ2outjE=ho (6.4.15). (b) Relative

Bayes risk (QCF), (6.4.37), vs. a priori probability p, for ao ¼ 6; a2o ¼ 40;s2 ¼ 4 and ho ¼ 0:1;

I0 ¼ a2oFs¼ S=Nð Þ2outjE=ho,¼3, 10, 30; S=Nð Þ2outjE ¼ 10I0, cf. Figs. 6.10 and 6.11. (c) Same as Figure

6.12b; I0 ¼ 30, 100, 300.
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here behaves generally as expected: as p! 1, D R�
EjQCF ! 0, and as p! 0, D R�

EjQCF !1.

However, there is relatively small variation with S=Nð Þ2outjE throughout as p changes,

indicating a certain measure of robustness of the relative Bayes error to changes in

S=Nð Þ2outjE for 0 < p � 1. (Similar behavior is noted [9] for other parameter values of the

pdf w1 aoð Þ, for example, �ao ¼ 0; a2o ¼ s2 ¼ 4 ¼ S=Nð Þ2in;ho ¼ 1 (heavy fading)).

6.4.3.3 Performance Degradation: Mean Relative Error A usually much simpler and

often useful measure of performance degradation is the mean relative error between a

suboptimum and optimum estimator, defined above by Eqs. (6.3.60) and (6.3.60a). Here the

suboptimumestimator, under p < 1, is chosen to be the optimumone under p ¼ 1, reflecting

the fact that frequently estimation is made under the assumption that the signal is truly

present in the data sample when actually it is not.
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For our present example of optimum amplitude estimation, cf. (6.4.6c), for p ¼ 1 and the

SCF and QCFs, we readily show that (Problem 6.15d), vide (6.4.36):

�
a�p¼1

�
H
¼ q

�ao
1þ s2Fs

� �
þ p�ao ¼ �ao 1þ ps2Fsð Þ

1þ s2Fs

; with
�
a�p� 1

�
H
¼ p�ao: ð6:4:39Þ

Consequently, applying (6.4.39) to the simpler measure of degradation (6.3.56a) gives the

simple result

Da�o ¼ m 1þ s2Fs

� �� ��1
;m � p=q ¼ p

1� pð Þ ; ð6:4:40Þ

such that ðlim p! 1ÞDa�o ¼ 0 and ðlim p! 1ÞDa�o ¼ 1, both of which limits are entirely

reasonable. We note also that Da�o vanishes when S=Nð Þ2outjE ¼ s2Fsð Þ, (6.4.15), becomes
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indefinitely large, that is, when s2Fs !1. Under this condition it is shown in Section 6.4.4

following that the associated (Bayes) detection probability (6.4.47b), P�
D ¼ pp�D ! 1, with

false alarm probability a�
F ! 0, s2 > 0. Thus, when s2Fs !1, on the average

�
a�p¼1

�
H
¼

�
a�p�1

�
H
¼ p�a�o, the unconditionally unbiased estimate (6.4.23) for both the SCF and QCF.

In practical cases, however, at best 1 � s2Fs < 1, so that
�
a�p¼1

�
H
D
�
a�p�1

�
H
¼ p�a�o and

P�
D � 1;a�

F � 0, with the latter quantitatively described by (6.4.46) ff.

The role of the cost function is implicit in the degradation result (6.4.40) and in the

structure of the estimators themselves, for example, as used to obtain a�p¼1, (6.4.5),

(6.4.6c), and a�p�1, (6.4.20), (6.4.21), respectively for the SCF and QCF employed here.

The more complete analysis, of course, is given by the calculation of the average risks or

errors R�
E;RE, respectively, namely, (6.4.27), (6.4.30) for the SCF and (6.4.33b), (6.4.35)

for the QCF. The latter averages are usually computationally much more intensive, as we

would expect.

6.4.4 Acceptance or Rejection of the Estimator: Detection Probabilities

It remains to apply the results of Section 6.3.6 to determine whether or not the estimate in

question is to be accepted or rejected for our present example, described at the beginning

of Section 6.4. Again, the explicit analysis is limited to the cases of “no coupling,” cf.

(6.3.47a), and to the optimum and suboptimum estimation of the (normalized) amplitude

ao, when the signal (6.4.2) is coherently observed in an additive, correlated Gauss noise

process, and ao is normally distributed according to (6.4.1). The appropriate likelihood

ratio L xð Þ here is given by (6.4.18). Its associated pdfs Q1 uð Þ;P1 uð Þ, under H0 and H1,

respectively, are to be determined from (6.3.51). The desired (conditional) false alarm

probability a�
F and the (conditional) probability of correct detection p�D are then to

be obtained from (6.3.50). It turns out, as we shall see below, that exact results can

be obtained here, essentially due to the original Gaussian nature of Fx and a�p¼1 in L xð Þ,
cf. (6.4.18), as well as to the normal pdf (6.4.1) of the amplitude ao.

We begin by observing thatL xð Þ, (6.4.18) here, can be expressed in the more convenient

logarithmic form

logL xð Þ ¼ log m� log
ffiffiffi
l

p
� �a2o
2s2

� �
þ ly xð Þ2

2s2
� u xð Þ; with y xð Þ � a�p¼1 ¼

s2Fx þ �ao
1þ s2Fs

;

ð6:4:41Þ

where y xð Þ is governed by the pdfs w1 yjH0ð Þ, (6.4.11), and w1 yjH1ð Þ, (6.4.8), again with

l � 1þ s2Fs, cf. (6.4.34d). The decision process itself is described by (6.3.47a) for these

uncoupled cases.

Applying these pdfs [(6.4.8) and (6.4.11)] according to (6.3.51), to (6.4.41), completing

the square in the exponential, and so on, give us for the pdfs of u ¼ logL xð Þ

Q1 uð Þ ¼
ð1

�1

e�ijðu�B0Þ�F 	 e1=l0r 1�ij=rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ij=r

p
dj

2p
;P1 uð Þ ¼

ð1

�1

e�ijðu�B0Þ�F 	 e1=l0r̂ 1�ij=r̂ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ij=r̂

p
dj

2p
;

ð6:4:42aÞ
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where

r � l

s2Fs

¼ lr̂; F � �a20
2s4Fs

¼ F̂

l
; l0 � s6F2

s

l �a2o
; l � 1þ s2Fs; and

B0 � log m� log
ffiffiffi
l

p
� �a2o
2s2

9
>>>=

>>>;

: ð6:4:42bÞ

[Note at once from the integrands of (6.4.42a) that the characteristic functions of ujH0;H1

are explicitly

F1 ijjH0ð Þu ¼
e�ijB0�F 	 e1=l0r 1�ij=rð Þ

1� ij=rð Þ1=2
;F1 ijjH1ð Þu ¼

e�ijB0�F̂ 	 e1=l0r̂ 1�ij=r̂ð Þ

1� ij=r̂ð Þ1=2
; ð6:4:42cÞ

and that 1=l0r � F ¼ 0; 1=l0r̂ � F̂ ¼ 0, from (6.4.42b), thus ensuring that

F1 0jH0;1

� �
u
¼ 1. Clearly, lim jð Þ!1ð ÞF1 ! 0: there are no steady or oscillating compo-

nents in the c.f.s and consequently no delta functions in the pdfs. With the transformation

p ¼ �ij, the relations (6.4.42a) take the more familiar equivalent forms [10]

Q1 uð Þ ¼
ð1

�1
ep u�B0ð Þ�F e

1=l0 rþpð Þ
ffiffiffiffiffiffiffiffiffiffiffi
r þ p

p dp

2pi
; P1 uð Þ ¼

ð1

�1
ep u�B0ð Þ�F̂ e

1=l0 r̂þpð Þ
ffiffiffiffiffiffiffiffiffiffiffi
r̂ þ p

p dp

2pi
; ð6:4:43Þ

which are given at once by No. 651, p.78, of Campbell and Foster’s tables [10],

namely,35

Q1 uð Þ ¼
ffiffiffi
r

p

r
e�F 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u�B0

p e�r u�B0ð Þcosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�B0ð Þ
l0

s( )

; u�B0 � 0þ; ¼ 0 elsewhere; ð6:4:44aÞ

P1 uð Þ ¼
ffiffiffi
r̂

p

r

e�F̂ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u�B0

p e�r̂ u�B0ð Þcosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�B0ð Þ
l0

s( )

; u�B0 � 0þ; ¼ 0 elsewhere ð6:4:44bÞ

9
>>>>>>=

>>>>>>;

A more convenient form for evaluating the false alarm probability a�
F and

the conditional detection probability p�D ¼ 1�b� (6.3.51) is obtained by making the

35 The relations (6.4.44a) and (6.4.44b) can readily be obtained by observing that

F1 ijð Þx ¼ eijB0�F 	 e1=a 1�bijð Þ

1� bijð Þ1=2
¼
X1

m¼0

1

a

� �m
eijB0�F

1� bijð Þmþ1=2
and that

ð1

�1
e�ijxF1 ijð Þx

dj

dp

¼ e�F
X1

m¼0

x� B0ð Þmþ1=2

G mþ 1=2ð Þ e� x�B0ð Þ
�����
jx�B>0þ

� e�F
X1

m¼0

w1 x� B0 mj ÞG
�

where the pdfs w1 x� B0 mj ÞG
�

are recognized as G-pdfs. Summing the series with the help of G mþ 1=2ð Þ ¼
2mð Þ! ffiffiffiffimp

=22mm!, the (next to the last) relation above gives the desired results [(6.4.44a) and (6.4.4b).
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transformations u�Bo ¼ z¼ v2 so that Q1;P1 [(6.4.44a) and (6.4.44b)] become alterna-

tively

Q1 vð Þ ¼
ffiffiffi
r

p

r
e�

ffiffi
r

p
v�1=

ffiffiffiffiffi
l0r

p� �2
þ e�

ffiffi
r

p
vþ1=

ffiffiffiffiffi
l0r

p� �2� �
;v� 0 þ; ¼ 0 elsewhere ð6:4:45aÞ

P1 vð Þ ¼
ffiffiffi
r̂

p

r

e�
ffiffi
r̂

p
v�1=

ffiffiffiffiffi
l0r̂

p� �2
þ e�

ffiffi
r̂

p
vþ1=

ffiffiffiffiffi
l0r̂

p� �2� �
;v� 0 þ; ¼ 0 elsewhere ð6:4:45bÞ

9
>>>>>=

>>>>>;

since 1=l0r�F¼ 1=l0r̂� F̂¼ 0, from (6.4.42b). [Note thatQ1;P1 are non-Gaussian pdfs

in v.] Next, applying (6.4.45a) and (6.4.45b) to (6.3.50) yields by obvious transformations

to the desired detection probabilities:

Falsealarmprob: a�
F ¼

ð

logK�B0ð Þ1=2
Q1 vð Þdv¼ 1�1

2
Q C

þð Þ
H0

h i
þQ C

�ð Þ
H0

h i� �
; ð6:4:46Þ

with

C
ð Þ
H0

� log K=mð Þþ 1=2ð Þ loglþ�a2o=2s
2

s2Fs=l

� �1=2

 �a�o
2s4Fs

� �1=2

; ð6:4:46aÞ

and

Detection prob: p�D ¼ 1�b� ¼
ð

logK�B0ð Þ1=2
P1 vð Þdv¼ 1�1

2
Q C

þð Þ
H1

h i
þQ C

�ð Þ
H1

h i� �
;

ð6:4:47Þ
with

C
ð Þ
H1

� log K=mð Þþ 1=2ð Þlog lþ�a2o=2s
2

s2Fs

� �1=2

 l�a�o
2s4Fs

� �1=2

; ð6:4:47aÞ

and
P�
D ¼ pp�D ¼ p 1�b�ð Þ; ð6:4:47bÞ

in which, as usual, Q xð Þ � 2=
ffiffiffi
p

pð Þ Ð x
o
e�t2dt¼ erf xð Þ is the familiar error function.

Equations (6.4.46) and (6.4.47) apply for s2 > 0, that is, ho > 0, cf. (6.4.14), and �a2o � 0.

Givena�
F wemust determine the corresponding threshold Kð Þ numerically, since (6.4.46)

does not invert analytically. However, when �ao ¼ 0, namely in the cases of deep fading

ho ¼ 1, then C
þð Þ
H0; H1

¼ C
�ð Þ
H0; H1

, respectively, and we easily find that

�ao ¼ 0: logK ¼ log m� 1

2
log lþ s2Fs

l
Q�1 1� a�ð Þ� �2

; s2 > 0; ð6:4:48aÞ

with

�ao ¼ 0: P�
Dj�ao¼0 ¼ 1� Q CH1

½ � ¼ 1�Q log K=mð Þ þ 1

2
log l

� �1=2 ffiffiffiffiffiffiffiffiffiffiffi
s2Fs

p.
" #

:

ð6:4:48bÞ
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On using (6.4.48a) in (6.4.48b), we can show directly that the latter reduces to the simple

result

P�
Dj�ao¼0 ¼ p 1� Q Q�1 1� a�

F

� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Fs

ph i� �
: ð6:4:48cÞ

We also observe when S=Nð Þ2outjE ¼ s2Fs; ð6:4:15Þð Þ is very large, that is, s2Fs >> 1, for

a given log K=mð Þ, then a�
F ! 0 and p�D ! 1 as required: the detection process is

consistent (p. 59) and of course it is Bayes optimal in view of (6.4.41). Finally, when

s2 ! 0; ho ¼ 0ð Þ; �a2o > 0, Eq. (6.4.41) reduce to Eq. (6.4.19a) here: just detection, no

estimation, since �ao ¼ ao, and so on, are now a priori known. Similarly, Eqs. (6.4.46) and

(6.4.47), as well as (6.4.19a), reduce to well-known results. We recall from (6.4.6c) and

(6.4.18) that these detection results are also appropriate to the uncoupled estimation

process associated with the estimators a�p¼1 for the SCF and QCF.

Figure 6.13, based on (6.4.48c), illustrates the simple special case of deep fading:

�ao ¼ 0;;ho ¼ 1, so that I0 is the effective output signal-to-noise ratio for estimation (E)

and detection (D), cf. (6.4.38). In addition, results for a number of selected values of the false

alarm probability a�
F are included, for each choice of I0. As expected, increasing S=Nð Þ2out

increases P�
D, and for a specified S=Nð Þ2in � a20 this means increasing the processing gain

� Fsð Þ. Similarly, smaller false alarmprobabilities reduceP�
D.Again,weaccept the estimate
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FIGURE 6.13 Probability of detection P�
D vs. a priori probability p under deep fading (6.4.48c),

ao ¼ 0;ho ¼ 1 and I0 � S=Nð Þ2outjE, for the false alarm probabilities a�
F ¼ 10�3; 10�4; 10�5.
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when P�
D is at or above some reasonable prechosen value PD-accept, cf. (6.3.48) and the

discussion in Section 6.3.6 earlier.

Extension to the coupled cases becomes more complex as we extend the analysis to the

“weak coupling” case, cf. Sections 6.3.2 and 6.3.3. The procedure and results are further

modified by the selection of the additional cost functions (6.3.1). For reasonable choices of

P�
D, namely those for which P�

D, (6.3.48), can be evaluated in suitably manageable analytic

form, governed in turn by the ability to obtain the needed pdfs of a �ð Þ;b �ð Þ analytically, we
may expect results analogous to the examples above. Otherwise, the weakly coupled, and

certainly the strong-coupled cases, present major technical problems and consequently

require numerical methods. These topics are reserved for future investigation.

6.4.5 Remarks on the Estimation of Signal Intensity Io � a2o

Instead of estimating the (normalized) signal amplitude the estimate of the corresponding

signal intensity Io � a2o
� �

may be desired. Here we may take advantage of the general

observation that anymonotonic functionof anoptimumalgorithm, that is, aBayes likelihood

ratio L xð Þ for detection, or a Bayes estimator g�
u for optimally estimating a parameter u, is

also Bayes optimal.Well-known examples are the familiar logL representation in detection

(e.g., (6.1.6b)) and log L̂1, (6.4.6a) for estimation. Since Io is simply monotonic in ao, many

of the specific results of Sections 6.4.1–6.4.4 above are immediately transformed to

corresponding relations for Io through the relation ao ¼ I1=2o , with optimality preserved.

Thus, we see that

p ¼ 1: g� Iojxð ÞSCF;QCF ¼ I�ojSCF;QCF ¼ a�
2

p¼1 ¼
s2Fx þ ao

s2Fs þ 1

� �2

¼ y xð Þ2; l ¼ 1þ s2Fs;

ð6:4:49Þ
from (6.4.5), (6.4.6c).

However, the estimator I�o is biased under H1, since from (6.4.8a)

p ¼ 1: I�ojSCF;QCF
D E

H1

¼ y2
� �

H1
¼ �a2o þ s4Fs= s2Fs þ 1

� � ¼ �a�2p¼1

�þ �B xð Þ�
H1
;

ð6:4:50Þ
cf. (6.4.7), with an average bias

�
B xð Þ�

H1
¼ s4Fs= s2Fs þ 1

� �
; ð6:4:50aÞ

usually called “the bias,” vide the discussion following Eqs. (6.3.43a–c). In addition, the

Bayes risks for I�ojp¼1 are analogous to (6.4.17a–c) for a
�
p¼1, and are also not monotonic in

theBayes risks for a�p¼1

� ¼ ffiffiffiffi
I�0

p �
p¼1

, as can be seen from calculations using the transformed

pdfs of I�oð¼ y2Þ, I�oð¼ a2oÞ, namely,

ŵ1 I�ojH0;1

 �
¼ 1

2
ffiffiffiffi
I�o

p w1

ffiffiffiffi
I�o

q
jH0;1

� �

y

; Eqs: ð6:4:11Þ and ð6:4:8Þ;

ŵ1 I�o; I0jH1

� � ¼ 1

4
ffiffiffiffiffiffiffi
I�0I0

p w1

ffiffiffiffi
I�o

q
;
ffiffiffiffi
Io

p
jH1

� �

y;ao

;Eq: ð6:4:13Þ;

ŵ1 Ioð Þ ¼ 1

2
ffiffiffiffi
Io

p w1

ffiffiffiffi
Io

p �

ao
; Eq: ð6:4:1Þ

9
>>>>>>>>=

>>>>>>>>;

; I�o � 0; ð6:4:51Þ
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or by direct calculations based on a�p¼1 itself. For instance, in the case of the QCF we have

now for the Bayes or minimum average error

p ¼ 1:

R�
EjQCFjp¼1 ¼ C0

�
I�

2

o

�
H1

� 2
�
I�oIo
�
H1

þ I2o

n o

¼ C0

�
a�

4

o

�
H1

� �2a�2o a2o
�
H1

þ a4o

n o

p¼1
;

ð6:4:52Þ

which on the application of (6.4.8) and (6.4.1), can easily be shown to differ significantly

from the square of (6.4.17a). Similar remarks hold for comparisons of optimum and

suboptimum estimators of signal intensity, p ¼ 1.

By the same reasoning, in themore general situation for p � 1we see that Eqs. (6.4.20),

(6.4.21) for a�p�1jQCF;SCF may be extended directly, like (6.4.4a) for p ¼ 1, to the

case p � 1:

I�o

�����SCFjp�1 ¼ pI�o

�����SCFjp¼1 ¼ p
s2Fx þ ao

s2Fs þ 1

� �2

¼ py xð Þ2 ð6:4:53aÞ

I�o

�����QCFjp�1 ¼ L xð Þ
1þ L xð Þ I

�
o

���QCFjp¼1 ¼ I�o

�����QCFjp¼1 	 1þ
ffiffiffi
l

p

m
e�a

2
o=2s

2� s2Fxþ�aoð Þ2=2s2l

( )�1�����

ð6:4:53bÞ

since L xð Þ, (6.4.18), here is invariant of the estimator(s) I�o or Io
� �

, depending only on the

original pdfs (6.4.1) of ao and the received data x (6.4.2), (6.4.3). This also means that

the associated detection process [specified in Section 6.4.4 and depending on the (log)

likelihood ratio of (6.4.18) specifically],which is required for acceptance or rejection of an

estimate (Section 6.3.6) is similarly invariant of the estimators employed in the generic

example of this section. But performance and comparisons, measured here byBayes error,

when p � 1 also do not simply scale according to the relation between I�o and a
�
o. We may

expect results forBayes error to bemuchmore complex for the former than for the latter, by

extrapolation from the results for p ¼ 1, cf. (6.4.52). In summary, then, we may state

generally that: (1) quantities to be estimated that are monotonic in other estimatible

quantities, for example, Io ¼ a2o here, have Bayes estimators monotonic in the correspond-

ing other Bayes estimators. However, (2) the associated measures of performance (Bayes

error or risk) are not similarly monotonic. Moreover, (3) the new Bayes estimators are

generally biased, even when the original ones are unbiased, as has been shown by our

analysis throughout the chapter up to this point. Performance and performance compar-

isons, along the lines of Section 6.3.6, must be separately calculated: they are not simply

scaled by the monotonicity relationship exemplified here by (6.4.49).

PROBLEMS

P6.13 (a) Obtain the results Eq. (6.4.5), p ¼ 1, for g�
QCF, and for g

�
SCF, Eq. (6.4.6c), of the

normalized amplitude a0, obeying the pdfs of Eqs. (6.4.1) and (6.4.2).

(b) Obtain in the strong signal cases the optimum amplitude estimator a�p¼1D ao,

s2Fs >> 1, cf. (6.4.7).

8
>>>>>><

>>>>>>:
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(c) Obtain the pdf w1 yjH1ð Þ under H1 of y � a�o xð Þp¼1, as given by Eq. (6.4.8), and

show that accordingly (6.4.8a) represents yh iH1
and y2

� �
H1

here. Hint: use the

Gaussian nature of ao and a�o along with their various characteristic functions

(Problem 6.14).

(d) Obtain the pdf under H1 of D a�o ¼ y� ao, Eq. (6.4.9a).

(e) Show that w1 yjH0ð Þ, w1 yjaoð Þ, w1 y; aojH1ð Þ, are respectively given by

Eqs. (6.4.11), (6.4.12), (6.4.13).

P6.14 For the Gaussian example of Section 6.4, the principal aim is to obtain Bayes

estimators and optimal D and E performance of the (normalized) Gaussian

amplitude ao. The signal waveform s is known a priori, namely, S ¼ a0s
ffiffiffi
c

p
, as

is the covariance function KN r1; t1; r2; t2ð Þ ¼ cNkNð Þ of the additive normal noise

N, with �N ¼ 0,which accompanies the signal. Here the pdfw1 aoð Þ of ao is specified
by Eq. (6.4.1), the noise pdf by (6.4.3), with the normalized data vector

x ¼ X=
ffiffiffi
c

p½ �ð Þ in the usual way.

(a) Show that if the likelihood ratio isL xð Þ ¼ mD xð Þ >> 1 or << 1, then here the

Bayes estimator (6.4.21) of ao for the QCF becomes

0 � L << 1: ap�1 xð Þ�QCF ¼: L� L2 þ 	 	 	� �
a�p¼1 xð Þ�QCF ¼: L a�p¼1 Xð Þ�QCF;

Eqs:ð6:4:5Þ and ð6:4:6cÞ
1 << L � 1: D 1� L�1 þ L�2 þ 	 	 	� �

a�p¼1 xð Þ�QCF D a�p¼1 Xð Þ�QCF

8
>><

>>:

9
>>=

>>;

ð1Þ

where L xð Þ now is given explicitly by (6.4.18).

(b) Show for H0: x ¼ n;H1 ¼ x ¼ nþ aos, where Fx � ~xk�1
N s;Fs � ~sk�1

N s, that

Fxh iH0
¼ 0; F2

x

� �
H0

¼ Fs; Fxh iH1
¼ �a0Fs; F2

x

� �
H1

¼ Fs þ a2oF
2
s ; ð2Þ

in which h iH0
¼ h in; h iH1

¼ h in; ao .
(c) For the pdfs of column one of Table 6.2 below, obtain the associated character-

istic function and moments:

P6.15 (a) Using the results of Eqs. (6.4.8)–(6.4.13) and Problem 6.14(b), obtain the Bayes

risks R�
E, (6.4.17), p ¼ 1.

(b) Verify the results (6.4.26) and (6.4.27).

(c) Verify the results (6.4.35) for the average risk R�
Ejp�1jQCF.

(d) Obtain ap�1jQCF
� �

, Eq. (6.4.36).

P6.16 Apply the relations [(6.3.45) and (6.3.46)] for interval estimation of a�pjSCF when
p � 1, (6.4.20), to the example discussed in Section 6.4:

(a) Show that the pdf (6.3.45) of the estimatorgu ¼ a�p�1jSCF, Eq. (6.4.20), of the true
value ao here is given by
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PL a�p�1jSCFja0
 �

¼ q 	 exp
� a�o� pao=l
� �2

=2s4Fsp
2=l2

h i

2s4Fsp2=l
2

� �1=2

8
<

:

9
=

;

þ p exp
� a�o� pao
� �2

=2s4Fs=p
2=l

h i

2s4Fsp2=lð Þ1=2

8
<

:

9
=

;
; ð1Þ

with c.f.

F1 ij Hj Þpy ¼ q exp ip�aoj=l� s4Fsp
2j2=2l2

� �þ p exp ip�aoj � s4Fsp
2j2=2l

� �
:



ð1aÞ

(b) Show that the “interval estimate” (6.3.45), or probability that a�p�1jSCF lies in the
interval

�
1� l̂

�
;
�
1þ l̂

�h i
, is here

PIjp � 1 ¼ q

2
Q

1þ l̂
 �

ao � p�ao=l

2s4Fsp2=l
2

� �1=2

2

4

3

5� Q
1� l̂
 �

ao � p�ao=l

2s4Fsp2=l
2

� �1=2

2

4

3

5

8
<

:

9
=

;

þ p

2
Q

1þ l̂
 �

ao � p�ao

2s4Fsp2=lð Þ1=2

2

4

3

5�Q
1� l̂
 �

ao � p�ao

2s4Fsp2=lð Þ1=2

2

4

3

5

8
<

:

9
=

;
:

ð2Þ

TABLE 6.2 l � 1þ s2Fs;ð6:4:8Þ
� �

pdf : y � ap¼1 xð Þ� log c:f:ð Þ ¼ log F1 ijjH0;1

� �
y

yh i y2
� �� yh i2 ¼ s2

w1 yjH0ð Þ; Eq: ð6:4:11Þ i�aoj=l� s4Fsj
2=2l2 �ao

l
s4Fs

l2

w1 yjH1ð Þ; Eqs: ð6:4:8Þ
and ð6:4:8aÞ

i�aoj � s4Fsj
2=2l2 �ao ð5:4:7Þ s4Fs

l

w1 y� aojH1ð Þ; Eqs: ð6:4:9aÞ
and ð6:4:9bÞ

�s2j2=2l D a�o
� �

H1
¼ y� aoh iH1

¼ 0

s2

l

w1 yjaoð ÞH1
; Eq: ð6:4:12Þ

i
�ao þ aos

2Fs

l

� �

� j � s4Fsj
2

2l2

�ao s4Fs

l2

w1 y; aojH1ð Þ; Eq: ð6:4:13Þ
i

�ao þ aos
2Fs

l
þ �ao

� �

� j � j2

2

s4Fs

l2
þ s2

� �

2�ao s4Fs

l2
þ s2

w1 aoð Þ; Eq: ð6:4:1Þ i�aoj � s2j2=2 �ao s2
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Hence, for the unconditionally unbiased estimator
�
a�p�1jSCF

�
H
¼ p�ao, cf.

(6.4.23), we may reasonably replace the unknown value of a0 by p�a0, so that

the interval estimate (2) now becomes

PI p�1ð Þ ¼ q

2
Q

1þ l̂� l�1
 �

p�ao

2s4Fsp2=l
2

� �1=2

2

4

3

5� Q
1� l̂� l�1
 �

p�ao

2s4Fsp2=l
2

� �1=2

2

4

3

5

8
<

:

9
=

;

þ pQ
l̂p�ao

2s4Fsp2=lð Þ1=2
" #

; ð3Þ

which reduces further to the simple result

PIjp¼1 ¼ Q
l̂p�ao

2s4Fsp2=lð Þ1=2
" #

; q ¼ 0: ð3aÞ

P6.17 The Bayes risk for the intensity estimator I�0 xð Þp¼1

� ¼ a�
2

p¼1

�
, (6.4.49), is given by

Eq. (6.4.52) for the QCF, namely,

R�
EjQCFjp¼1 ¼ C0 I�

2

0

D E

H1

� 2 I�0I0
� �

H1
þ I�

2

0

� �
ð1Þ

Show that

I�
2

0 ¼ �a4o þ 6s2�a2o þ 3s4=4; I�
2

0

D E

H1

¼ 3þ 6�aol=2s
2Fs þ 4�a4ol

2= 2s2Fsð Þ2
n os3F2

s

l3=2
; ð2aÞ

�2 I�0I0
� �

H1
¼ � 2

l2
ffiffiffi
p

p 2s2A2 þ 6�aoA3 þ 12s2�a2oA4=4þ 3s4A4=4
�

8
>>><

>>>:

þ A2�a
2
o þ A3�a

3
o þ A42�a

4
o

� �g; ð2bÞ

with A2 ¼ s4Fs=2þ �a2o;

A3 ¼ 2�aos
2Fs;

A4 ¼ s4F2
s :

9
>=

>;
ð2cÞ

P6.18 Show for u xð Þ ¼ B0 þ l
2s2 ‘

�
0 xð Þ in Eq. (6.4.41) that the pdfsQ1 ‘�0

� �
and P1 ‘�0

� �
are

given by Eqs. (6.4.44a) and (6.4.44b) on setting u� B0ð Þ ð2s2=lÞ
l ¼ ‘�0 therein.

Hence show that p�D (and P�
D), as well as a

�, remain unchanged from the general

results (6.4.46) and (6.4.47).

P6.19 (a) Evaluate the likelihood ratio for detection L0
g for the example of Section 6.4, in

the weakly coupled D and E cases, when the cost function f01 S a0ð Þð Þ in

Eq. (6.3.21a) is given by

PROBLEMS 375



A: f01 ¼ a2oA01; B: f01 ¼ aoB01: ð1Þ

Thus, show that L0
g is explicitly

A: L0
g xð Þ ¼ K 0L 	 1=

ffiffiffi
l

p
þ A01m

Cb � C1�b

� �
s2

l
1þ l

ffiffiffi
2

p
s2

a�
2

p¼1 xð Þ
� �( )

¼ L 	 a2 þ b2y xð Þ2
n o

ð2Þ

B: L0
g xð Þ ¼ L 	 K 0 þ B01a

�
p¼1 xð Þ

n o
¼ L 	 a1 þ b1y xð Þ½ �: ð3Þ

(b) Obtain the pdfs Q1 uð Þ; P1 uð Þ for u ¼ u xð Þ¼ a monotonic equivalent to

logL0
g xð Þ under H0 and H1, for example,

A: u xð Þ ¼ logLþ a2 þ b2y
2 xð Þ; B: u1 xð Þ ¼ logLþ a1 þ b1y xð Þ ð4Þ

(c) Obtain the probabilities p�D and of performance by obvious modifications of the

analysis of Section 6.4.4. Thus, (6.4.41) becomes

A: logL00
g ¼ B0 þ a2 þ l=2s2 þ b2

� �
y2;

B: logL00
g ¼ B0 þ a1 þ b1yþ l

2s2
y2: ð6Þ

(For B. complete the square and modify the pdfs of y (Eqs. (6.4.8) and (6.4.11)

correspondingly.) Note that the decision process is now: decide H1: S� N if

u1;2 xð Þ � A > 0ð Þ, or H0: N if u1;2 xð Þ < A, where the threshold A ¼ A K 0ð Þð Þ is
determined by presetting a�

F at the desired level.

P6.20 (a) Prove that

Theorem: If the function FJ XjSð Þ of the independent variable S is bounded and
continuous for every a�

F and for every value of the parameter S 2 W, then for

each X 2 G there exists a value X such that
ð

W
FJ XjSð ÞwL Sð ÞdS ¼ FJ XjŜ Xð Þ

 �
: ð1Þ

or equivalently, in terms of likelihood ratio LJ XjSð Þh iS ¼ LJ XjŜ
 �

. Thus the

Ŝ Xð Þ is a (fixed) signal (for someX). The Ŝ Xð Þ is a “pseudo” estimate, with little

general value in itself except with respect to the actual detector’s performance.

(b) Let N and S be additive Gaussian noises, with zero means, and let N have the

covariance KN . Then (1), written in terms of likelihood ratios, is given by

ð

W
exp � 1

2
~SK�1

N S
� �þ ~XKNS

� �
wJ Sð ÞdS ¼ exp � 1

2

~̂
SK�1

N Ŝ
 �

þ ~XK�1
N Ŝ

� �
:

ð2Þ

We next give S the Gaussian distribution wJ Sð Þ ¼ 2pð Þ�J=2
detKSð Þ�1=2

exp � 1
2

ŜK�1
S Ŝ

 � �
. Then show that the likelihood ratio becomes
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L ¼ m det Iþ KSK
�1
N

� �1=2
exp

1

2
~XK�1

N K�1
S þ K�1

N

� �
K�1

N X

� �
: ð3Þ

The structure of the estimator is

Ŝ Xð Þ ¼ K�1
S þ K�1

N

� �
K�1

N X; ð4Þ
which is recognized as a minimum variance estimator of the stochastic signal S,
under the hypothesis H1ð Þ that the signal is indeed present in the observation

interval p ¼ 1ð Þ. Thus, the interpretation is given that the average likelihood

ratio (the right most part of (2)) consists of a fixed bias term depending only on

a priori information and an operation of cross-correlation of the data X with a

minimum variance estimate Ŝ Xð Þ of the stochastic signal S. (This is essentially
the Price–Kailath result, specialized to the binary problem above [11]. See

Esposito [12] for some further explanation of these results.)

P6.21 In the Bayes theory of optimum detection, it is illuminating in the context of

joint detection and estimation as discussed in this chapter to point out an

interpretation of detection alone that also incorporates the concept of an

estimator. This is a form of minimum variance estimator S of the signal, which

is obtained from the average (i.e., the generalized) likelihood ratio, L, where
now it is assumed that the signal estimator Ŝ is perfectly known, that is, obtained

under H1 p ¼ 1ð Þ. For additive Gauss noise, this estimator is specifically a quantity

linearly related to the logarithmic gradient of the (average) likelihood ratio L and

conversely, this (average) likelihood ratio is expressible uniquely in terms of this

minimum variance estimator, Ŝ, obtained under H1 p ¼ 1ð Þ. Expressed analytically,
this result is

Ŝ ¼ KNr logL and L ¼ exp ~XKN Ŝ�
ð
~XKNdŜþ C

� �
; ð1Þ

where C is a constant independent of X, and where specifically

L ¼ p WJ X� Sð ÞN
� �

S

qwJ Xð Þ ¼ m

ð

W
exp � 1

2
~X� ~S
� �

K�1
N X� Sð Þ

� �
wJ Sð ÞdS

�
exp � 1

2
~XK�1

N X

� �
; m ¼ p=q: ð2Þ

It is emphasized that this estimator Ŝ is useful only with respect to the detection

process here.Hence,wemay alternatively call it a “pseudoestimator,” to distinguish

it from the estimators under H1 p < 1ð Þ, which occur in the joint Dþ E problems

considered in the present chapter. (If the Bayes estimator g� Sð Þp<1 is desired when

p < 1, see, e.g., Sections 6.2.1, 6.2.2, 6.3, and 6.3.7.)

Accordingly, show that Ŝ is givenby (1) and that the estimator–correlator is explicitly

represented in the Gaussian cases by the first term in the exponent of L, (1).
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Hints: note that the minimum variance (MMSE) of S under H1 p ¼ 1ð Þ is

Ŝ ¼ Ŝ Xð Þ ¼
ð

W
S exp � 1

2
~X� ~S
� �

K�1
N X� Sð Þ

� �
wJ Sð Þ

�ð

W
exp � 1

2
~X� ~S
� �

K�1
N X� Sð Þ

� �
wJ Sð ÞdS: ð3Þ

Define a function G Xð Þ equal to the numerator of (2). Using (3), obtain G�1rG ¼
�K�1

N X� Sð Þwhere from (2) getrG ¼ �K�1
N XLþrL

� �
exp � 1

2
~XK�1

N X
� �

, and

divided by G�1rG, using (2) again, obtain

G�1rG ¼ K�1
N Xþ L�1rL: ð4Þ

From (4) and G�1rG obtain the desired result

Ŝ ¼ KNr logL; H p ¼ 1ð Þ: ð5Þ

Thus, the transformation mentioned above is linear and is embodied by KN, the

covariancematrix of the afore-mentionedGaussian noise. To establish the converse,

L, Eq. (1), one can always express this generalized (i.e., averaged over S) likelihood
ratio L as

L ¼ exp K�1
N

ð
ŜdXþ C

� �
; ð6Þ

which on integration by parts is just (1). Thus, L can always be represented by an

“estimator–correlator,” namely, the first term in (1), and an additional bias term that

dependson theestimator andon thedata.Finally,we remark that theestimator Ŝ in (3)
is noncasual, since S is estimated as a whole given all data X in the sample. (These

results are due to Esposito [13], also [12]; see also Refs [11,14].)

6.5 SUMMARY REMARKS, p(H)1 � 1: I — FOUNDATIONS

The fundamental problem addressed here, with extensions in this chapter, is parameter

estimation36 when it is not surely known a priori that a signal containing the parameter (or

parameters) to be extracted is present in a noise background. As mentioned earlier, the

dominating assumption in the application of estimation procedures is almost always that the

signal,with its parameters, is present in the receiveddataX tð Þ, namely that p H1ð Þ ¼ 1.Often

there is little justification for this, particularly when detection for one or another reason is

required, which is an admission that the signal detection probability PD is not strictly unity.

The principal results of assumingPD ¼ 1, that is, that p H1ð Þ is correspondingly unity, is that
the estimators, including optimal or Bayes estimators, are degraded, namely in reality are

suboptimum and are moreover biased, with an unknown bias.

If p H1ð Þ is close to unity, or if PD is likewise nearly unity, it may be acceptable to assume

p H1ð Þ ¼ 1, and so on, and regard the resultant estimator as effectively optimum or as an

36 Including the signal itself.
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effective processor if it is suboptimum to begin with. The key question here, clearly, is how

close to unitymust p H1ð Þ be for such a decision to bemadewith acceptably small error. This

is ultimately a subjective choice, of course.However, the quantitative results of the examples

of Section 6.4 strongly suggest that p should be O � 0:90ð Þ at least. Such values indicate

small false alarm probabilities and require large values of S=Nð Þout, which in turn may

demand large processing gains [P �ð Þ, cf. ___] in the situations involving weak received

signals.

The structure of the Bayes estimators can also be noticeably influenced by the degree of

coupling between estimator and detector, as noted in Table 6.1. With “no coupling,”

detection (D) and estimation (E) are carried out independently. The processing required

for each does not affect the other.With “weak coupling,” D and E are again independent, but

the detection algorithm, L0
g, depends on a cost function f01 containing the signal,

cf. Eq. (6.3.22). The order in which D and E are carried out is arbitrary once more. In

the case of strong coupling, however, estimationmust precededetection (Section6.3.1),with

the detection process influenced by the estimate and vice versa (Table 6.1).

In several cases of practical interest it is possible to carry through the formal operation

indicated by the general theory and thus obtain explicit analytic results for the estimators

under p < 1, and for performance (expected risk, etc.). This is evident for amplitude

estimation (Section 6.4), under rather restrictive conditions (6.4.0). The latter, however,

canbe considerablymitigated in the threshold regimes, allowing extensions to non-Gaussian

and nonadditive signal and noise. Chapter 7 provides a number of extensions of the joint

theory discussed in the this chapter. These include the role of incoherent reception in

amplitude estimation under p � 1; an example ofwaveform estimation;multiple alternative

D and E [3]; and extension of the present generic “one-shot” (i.e., single-observation

interval) theory to include “multishot” or joint sequential detection and estimation under the

condition p H1ð Þ � 1 [2].

Finally, it is emphasized that in specific applications quantitative results here in most

cases must be obtained by computational methods, usually sooner rather than later in the

analysis. Because of the present memory, speed, and economy of available computational

assets, this is not the inhibiting factor that it was at the initial development of the theory in

1968 [1], 1970 [2].
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7
JOINT DETECTION AND ESTIMATION
UNDER UNCERTAINTY, pk H1ð Þ < 1.
II. MULTIPLE HYPOTHESES AND
SEQUENTIAL OBSERVATIONS

In Chapter 6, we have described from a Bayesian viewpoint a theory of simultaneous binary

detection H1: S� N vs:H0: Nð Þ and estimation of a single signal (or one or more of its

parameters). In all cases, only one signal out of a set of one or more possible signals can be

present, subject to simultaneous detection and estimation.1 The coupling strategies between

detection and estimation in these cases, and their results, depend on three different measures

of coupling, namely, no coupling, weak coupling, and strong coupling, (cf. Sections 6.1.1,

6.1.2 and 6.3.1, and Table 6.1). The treatment in Chapter 6 deals with the nonsequential

single binary on–off decision situation, based on discrete sample data received in the finite

space–time interval 0;Rð Þ; 0; Tð Þ.
Here,we extend the analysis to topic (1), the single decision cases involving simultaneous

optimum detection and estimation p H1ð Þ < 1ð Þ under multiple hypotheses, and topic (2), to

joint detection and estimation for both sequential observations andmultiple decisions. These

extensions of the original study of Middleton and Esposito [2, 3], are based mainly on

thework of Fredriksen [4, 5], particularly in Ref. [4], extendedmore recently here to include

discrete sampling in space aswell as time. Accordingly, this chapter is organized as follows:

Section 7.1 treats topic (1) above. Section 7.2 presents a solution of examples relevant to

topic (1). Topic (2) on sequential operations is discussed in Section 7.3. Section 7.4

Non-Gaussian Statistical Communication Theory, David Middleton.
� 2012 by the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

1 The important situation of D and E when multiple signals can be present at the same time, although requiring no

fundamentally new theory, is clearly much more complex and is properly the subject of special analysis, cf. Bar-

Shalom [1], for example.
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concludes with some brief discussions of existing and related topics, as well as problems yet

to be solved. Table 7.1 provides a guide to the contents of the chapter.

7.1 JOINTLY OPTIMUM DETECTION AND ESTIMATION UNDER

MULTIPLE HYPOTHESES, p H1ð Þ � 1

Throughout this section we assume that the received data are discretely sampled, according

to (1.6.2a) and (1.6.2b), only during one space–time observation interval of duration jRjT .
We also assume that to each member of a finite transmitted message, set Mkf g,
k ¼ 0; 1; . . . ;K, consisting of K þ 1 elements, there is a distinct received signal selected

from the sampled set Sk rm; tnð Þ; k ¼ 0; 1; . . . ;Mf g. The relations between a message
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symbol Mk and a (discrete) received signal Skf g can also require the additional step

involving the estimation of the descriptive parameters, represented by a vector uk, which
is associated with the set of signal samples Sk rm; tnjukð Þf g. Thus, when a message symbol

Mk is supplied by the message source, a corresponding (continuous) signal is injected into

the channel, with the result that the received signal (after discrete sampling, refer to the

beginningofSection1.6), becomes ingeneralXk rm; tnjukð Þ ¼ Nk rm; tnjukð Þ �Sk rm; tnjukð Þ
or Xk ¼ Nk � Sk, j ¼ m; n, m ¼ 0; 1; . . . ;M, n ¼ 0; 1; . . . ;N (cf. Section 1.6). As before,

� represents “combination,” which may be additive, multiplicative, or other physically

possible association of signal and noise. The received discrete sampled waveform Xk

accordingly depends on the unknown parameter vector uk. Here, we have assumed that both

the transmitted and received signals are deterministic. This, however, is not a restriction:

random signal waveforms may be included as well. The formalism here essentially follows

that of the treatment of multiple alternative detection summarized in Chapter 4, but with the

added complication of joint parameter or waveform estimates.

7.1.1 Formulation

To allow the possibility that no signal is present during the observation interval Rj jT and thus

that the received data consist of noise alone, we let one of the message symbols M0ð Þ
correspond to the null signal S0f g � 0. The parameter set corresponding to the null signal is

u ¼ 0, namely, we require that u ¼ 0 implies S gm; tnjuð Þ � 0. This restriction limits the

parameters considered to be nonnuisance or energy-dependent parameters (amplitude and

duration of a signal are examples of such parameters).

The space of possible observed data vectorsX is G and the space of all possible received

signal parameters u isW, refer to Chapter 1. The spacesG andW are in general quite arbitrary

and the probabilities are to be interpreted as appropriately definedmeasures on these spaces.

The subsetsW0;W1; . . . ;WK of the signal spaceW that are assigned to the message symbols

M0;M1;Mi; . . . ;MK are called signal classes or hypothesis classes.

The decision space is the discrete set g ¼ g0; g1; gi; . . . ; gKf g:

g0 The decision that hypothesesH0 is true: noise alone is present, and thus no estimate

is required;

gi The decision that hypothesesHi is true, namely, a signal of classWi is present, and an

estimate û Xð Þ of the signal parameters u is required.

Next, we let pi denote the a priori probability of occurrence of signals of classWi, where

each signal in class i has the same L 6¼ Kð Þ set of parameters u ¼ u1; u2; . . . ; u‘; . . . ; uL½ �.
(These parameters, however, have different pdf values wi uð Þ 6¼ wk uð Þ, which enables us to
deal with the cases where u‘ may be zero, while ui and so on, may be nonvanishing). Thus,

wi uð Þ implies both wi uð Þ and the set u for class i, that is, u � u ið Þ, which can be different for
class k 6¼ ið Þ. Moreover, umay include the original parameter set of the transmitted signals

and anyparameters introduced by themedium. Ifwe assume that elements of the signal class

Wk are distributed according to the probability density wk uð Þ, the total a priori probability
density function w uð Þ can be expressed as

w uð Þ ¼
XK

i¼0

piwi uð Þ: ð7:1:1Þ
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Minimizing an average risk or cost associated with the combined operation of detection

and estimation, as described in Chapters 4 and 6, provides the basis for analyzing multiple

alternative reception here. Accordingly, our analysis begins with the expression of the

average risk for the combined operations of detection and estimation and is given by

RD � E ¼
XK

k¼0

ð

G

dX

ð

W

duC u; gkð ÞP gkjXð ÞW Xjuð Þw uð Þ: ð7:1:2Þ

Fordisjoint signal classes, it is always possible to determinewhether a correct or an incorrect

decision has been made, given the actual parameter vector u associated with a signal and

the decision gmade by the receiver. If a costC u; gð Þ is now associatedwith each parameter–

decision pair u; gð Þ, it can be interpreted as the cost of either a correct or an incorrect decision
and thus the presence, whether true or not, of a signal of class W i or kð Þ.

As we have seen in Chapter 6, the cost functions here play a particularly significant role

in joint detection Dð Þ and estimation Eð Þ under uncertainty, that is, when the a priori

probabilities as to the presence of signals is less than unity, since they determine the extent

to which the two operations are coupled together. Accordingly, we find it useful to establish

the following category of cost functions in some detail, where typically,

C
b
ik ¼ cost of deciding a signal of classWk: Sk uð Þ � N is present;

when actually a signal of classWi: Si uð Þ � N occurs; including

the null signalW0: N; i ¼ 0; 1; . . . ;K; i 6¼ k; i ¼ k:

9
=

;
ð7:1:2aÞ

where the symbol�, denotes no coupling,weak coupling, strong coupling, respectively, that

is,Dþ E;D� E;D� E, between detectionD and estimationE. Explicitly, we have inmore

detail the following:

I. No coupling:

C
DþEð Þ
ik ¼ C

Dð Þ
ik þ C

Eð Þ
ik ; where C

Dð Þ
ik ;C

Eð Þ
ik are constant ðpositive or zeroÞ

costs for detection and estimation:ðSince detection

and estimation are uncoupled; we can; at a later stage

of separate optimizations; replace C
Eð Þ
ik by C

Eð Þ
ik

�
u; û
�
;

where u ¼ û
�
X
�
is the estimator of u:

9
>>>>>=

>>>>>;

ð7:1:2bÞ
Here C

D or Eð Þ
ik ¼ a

Dð Þ
ik ; a

Eð Þ
ik , the costs of classifying u in Wk, when u 2 Wk. (Since detection

and estimation are uncoupled, we can at a later stage of separate optimizations, replaceC
Eð Þ
ik

by C
Eð Þ
ik

�
u; û
�
, where û ¼ û

�
X
�
is the estimator of u.) Similarly, for weak coupling, we can

write (see Section 7.2 following):

II. Weak coupling:

C
D � Eð Þ
ik ¼ a

ðD � EÞ
ik þ C

ðD � EÞ
ik ¼ cost of classifying u 2 Wk; when u 2 Wk;

¼ aikjweak þ fik uð Þweak
� �

in detection and estimation: We observe that

coupling is weak; in that detection does not

depend on the estimator structure:

9
>>>=

>>>;

ð7:1:2cÞ
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III. Strong coupling:

C
D � Eð Þ
ik ¼ aik þ fik

�
u; û
�h i D � Eð Þ

¼ is the strong coupling cost aik of classifying u

inWk; when again; u 2 Wi; and consequently

choosingHk: Sk uð Þ � N versus the true state

Hi: Si uð Þ � N:Here; f
D�Eð Þ

ik represents the the

added cost of presenting u as an estimator

of the parameters u 2 Wk when u 2 Wi:

9
>>>>>>>>>=

>>>>>>>>>;

ð7:1:2dÞ

However, the signal classes often are not disjoint, that is, they may overlap (cf. Section

1.1). Then, it is impossible to decide when an error or a correct decision has been made,

because the same signal may belong to two different hypothesis classes (cf. Section 1.10),

and therefore the interpretation of C u; gð Þ as the cost of a correct or incorrect decision is

no longer valid. Reinterpreting C u; gið Þ as the cost of assigning u to the hypothesis class

Wi allows us again to define an average risk and thus to determine decision rules that

minimize it. Accordingly, the cost function to be used here is given by

C u; gRð Þ ¼
XK

i¼0

Cik

�
u; û
�
piwi uð Þ=w uð Þ; ð7:1:3Þ

where w uð Þ is defined by (7.1.1) and Cik

�
u; û
�
is the cost of making decision gk when u is

contained in Wi. (For nonoverlapping hypothesis classes, (7.1.3) reduces to C u; gkð Þ ¼
C
�
u; û
�
, sincewi¼k uð Þ=w uð Þ ¼ 1, in as much asw uð Þ ¼ wk uð Þ (cf. 7.1.1).)Wewill consider

a cost assignment for which the cost of misclassification and incorrect estimation are

separate; that is,

Cik

�
u; û
� � aik þ fik

�
u; û
� ð7:1:4Þ

whereaik is the cost of classifyingu inWkwhenu 2 Wi, and fikðu; ûðXÞÞ is the additional cost
of presenting û ¼ û Xð Þ as an estimate of a parameter of class Wk when actually u 2 Wi.

(This cost function is a generalization of a cost assignment originally introduced byOgg [6].)

The dependence of Cikðu; ûÞ on u , and implicitly on X through û Xð Þ , has the effect of

coupling the estimation and detection operations. This dependence, exemplified by (7.1.4),

is the generalization of strong coupling (Section 6.3.1) to the multisignal cases considered

here in Chapter 7.

Thedenominator ofC u; gkð Þ in (7.1.3) cancelsw uð Þappearing in (7.1.2), the total average
risk. Since we require here that a definite (detection) decision be made at the end of the

observation interval, we have then

P g0jXð Þ ¼ 1�
XK

k¼1

P gkjXð Þ: ð7:1:5Þ
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Furthermore, if (7.1.3) and (7.1.5) are then substituted into (7.1.2), the total average risk

becomes

RD � E ¼
ð

G

dX
XK

i¼1

pi

ð

Wi

duCi0

�
u; û
�
W
�
Xju�wi uð Þ

" #

þ
ð

G
dX

XK

k¼1

P gijXð Þ
XK

i¼1

pi

ð

Wi

du Cik

�
u; û
�� Ci0

�
u; û
�h i

�W Xjuð Þwi uð Þ

2

664

3

775

8
>>><

>>>:

9
>>>=

>>>;

:

ð7:1:6Þ

We assume in addition thatCik

�
u; û
� � 0 in (7.1.4) for all i and k, withC00 ¼ 0. Also, when

g0 is decided, no estimate is required. Therefore, we can also assume that fi0
�
u; û
�
X
�� ¼ 0

and consequently Ci0

�
u; û
� ¼ ai0. From these comments, it is clear that the first term on

the right-hand side of (7.1.6) is a positive constant independent of any decision rule.

Thus, we need only consider the second term in the determination of the optimum (i.e.,

Bayes) decision rule.

7.1.1.1 Optimum Decision Rule In order to determine this optimum decision rule for

detection and require the analysis to be similar to the multiple alternative situation of

“pure” detection, we define the following modified average-likelihood ratio:

Lik Xð Þ �
pi
Ð
Wi
du Ci0

�
u; û
�� Cik

�
u; û
�h i
W
�
Xju�wi uð Þ

C0k

�
u; û
�
p0W Xj0ð Þ : ð7:1:7Þ

The average likelihood ratio Lik Xð Þ corresponds formally to the modified likelihood ratio

Lg(6.3.18). For notational convenience, we now make the following definitions:

A0 Xð Þ �
XK

i¼0

pi

ð

Wi

du Ci0 u; û
� �

W Xjuð Þwi uð Þ ð7:1:8aÞ

Ck Xð Þ � C0k u; û
� �

: ð7:1:8bÞ

These definitions, plus the observation that at least one of the parameters u is an energy-

dependent parameter and therefore we can set w0 uð Þ ¼ d u� 0ð Þ, allow us to express the

average risk as

RDþE ¼
ð

G
dXA0 Xð Þ þ

ð

G
dXp0W Xj0ð Þ �

XK

k¼1

P gkjXð ÞCk Xð Þ 1�
XK

i¼1

Lik Xð Þ
" #

: ð7:1:9Þ

SinceC0k

�
u; û
� � 0 andC00

�
u; û
� ¼ 0, we see thatCk Xð Þ � 0 for allX and k. Since p0 and

W1 Xj0ð Þ are probabilities (and probability densities) and therefore positive, the following

nonrandom decision rule for detection minimizes the average risk:

Decide hypothesisHk if signal Sk and estimator g0 ¼ u; û Xð Þ are correctly decidedwhen

ðiÞ
XK

i¼1

Lik Xð Þ > 1
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and

ðiiÞ Ck Xð Þ 1�
XK

i¼1

Lik Xð Þ
" #

� C‘ Xð Þ 1�
XK

i¼1

Li‘ Xð Þ
" #

: ð7:1:10Þ

At this point, we have completed only the first stage of a two-stageminimization process.

Our strategy in the two-stage minimization procedure is to determine first a decision rule

that depends on an estimator û Xð Þ as if it were optimum. The second stage of the

minimization process consists of finding the (presumably unique) function û* Xð Þ that

further minimizes the average risk (7.1.9). This minimization process becomes, when we

take into account the decision rule (7.1.10),

RDþE ¼
ð

G
dXA0 Xð Þ þ

XK

k¼1

ð

Gk

dXp0W Xj0ð ÞCk Xð Þ � 1�
XK

i¼1

Lik Xð Þ
" #

; ð7:1:11Þ

whereGk denotes the regionof theobservation spaceG forwhichgk is decided.Theoptimum

estimator that results from the second minimization procedure, for the case where gk is

decided after thefirst stage, is denotedby û* Xð Þ. This in turn is determined from the condition

min
û! û*

k
Xð Þ

¼
ð

Gk

dXp0W Xj0ð ÞCk Xð Þ 1�
XK

i¼1

Lik Xð Þ
" #

; k 6¼ 0: ð7:1:12Þ

We have included a subscript k in the optimum estimator to indicate that gk was decided,

which is equivalent to deciding that u 2 Wk; k 6¼ 0; and therefore the resulting estimate is

the best obtainable estimate of the signal of class Wk.

In order to obtain the final optimum detection rule, we substitute the optimum estimator

back into the detection rule (7.1.10) originally obtained. The result is

Lik Xð Þ ¼ mi

ð

Wi

du
W Xjuð Þ
W Xj0ð Þ
� �

wi uð ÞC�u; û*�; ð7:1:12aÞ

where

C
�
u; û*

� ¼ Ci0

�
u; û*

�� Cik

�
u; û*

�

C0k

�
u; û*

� ; mi ¼ pi=p; p ¼
XK

i¼1

pi: ð7:1:12bÞ

This optimum decision rule for the detector as given in (7.1.10) depends on the structure of

the optimum estimator. However, we should not conclude from this that estimation must

precede detection. It is emphasized that the detection and estimation operations are

performed simultaneously, although the two operations have certain processing features in

common. This redundancy is eliminated from Figs. 7.1 and 7.2, which show the sequence of

operations for “one shot,” multiple alternative, joint detection and estimation. Figure 7.1

illustrates the sequence of operations involved in the decision rule for detection given

in (7.1.10). The output of block Bk Xð Þ, k ¼ 1; 2; . . . ; � � �K, is

Bk Xð Þ � 1�
XK

i¼1

Lik Xð Þ ð7:1:12cÞ
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as shown in Figure 7.2. The operations indicated by (i) of the decision rule (7.1.10) are

performed by the comparators whose inputs are from the B-blocks and blocks labeled 0. A

nonzero output from any of these comparators closes the switch to which it is connected.

Closing the switch in the kth branch allows the product Ck Xð ÞBk Xð Þ, which results from

operations involved in part (ii) of (7.1.10), to be put into another comparator that compares

the output of a branchwith that of the previousbranch.Thefinal output is a detection decision

that u 2 Wk, say, and an estimation decision ûk Xð Þ.
In Ref. [4], it can be shown that the decision rules determined above reduce for special

binary cases to known results. Thus, in case of pure detection for the binary on–off case

(Chapter 1), we obtain the well-known generalized likelihood ratio test. Also, for strongly

⊗

⊗

Comparator

(k = 1)

(k = 2)

(k = k – 1)

(k = K)

0

Comparator

Comparator

0

Comparator

⊗

⊗

Comparator

0

Comparator

Comparator

0

Comparator is the output of the
comparator

γk if Ck (X)Bk (X)

CK (X)

BK (X)

Ω

FIGURE 7.1 Schematic diagram shows the sequence of operations resulting in the decision gk, and

thus that a signal of class k is correctly and optimally detected with optimum estimates of its

parameters û
*

k, as described by (7.1.10). The block labeled “comparator” has an output that is the

smaller of its two inputs. Amore detailed description of the blocks Bk Xð Þ; k ¼ 1; 2; . . . ;K, is given in
Figure 7.2. A nonzero output of the comparator immediately following any of the B–blocks closes the

switch to which it is connected.
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coupled joint detection and estimation (Section 6.3.1), the results obtained in the binary

on–off case are identical with those obtained in Ref. [2] and in Chapter 6.

7.1.2 Specific Cost Functions

In order to make further progress with the analysis, specific cost assignments must be made

and estimates û* determined in accordance with the minimization operation indicated in

(7.12.12a), (7.12.12b), and (7.12.12c). An example illustrates the general procedure and

provides the functional form or structure of a specific class of estimator and detector.

Although the cost functions are specified inwhat follows, thenoise statistics here aregeneral.

As mentioned previously, the usual costs of detection decisions are modified [cf. (7.1.4)]

to take into account the influence such decisions have on whether or not an estimate is

presented at the output of the joint detection and estimation procedure.

7.1.2.1 Quadratic Cost Functions (QCFs) (Strong Coupling: Nonoverlapping
Hypothesis Classes) The specific cost function chosen for this example will be

Cik

�
u; û
� ¼ aik þ bik u� û Xð Þ

h iT
Eik u� û Xð Þ
h i

; u 2 Wi and i; k ¼ 0; 1; . . . ;K;

ð7:1:13Þ

where Eik are positive-definitematrices and ð ÞT indicates “transpose.” The cost factors aik
are the usual constant cost assignments associatedwith the detection operation (Chapters 19

and 23 of Ref. [7], and Chapter 4), namely, the cost of deciding that hypothesis Hk occurs

when actually Hi is true. The cost factor aik is associated with a correct detection decision,

wherewe shallmake the standard assumption that a correct detection decision costs nothing,

that is, aii ¼ 0 for i ¼ 0; 1; . . . ;K.
We next discuss these bik factors in more detail. Assuming that u is not a nuisance

parameter, that is, u ¼ 0 implies S ¼ 0, we say that u 2 V0 impliesH0 is true. If, in addition,

To comparator 

To multiplier 

FIGURE 7.2 Schematic diagram of the operations performed by the blocks Bk Xð Þ; k ¼ 1; 2; . . . ;K
of Figure 7.1. The block labeled û*k Xð Þ is necessary because the likelihood ratios Lik Xð Þ depend on

û
*

k Xð Þ through the cost function.
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we decide g0, then a correct decision has been made, and no estimate is presented at the

output. It is therefore reasonable to choose b00 ¼ 0. This combined with a00 ¼ 0 results in

C00

�
u; û
� ¼ 0, if u 2 V0. Now if g0 is decided and u 2 Vi i 6¼ 0ð Þ, an incorrect decision

has been made, but nevertheless no estimate is presented at the output. Considering this

joint detection and estimation procedures as one stage in an adaptive process, we observe

that no updating takes place as a result of this decision. We next arbitrarily assume that

such a mistake is not so serious as the use of erroneous estimates for updating the device,

which would be the case if gk is decided and u 2 Vi i 6¼ 0ð Þ. Accordingly, the following
relations between the relative magnitudes of the cost factors bik are reasonable:

b0k � bkk > b00 ¼ 0; k 6¼ 0

bik � bkk i; k ¼ 1; 2; . . . ;K:
ð7:1:14Þ

Taking (7.1.14) into account, we see that the cost functions Cik u; û
� �

for various

combinations of signal classes Wi and decisions gk become

C00

�
u; û
� ¼ 0;

C0k

�
u; û
� ¼ a0k þ b0kû

T
Eikû k 6¼ 0;

Cik

�
u; û
� ¼ aik þ bik

�
u� û

�T
Eik

�
u� û

�
i 6¼ 0:

ð7:1:15Þ

Our goal is to determine that û* that minimizes the integral in (7.2.12) and that we

designate it by Ik. This integral can be expressed as

Ik ¼ p0a0k �
XK

i¼1

ai0 � aikð Þpi
ð

Wi

duW Xjuð Þwi uð Þ þ
ð

Gk

Z
�
X; û

�
dX; ð7:1:16aÞ

where

Zk
�
X; û

� �
XK

i¼1

�
bik � bi0

�
pi

ð

Wi

du
�
u� û

�T
Eik

�
u� û

�
W
�
Xju�wi

�
u
�
: ð7:1:16bÞ

Relations (7.1.16) are obtained by substituting the cost factors (7.1.15) into (7.1.12) along

with w0 uð Þ ¼ d u� 0ð Þ and C00

�
u; û
� ¼ 0. The first two terms on the right-hand side of

(7.1.16a) are independent of û and thus do not affect the optimum estimator. From

relations (7.1.14), it follows that bik � bi0 > 0 for k 6¼ 0: therefore, the function Zk
�
X; û

�

is positive for all X. Hence, any function û that minimizes Zk
�
X; û

�
will also minimizeÐ

Gk
dX Zk

�
X; û

�
. A necessary condition that a minimizing function û* must satisfy is

@Zk

@û1
;
@Zk

@û2
; . . . ;

@Zk

@ûk
;

� �
jû¼û* ¼ 0; ð7:1:17Þ

where ûi is the ith component of û. If the Hessian matrix of second partial derivatives of

Zk
�
X; û

�
with respect to the components of û, evaluated at û*, is positive definite, then the

function û*, determined from condition (7.1.17), is the function that minimizes Zk
�
X; û

�
.
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Accordingly, from the definition of Z
�
X; û

�
given in (7.1.16b), it follows that the Hessian

matrix Eik is

2
XK

i¼0

�
bik � bi0

�
pi

ð

Wi

duW
�
Xju�wi uð Þ Eik: ð7:1:17aÞ

Since Eik are by definition positive definite and the scalar factors multiplying them are

positive, the Hessian is positive definite and therefore the solution of (7.1.17) minimizesÐ
Gk
dX Zk

�
X; û Xð Þ�.

Next, substituting (7.1.16b) into (7.1.17) and observing that the gradient of
�
u� û

�T

Eik

�
u� û

�
is �2Eik

�
u� û

�
, we find that the function û*k is a solution of

XK

i¼0

bik � bi0½ �pi
ð

Wi

du Eik � u� û*k

h i
W
�
Xju�wi uð Þ ¼ 0: ð7:1:17bÞ

Solving for û*k Xð Þ, we obtain

û*k Xð Þ ¼
XK

i¼0

bik � bi0½ �pi
ð

Wi

uW Xjuð Þwi uð Þdu Eik

2

64

3

75

�1

�
XK

i¼0

bik � bi0½ �pi
ð

Wi

Eik duW Xjuð Þwi uð Þ:
ð7:1:18aÞ

Recalling that w0 uð Þ ¼ d u� 0ð Þ and b00 ¼ 0, and that if Eik is not a function of i,

Eq. (7.1.18a) can also be written as

û*k Xð Þ ¼
XK

i¼1

bik � bi0ð ÞLi Xð Þ=b0k
1þP

K

i¼1

bik � bi0ð ÞLi Xð Þ=b0k½ �
Q̂*

i Xð Þ: ð7:1:18bÞ

Here, Li Xð Þ is the familiar average-likelihood ratio (i.e., GLR) and Q̂
*

i Xð Þ is the least-

squares orminimum-variance estimator for a signal of classVi in the presence of certainty

pi ¼ 1ð Þ, namely,

Li Xð Þ � pi

ð

Wi

W Xjuð Þwi uð Þ du=p0W Xj0ð Þ; ð7:1:19aÞ

pi < 1, and

Q̂*
i Xð Þ �

Ð
Wi
uW Xjuð Þwi uð Þ du

Ð
Wi
W Xjuð Þwi uð Þ du : ð7:1:19bÞ

Ifwenowassume thatbi0 ¼ 0andbik ¼ b0k > 0 for i ¼ 1; . . . ;K, (7.1.18a) reduces to the
simpler expression

û*k Xð Þ ¼
XK

i¼1

Li Xð Þ 1þ
XK

i¼1

Li Xð Þ
" #�1

Q̂*
i Xð Þ; ð7:1:20Þ
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which can also be put in the more revealing form:

û*k Xð Þ ¼
XK

i¼1

P HijXð ÞQ̂*
i Xð Þ; ð7:1:21Þ

where P Hi Xj Þð is the a posteriori probability that hypothesis Hi is true. It can easily be

shown [4] by several applications of Bayes’ rule and the definition of a marginal probability

density that

P HijXð Þ ¼ Li Xð Þ 1þ
XK

i¼1

Li Xð Þ
" #�1

: ð7:1:21aÞ

The estimator given in (7.1.20) is less complicated than that given in (7.1.18b). It also has

the reasonable interpretation (7.1.21) of being a weighted sum of least-squares estimators

when there is no uncertainty about the various hypotheses, with the weights being the a

posteriori probabilities of the respective hypotheses. From its symmetry, the estimator given

by (7.1.20) is seen to be independent of the index k. Hence, whatever decision gk k 6¼ 0ð Þ is
made, the same estimate is presented at the output and, therefore, for this casewe could have

dropped the subscript k on û*k Xð Þ. This is not the casewith (7.1.18b), which is derived under
less restrictive assumptions on the cost assignments. Therefore, if we are fortunate and the

costs lead to an estimator like (7.1.20), the joint detection and estimation device need only be

constructed with one estimator structure instead of K structures.

In this example, the optimum decision rule results when we substitute the estima-

tor (7.1.18b) or (7.1.20) into the decision rule obtained originally. It is seen from (7.1.10) that

the important factor necessary for the explicit determination of the optimum detector

structure is

Bk ¼ Ck Xð Þ 1�
XK

k¼1

Lik Xð Þ
" #

: ð7:1:21bÞ

This factor is given in (7.1.22a) for the casewhen the cost assignments are such that they lead

to the estimator given by (7.1.20), including the assumption that bik � 1. It can be derived in

a straightforward manner with some tedious algebra. We obtain finally

Ck Xð Þ 1�
XK

i¼1

Lik Xð Þ
" #

¼ a0k þ
XK

i¼1

aik � ai0½ �Li Xð ÞHi Xð Þ � 1�
XK

i¼1

Li Xð Þ
 !

�
XK

i¼1

XK

‘¼1

P HijXð ÞP H‘jXð Þ
�
Q̂*

‘

	 �
Q̂

*

i ;

ð7:1:22aÞ

where

Hi

�
X
� �

Ð
Wi

~uuW
�
Xju�wi

�
u
�
du

Ð
Wi
W
�
Xju�wi

�
u
�
du

; ð7:1:22bÞ

and (7.1.19b) define Q̂*
i

�
X
�
.
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7.1.2.2 Quadratic Cost Functions and Gaussian Statistics (also Section 3.3 of
Ref. [4]) This example specializes further the results of Section 7.1.2.1. We assume

that the probability densities wi

�
û
�
for i ¼ 1; 2; . . . ;K are Gaussian with means mi and

covariance matrices Ki, as may be the case if the components of u are a set of discrete–

time samples of a signal waveform X. Furthermore, we assume that the noise is Gaussian

with zero mean and covariance matrix KNi
in which KNi

is a J
 J positive definite

(symmetrical matrix), as is Ki for the number of signals (here ui ¼ S). Under these

assumptions, we have

Hi

�
X
� ¼ tr

�
Qi

�þ �~̂u*i
��
û*i
�
; ð7:1:23aÞ

where the matrix

Qi ¼
�
K�1

Ni
þ K�1

i

��1
; ð7:1:23bÞ

with tr Qið Þ denoting the trace ofQi. The optimum detector structure for bik ¼ 1 is given by

Ck Xð Þ 1�
XK

i¼1

Lik Xð Þ
" #

¼ a0k þ
XK

i¼1

aik � ai0ð Þ þ tr Qið Þ þ ~̂Q
*

i

� �
Q̂*

i

h i
Li

þ 1�
XK

i¼1

Li

 !
XK

i¼1

XK

‘¼1

P HijXð ÞP H‘jXð Þ ~̂Q
*

‘

� �
Q̂*

i :

ð7:1:23cÞ
Since

P HijXð Þ ¼ Li Xð Þ � 1þ
XK

i¼1

Li Xð Þ
" #�1

; ð7:1:23dÞ

the detector structure can be expressed as a function of the generalized likelihood ratios

and the least-squares estimators of the various signals in the absence of uncertainty. In

addition, the left-hand side of (7.1.23c) can be expressed solely as a function of the

generalized likelihood ratios,Li Xð Þ, for i ¼ 1; . . . ;K, or as a function of the least-squares
estimates Q̂*

i for i ¼ 1; . . . ;K. This last observation follows from some relations discussed

in Refs. [8,9].

7.1.2.3 Simple Cost Functions (SCFs)1,2 In Sections 7.1.2.1 and 7.1.2.2,we have used a

quadratic cost function (QCF) to illustrate the general theory of joint detection and

estimation under multiple hypotheses. Another important cost assignment often used in

estimation theory is the simple cost function, ofwhich there are twoprincipal forms, namely,

the “strict”SCF (SCF2) and the “nonstrict”SCF (SCF1), refer toSection6.2.2.The reason for

their importance is that they lead to unconditional maximum-likelihood estimators

(UCMLEs). This section is devoted to a discussion of joint detection and estimation

under multiple hypotheses when a simple cost function is assumed.

SCF2 We start with the strict SCF (SCF2), which imposes a more severe penalty than

SCF1 on derivations from the exact estimates of u. This simple cost function is given by
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C u; gkð Þ ¼ aik þ b1 c1 � d
�
û� u

�� �
; u 2 Vi; ð7:1:24aÞ

where

d û Xð Þ � u
� �

¼
YL

‘¼1

d û‘ Xð Þ � u‘
� �

: ð7:1:24bÞ

In this last relation, d �ð Þ is the d-function, û‘ is the ‘th component of û, and û and u are

L-component vectors. The factors aik are the usual constant cost assignments, that is,

the cost of deciding that a signal of class Vi is present. The factors b1 and c1 are related to

the cost of correct and incorrect estimation decisions and a discussion of them is found

in Chapter 23 of Ref. [7]; see also Sections 6.2.2.2 and 6.2.2.3.

Substitution of (7.1.24a) into relation (7.1.6) for the average risk RDþE results in

RDþE ¼
ð

G

dX
XK

i¼0

ai0 þ bicið Þpi
ð

Wi

W Xjuð Þwi uð Þdu

2

64

3

75

þ
ð
dX

XK

k¼0

P gkjXð Þ
XK

i¼0

aik þ ai0ð Þpi
ð

Wi

W Xjuð Þ �wi uð Þdu
( )" #

�
ð

G

dX b0p0W Xjuð Þd�û� 0
�þ

XK

i¼1

bipiW
�
Xju�wi

�
û
�

" #

:

ð7:1:25Þ

The first term on the right-hand side of (7.1.25) is a positive constant independent of the

decision rule or the estimator. The second term depends only on the decision rule and not on

the estimator, whereas the third term depends on the estimator û
�
X
�
and not on the decision

rule. The integrand of the third term is always positive, and therefore the integral will also

be positive. The integral is preceded by a minus sign, and therefore that part of the average

risk will be minimized if we determine û*
�
X
�
by

max
û Xð Þ

ð

G

dX b0p0W Xj0ð Þd�û� 0
�þ

XK

i¼1

bipiW
�
Xju�wi

�
û
�

" #

: ð7:1:26Þ

If the factors bi are all equal to C0, condition (7.1.26) becomes

max
û Xð Þ

ð

G

dX C0p0W Xj0ð Þd�û� 0
�þ C0

XK

i¼1

piW
�
Xju�wi

�
û
�

" #

: ð7:1:27Þ

In the binary on–off casewhere both signal and noise or the noise alone is present during the

observation integral and K ¼ 1, (7.1.27) reduces to

max
û Xð Þ

ð

G

dX p0W Xj0ð Þd�û� 0
�þ piW

�
Xju�wi

�
û
�h i
; ð7:1:28Þ
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which is equivalent to (6.2.21) et seq. The optimum decision rule is to decide gk if

ðiÞ Ek Xð Þ < 0

and

ðiiÞ Ek Xð Þ � E‘ Xð Þ; ‘ ¼ 1; . . . ;K; 6¼ kð Þ

9
>=

>;
; ð7:1:29Þ

otherwise decide g0. Here,

Ek Xð Þ �
XK

i¼0

aik � ai0ð Þpi
ð

Wi

W Xjuð Þwi uð Þdu: ð7:1:29aÞ

SCF1 When the other simple cost function SCF1 is used instead of SCF2, we replace the

vector delta function in (7.1.24a) now by the alternative (6.2.13a), extended to the multiple

signal case. The resulting cost function becomes

C u; gkð Þ1 ¼ aik þ bi
XL

‘¼1

Ai‘ � d
�
g‘ � û‘ X½ ��

n o
¼ aik þ bi ci �

XL

i¼1

d
�
g‘ � û‘ X½ ��

( )

;

ð7:1:30Þ
so that ci ¼

PL
‘ Ai‘. The desired optimizing equations are readily obtained by replacing

the vector delta function in (7.1.24b) by the sum of scalar delta functions d
�
g‘ � û‘ X½ ��;

‘ ¼ 1; . . . ; L. We see that the average risk RDþE, Eq. (7.1.25), is accordingly

RDþE ¼
ð

G

dX
XK

i¼0

�
ai0 þ bici

�
pi

ð

Wi

W
�
Xju�wi

�
u
�
du

2

64

3

75

þ
ð
dX

XK

k¼0

P
�
gkjX

� XK

i¼0

�
aik þ ai0

�
pi

ð

Wi

W
�
Xju� �wi

�
u
�
du

8
><

>:

9
>=

>;

2

64

3

75

�
ð

G

dX b0p0W
�
Xj0�

XK

‘¼1

d
�
û� 0

�þ
XK

i¼1

bipi
XK

‘¼1

W
�
Xjû‘

�
wi

�
û‘
�

" #

:

ð7:1:31Þ

As before, refer to Eq. (7.1.25), the first term of (7.1.31) is a positive constant that is

independent of the decision process and the estimator, with the second term depending only

on the decision rule and not on the estimator. The third term, however, is a function of

the estimators u‘; ‘ ¼ 1; . . . ; L, and does not depend on the decision rule. Since the integrand
of this third term is always positive, the resulting integral is positive. Because this term is

preceded by a minus sign, this part of the average risk RDþE is to be minimized. When

û*
�
X
�� ¼PL

‘ û‘
�
X
��

is maximized, for each û‘, we have the relation

max
û‘ ! û*‘f g

ð

G
dX b0p0W

�
Xju�

XL

‘¼1

d û‘ Xð Þ � 0
� �h i

þ
XK

i¼1

bipi
XL

‘¼1

W Xjû‘ Xð Þ
� �

wi

�
û‘
�

" #

;

ð7:1:32Þ
(each û‘ ! û*‘ separately from the others).
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A useful and simpler case arises when the cost factors bif g are all equal to C0

�
>0
�
, so

that the optimizing condition (7.1.32) becomes explicitly

max
û‘ ! û*‘f g

ð

G

dX p0W
�
Xju�

XL

‘¼1

d û‘ Xð Þ � 0
� �h i

þ
XK

k¼1

Pk

XL

‘¼1

W Xjû‘ Xð Þ
� �

wi

�
ûk
�

" #

;

ð7:1:33aÞ

which is independent of the scaling costC0. In the binary on–off case
�
K ¼ 1

�
, inwhich both

signal and noise
�
H1

�
or the noise alone

�
H0

�
is present during the observation period,

Eq. (7.1.33a) reduces to

max
û‘ ! û*‘f g

ð

G

dX p0W
�
Xju�

XL

‘

d û‘ Xð Þ � 0
� �h i

þ p1
XL

‘

W Xjû‘ Xð Þ
� �

wi

�
û‘
�

( )" #

;

ð7:1:33bÞ
which is likewise seen to be equivalent to Eq. (6.2.33) et seq.

Consequently, in (7.1.32) the optimum decision rule here is to decide gk when

ðiÞ Gk

�
X
�
< 0 and ðiiÞ Gk

�
X
� � Gk0

�
X
�
; k0 ¼ 1; . . . ;K;

�
k0 6¼ k

�
; ð7:1:34Þ

otherwise decide g0. Here, Gk

�
X
�
is given by

Gk

�
X
� �

XK

k¼1

�
aik � ai0

�
pi

ð

Wi

W
�
Xju�wi

�
u
�
du: ð7:1:34aÞ

7.1.3 Special Cases: Binary Detection and Estimation

We comment now on several special cases of the general results obtained above. First on our

list is the familiar binary signal examples treated at length in Chapters 1, 3 and 6. For

example, the case of pure binary detection H1: S� N versusH0: N, where there is no

estimation process involved, reduces to the well-known and expected result in terms of the

generalized likelihood ratio L Xð Þ.

7.1.3.1 Binary On–Off Detection Only

L Xð Þ ¼ m

ð

W1

W Xjuð Þwi uð Þdu=W Xjuð Þ
�

<

9
>=

>;

:decideH1

K or

:decideH0

ð7:1:35Þ

where K ¼ C01 � C00ð Þ= C10 � C11ð Þ > 0ð Þ is the decision threshold (expressed in the

notation of Chapter 7), refer to Section 1.6.3.

7.1.3.2 Strongly-Coupled, Joint Detection and Estimation: Binary On–Off Signals
Here, estimates are a part of the decision process where it is decided that a signal and

noise, other than noise alone, are present, and thus estimation of the possible signal’s

parameters is required. Accordingly, we have to include in our cost assignments a factor
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that accounts for the additional cost of estimation. The cost functions chosen have the

following form:

C u 2 W0; g0ð Þ ¼ C 0; g0ð Þ ¼ C
1ð Þ
00 þ C

2ð Þ
00

�
u; û
� ¼ C1�a þ C00

C u 2 W0; g1ð Þ ¼ C 0; g1ð Þ ¼ C
1ð Þ
01 þ C

2ð Þ
01

�
u; û
� ¼ Ca þ f10 û

� �

C u 2 W1; g0ð Þ ¼ C u; g0ð Þ ¼ C
1ð Þ
10 þ C

2ð Þ
10

�
u; û
� ¼ Cb þ f01 uð Þ�¼ f01 S uð Þ½ ��

C u 2 W1; g1ð Þ ¼ C u; g1ð Þ ¼ C
1ð Þ
11 þ C

2ð Þ
11

�
u; û
� ¼ C1�b þ f11

�
u; û
�

9
>>>>>>>=

>>>>>>>;

: ð7:1:36Þ

The cost assignments on the extreme right are those employed in Eq. (6.3.1). Again, sincewe

are dealing with the binary on–off case and since i; kð Þ ¼ 0; 1, there is only one likelihood

ratio to deal with, namely, L11 Xð Þ, which is given by Eq. (7.1.7). Substitution of the cost

assignments (7.1.36) with û Xð Þ replaced by û* Xð Þ yields finally

L11 Xð Þ ¼
Cb � C1�b

� �
L Xð Þ þ m

Ð
W1

f01 uð Þ � f11

�
u; û*

�h i
L0 X; uð Þw1 uð Þdu

Ca � C1�að Þ þ f10
�
û*
�� C00

ð7:1:37aÞ

where L Xð Þ is the generalized likelihood ratio given by (7.1.35) and L0 X; uð Þ is the

“ordinary” or unaveraged likelihood ratio, given by m W X; uð Þð Þ=W X; 0ð Þ. If we let

C1�a ¼ C1�b ¼ C00 ¼ f10
�
û*
� ¼ 0, then

L11
�
X
� ¼ Cb

Ca
L
�
X
�þ 1

Ca

ð

W1

f01
�
u
�� f11

�
u; û*

�h i
L0�X; u

�
W1

�
u
�
du: ð7:1:37bÞ

This last expression is identical to H1: S� N in Chapter 6 (also Eq. (1) of Ref. [5]). When

L11
�
X
�
> 1, we decide that a signal was present during the observation period and that the

optimum estimate of u is û*
�
X
�
. On the other hand, when L11

�
X
� � 1, we decideH0: N, no

signal is present. In this instance no estimate is required.

7.1.3.3 Joint Detection and Estimation: The Strongly Coupled, Binary Case
H1: S1 � N versus H2: S2 � N, where u1 6¼ 0 versus u2 6¼ 0. Here, we use the earlier

result (Eq. 7.1.2), excluding the null signal case, to illustrate the general situation of K

distinct, nonzero signals when detection and estimation are strongly coupled. From this, we

may easily specialize the result to the binary, two-signal situation. Thus, when the

null hypothesis is excluded, we begin by observing that w0

�
X
�
p0 ¼ 0 and P

�
g0jX

� ¼ 0.

The average risk RDþE (7.1.2) then becomes

RDþE ¼
ð

G

dX
XK

k¼1

P
�
gkjX

�
"
XK

i¼1

pi

ð

Wi

du C
�
u;gk

�
W
�
Xju�wi

�
u
�
#

8
><

>:

9
>=

>;
: ð7:1:38Þ

The condition that a definite decision is required is expressed by

P
�
gk0 jX

� ¼ 1�
XK

k¼1
k 6¼k0

P
�
gkjX

�
: ð7:1:39Þ
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When this relation is substituted into (7.1.38) for RDþE, we see that

RDþE ¼
ð

G

dX
XK

i¼1

pi

ð

Wi

du C
�
u; gk

�
W
�
Xju�wi

�
u
�þ

XK

k¼1
k 6¼k0

P
�
gkjX

�
Bkk0

�
X
�

8
>><

>>:

9
>>=

>>;
ð7:1:40aÞ

where

Bkk0
�
X
� �

XK

i¼1

pi

ð

Wi

�
C
�
u; gk

�� C
�
u; gk0

��
W
�
Xju�wi

�
u
�
du: ð7:1:40bÞ

The first term is a positive constant independent of the probabilities P gk0 jXð Þ that embody

the decision rule. Clearly, the following nonrandom decision rule for detection may be

chosen:

I. Detection

ið Þ Decide: gk k 6¼ k0ð Þ or P gkjXð Þ ¼ 1; if
að Þ Bkk0 Xð Þ < 0

bð Þ Bkk0 Xð Þ � Bik0 Xð Þ for all i i 6¼ k0ð Þ

( )

iið Þ Otherwise decide: gk0 k0 6¼ kð Þ or P gk0 jXð Þ ¼ 1

9
>>=

>>;
:

ð7:1:41Þ
Again let Gk be that region of the observation space for which gk is decided. The average

risk (7.1.40a), with the decision rule for detection (7.1.41), becomes

RDþE ¼
ð

G

dX
XK

i¼1

pi

ð

Wi

du C u; gk0ð ÞW Xjuð Þwi uð Þ

2

64

3

75þ
XK

k¼1
k 6¼k0

ð

Gk

dX Bkk0 Xð Þ: ð7:1:42Þ

The optimum estimator for the case when gk is decided, û*k Xð Þpk<1, is that function

defined over Gk that minimizes the expression above for the average risk, namely, (7.1.42).

Since the first term of (7.1.42) involves only the decision gk0 and is accordingly independent

of û*k Xð Þpk<1, the condition that determines this estimator becomes

min
ûk Xð Þ

ð

Gk

dX
XK

i¼1

pi

ð

Wi

C u� gkð Þ � C u� gk0ð Þð ÞW Xjuð Þwi uð Þ du

2

64

3

75: ð7:1:43aÞ

Since C u; gk0ð Þ is independent of ûk Xð Þ, this last relation becomes

min
ûk Xð Þ

ð

Gk

dX
XK

i¼1

pi

ð

Wi

C u; gkð ÞW Xjuð Þwi uð Þdu

2

64

3

75: ð7:1:43bÞ
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If P gkjXð Þ ¼ 0 for all k 6¼ k0, that is, gk 6¼ gk0 is decided, then the average risk is given by

only the first term in (7.1.42). The optimum estimator, û*k Xð Þpk<1, for this case is determined

from the following condition:

II. Estimation

min
ûk0 Xð Þ

ð

Gk0

dX
XK

i¼1

pi

ð

Wi

C u; gk0ð ÞW Xjuð Þwi uð Þdu

2

64

3

75: ð7:1:44Þ

This last relation is identical to (7.1.43b) if we allow k ¼ k0. The optimum detection rule is

now given by (7.1.41) with û*k Xð Þpk<1 k ¼ 1; . . . ;Kð Þ, substituted for the various unknown
estimators involved in (7.1.41).

If we now specialize to the binary two-signal case, we may take k ¼ 1 and k0 ¼ 2. Then,

we have

B12 Xð Þ ¼
X2

i¼1

pi

ð

Wi

C u; g1ð Þ � C u; g2ð Þð ÞW Xjuð Þdu; ð7:1:45Þ

and the estimators are determined from the following conditions:

Estimation: min
ûk Xð Þ

ð

G

dX
X2

i¼1

pi

ð

Wi

C u; gkð ÞW Xjuð Þwi uð Þdu

2

64

3

75; k ¼ 1; 2ð Þ: ð7:1:46Þ

IndicatingbyB*
12 Xð Þ, the factorB12 Xð Þ, (7.1.45),with û*1 Xð Þp1<1 and û

*
2 Xð Þp2<1 substituted in

place of û1 Xð Þ and û2 Xð Þ, respectively, we see that the optimized decision rule for the

aforementioned binary detection case is given by the following for the optimum estimators:

ið Þ Choose û*1; when P* g1jXð Þ ¼ 1 if B*
12 Xð Þ < 0

or

iið Þ Choose û*2; when P* g2Xð Þ ¼ 1 if B*
12 Xð Þ � 0

9
>=

>;
; ð7:1:47Þ

which is the required solution. (We could have derived the result (7.1.47) from (7.1.2) by

modifying the results of Section 7.1.1 directly, but the approach above is simpler.) Note that

here the hypothesis classes H1 and H2 overlap, as postulated from Eq. (7.2.3) and other

equations.

7.1.3.4 Remarks on Extrapolation and Filtering The previous results are easily

extended to include extrapolation and filtering. This section briefly discusses how this

extension is to be achieved. In extrapolation, estimates of some function of thewaveform are

desired at instants in time outside the space–time observation interval R� Tð Þ, whereas in
filtering such estimates are desired for space–time instants within the observation interval.

Consider least-squares prediction of a signal waveform. Here we are interested in

obtaining an estimate of S r; tð Þ, for r > R; t > T, based on the observed data sample X.
Let ~u ¼ S r; tð Þ½ � where the components of S are discrete space–time samples of S Tr;t

� �
for

r; tð Þ 2 R� T½ �. Under the same assumptions that resulted in (7.1.21), we find that

Ŝ* X; r; tð Þ ¼
XK

i¼1

P H1jXð ÞŜi X; r; tð Þ; ð7:1:48Þ
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where

Ŝi X; r; tð Þ D

Ð
W1
S r; tð ÞW XjSð ÞWi Sð ÞdS
Ð
W1
W XjSð ÞWi Sð ÞdS : ð7:1:48aÞ

Optimum joint detection and estimation under multiple hypotheses have been studied.

Specific estimator and detector structures are determined when that part of the total cost

assignment associated with estimation is a quadratic function of the estimation error. It has

been shown that in the presence of uncertainty P Hið Þ < 1ð Þ, one can choose an optimum

estimator that is a weighted sum of least-squares estimators in the absence of uncertainty.

Theweighting coefficients are functions of all the generalized likelihood ratios and the cost-

of-estimation coefficients bik.

In the case when bik ¼ b0k i ¼ 1; . . . ;Kð Þ, the weighting coefficients reduce to the

posterior probabilities of the various hypotheses. The jointly optimum detector structure

in this instancehas also been determined to have the nonlinear formgiven in (7.1.22a),which

becomes (7.1.23) when the noise and prior densities of the signal parameters are assumed to

be Gaussian. The detector structure given by (7.1.23) is a form of correlation detector,

consisting of cross-correlation between the various minimum-variance estimators in the

absence of uncertainty and cross-correlation of the received data and these same estimators.

Also, for an assignment of simple cost function for the cost of estimation, we see that the

optimum estimator can be interpreted as a generalized maximum-likelihood estimator.

Finally,wehave indicated how the results obtained canbe applied to optimumprediction and

filtering. (The details are given in Ref. [4].)

7.2 UNCOUPLED OPTIMUM DETECTION AND ESTIMATION, MULTIPLE

HYPOTHESES, AND OVERLAPPING PARAMETER SPACES

Even though uncoupled Bayesian detection and estimation has a larger minimum average

risk, that is, is “less efficiently” optimum than the coupled caseswith essentially similar cost

assignments, it nevertheless deserves attention because of its greater structural simplicity, as

well as its lesser computational burden. In addition, one can take direct advantage of the

results of Sections 7.1 and 7.1.3 to obtain the desired results, here for the “single-shot” or

single space–time data acquisition interval jRjT .
Accordingly, we start with Eq. (7.1.6) and use (7.1.2a) for the separate D and E cost

functions, which allow towrite for the total uncoupled average risk (7.1.6), now in two parts:

RDþRE¼

RD ¼
ð

G
dX

XK

i¼0

pi

ð

Wi

C
Dð Þ
i0 W Xjuð Þwi uð Þdu

2

64

3

75

þ
ð

G
dX

XK

k¼1

P gkjXð Þ�
XK

i¼0

pi

ð

Wi

C
Dð Þ
ik �C

Dð Þ
i0

� �
W Xjuð Þwi uð Þdu

8
><

>:

9
>=

>;

2

64

3

75 ð7:2:1aÞ

þRE ¼
ð

G
dX

XK

i¼0

pi

ð

Wi

C
Eð Þ
i0 W Xjuð Þwi uð Þdu

2

64

3

75

þ
ð

G
dX

XK

k¼1

P gkjXð Þ�
XK

i¼0

pi

ð

Wi

C
Eð Þ
ik �C

Eð Þ
i0

� �
W Xjuð Þwi uð Þdu

8
><

>:

9
>=

>;

2

64

3

75; ð7:2:1bÞ

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:
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since C
Dð Þ
ð Þ and C

Eð Þ
ð Þ do not depend on u and the estimator û ¼ û Xð Þ are themselves

independent constants. Thus,RD andRE are uncoupled and capable of separate optimization

(i.e., here minimization). Possibly overlapping hypothesis classes Wk and Wi in signal

parameter spaces are accounted for by the cost functions C Dð Þ;C Eð Þ, which are given

by (7.1.3),with (7.1.1), nowwithC
Dð Þ
ik ;C

Eð Þ
ik as constants, that is,C

D;Eð Þ
ik ¼ a

D;Eð Þ
ik from (7.1.4).

Paralleling the steps (7.1.7)–(7.1.11), we obtain for the Bayes detector here, from (7.2.1a):

I. Detection Decide Hk if

XK

i¼1

L
Dð Þ
ik Xð Þ > 1; with C

Dð Þ
k � 1�

XK

i¼1

L
Dð Þ
ik Xð Þ

" #

� C
Dð Þ
i‘ � 1�

XK

i¼1

L
Dð Þ
i‘ Xð Þ

" #

; ð7:2:2Þ

where (7.1.7) is modified to

L
Dð Þ
ik Xð Þ ¼ miC Dð Þ

ik

ð

Wi

W Xjuð Þwi uð Þdu
W Xj0ð Þ ¼ C Dð Þ

ik L1 Xð Þ ð7:2:2aÞ

with bik

C Dð Þ
ik � C

Dð Þ
i0 � C

Dð Þ
ik

h i
=C

Dð Þ
0k ; L1 Xð Þ ¼ mi

ð

Wi

W Xjuð Þ
W Xj0ð Þwi uð Þdu: ð7:2:2bÞ

(This is an alternative formof the results ofK � Mð Þ-ary detection in Section 4.1 obtained
previously.)

For the Bayes estimation portion RE of RD þ RE, (7.2.1a) and (7.2.1b), since the

estimation and detection operations are independent (refer to Section 7.1.1, as well as

Section 6.2 in the binary on–off cases), we can replace C
Eð Þ
ik by C

Eð Þ
ik

�
u; û
�
, where

u ¼ û Xð Þ is the estimator of u. Then, we can obtain the optimum estimator û* Xð Þ by
replicating (7.1.1)–(7.1.12) now with C

Eð Þ
k ¼ C

Eð Þ
0k replaced by C

Eð Þ
0k

�
u; û
�
in (7.1.12),

but not using the old Lik, (7.1.7) in (7.1.10) or substituting the result of the general

condition (7.1.12) in (7.1.10) to further optimize the detector’s decision rule (7.2.2).

The results for the specific cost functions C
Eð Þ
0k

�
u; û
�
, that is, here for the

QCF (7.1.14) and (7.1.15), become in this uncoupled case.

II. Estimation QCF: Eq. (7.1.20):

û*k Xð Þ ¼
XK

i¼1

Li Xð ÞQ̂*
i Xð Þ= 1þ Li Xð Þ½ � ð7:2:3Þ

under the modified cost functions, with bi0 ¼ 0; bik > b0k > 0; i ¼ 1; . . . ;K, with

b00 ¼ 0. Here, Eik is not a function of i. Again, Q̂
*

i Xð Þ, Eq. (7.1.19b), is the classic

LMS or minimum-variance estimator under the a priori condition of certainty

pi ¼ 1; each i � 1, and Li Xð Þ is the corresponding classic binary on–off detector for

the signals of class i,pi < 1, refer toEq. (7.1.19a).Equation (7.1.18b) represents a slightly

more general case, when bik � bi0ð Þ > 0; b0k > 0;Eik ¼ Ek (see Section 7.1.2.1). The

binary on–off and binary two signal cases are discussed in Section 7.1.3.

When SCF1,2 are the chosen cost functions, the detection and estimation operations

are naturally uncoupled by this choice, as the results of Sections 7.1.3.1 and 7.1.3.2,
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have demonstrated. Here, “no coupling” is the rule for SCF1,2, whereas for the QCF the

stronglycoupled casesgivea smallerBayes risk thaneitherweakornocoupling.Thus,we

see that the choice of cost function plays a crucial role in optimum performance: (1) This

choice can either yield a smaller Bayes risk if it permits strong coupling, although further

optimization of the detector, or (2) Bayes performance is already independent of

coupling, that is, no coupling is already the state of operation. The results for the

QCF are an example of (1), while the results for the SCF1,2 are an example of (2).

7.2.1 A Generalized Cost Function for K-Signals with Overlapping

Parameter Values

A reasonable cost function suggested by Ogg [6], and discussed by Middleton Section 2.2,

pp. 22 and 23 of Ref. [10]) for the case of overlapping signal classes in Bayes detection

theory may be defined by

C u; gkð Þ ¼
PK

i¼0 C
1ð Þ
ik piwi uð Þ

PK
i¼0 piwi uð Þ : ð7:2:4Þ

When the hypothesis classes are nonoverlapping, this cost function clearly reduces to the

usual constant cost of misclassification. Moreover, C u; gkð Þ has the property of being

continuous in the prior densities. When the hypothesis classes overlap, the cost func-

tion (7.2.4) also has the plausible and desirable property that a less probable decision costs

more than a more probable one, that is, if i 6¼ k; u, the parameter set is contained in bothWi

and Wk and piwi uð Þ < pkwk uð Þ, then C u; gkð Þ < C u; gið Þ. Accordingly, the cost function
employed here for the case of overlapping hypothesis classes is a direct analogue of (7.2.4)

and is given by

C u; gkð Þ ¼
XK

i¼0

C
1ð Þ
ik þ C

2ð Þ
ik u; û Xð Þ
� �h i

piwi uð Þ
.XK

i¼0

piwi uð Þ: ð7:2:4aÞ

Here,C
1ð Þ
ik is the cost of classifying û inWk, when û 2 Wi, andC

2ð Þ
ik ðu; û Xð ÞÞ is the additional

cost of presenting û Xð Þ as an estimate of a parameter of class Wk when u 2 Wi.

Again, an average risk may be defined: It is the same expression as that given previously

in (7.1.2a)–(7.1.2d). If the structure of the decision space D is the same as in Section 7.1 and

the cost assignment is assumed to be of the form (7.2.4a), then (7.1.2) becomes

RDþE ¼
ð

G
dX

XK

k¼0

P g‘jXð Þ
XK

i¼0

pi

ð

W
du C

1ð Þ
ik þ C

2ð Þ
ik u; û Xð Þ
� �h i

W Xjuð Þwi uð Þ
" #8

<

:

9
=

;
:

ð7:2:5Þ

This expression for the average risk is seen to be identical to (7.1.6), however, withC u; gkð Þ
expressed in more detail and with the integral extended over the entire signal parameter

space W , rather than just over the subspaces Wi. Extending the integral to W takes into

account the possibility that the subspaces,Wi, may overlap and perhaps all may be identical

withW. Therefore, this special choice of cost function given by (7.2.4a) leads in the case of

the overlapping hypothesis class to an average risk identicalwith that for the nonoverlapping
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case, providedC u; gkð Þ in (7.2.4) is now identifiedwithC
1ð Þ
ik þ C

2ð Þ
ik u; û Xð Þ
� �

when u 2 Wi,

for example, with (7.2.4a). Now let

C0 u; gkð Þ � C
1ð Þ
ik þ C

2ð Þ
ik u; û Xð Þ
� �

; u 2 Wi: ð7:2:6Þ

Recalling that the objective is to find the decision rule thatminimizes the average risk,we see

that the optimum decision rule obtained in the overlapping case is identical with that

obtained in thenonoverlappingcase, providedwe replaceC u; gkð ÞbyC0 u; gkð Þ (Eq. (7.2.6)).
Postulating that C0 u; g0ð Þ ¼ 0 when u 2 W0, we find that

Ck X; û Xð Þ
� �

¼ C
1ð Þ
0k � C

1ð Þ
00

� �
þ C

2ð Þ
0k u; û Xð Þ
� �

; mi ¼ pi=p0; ð7:2:7aÞ

Bk X; û Xð Þ
� �

¼ 1�
XK

i¼1

mi

Ð
Wdu C0 u; g0ð Þ � C0 u; gkð Þ½ �W Xjuð Þwi uð Þ

Ck X; û Xð Þ
� �

W Xj0ð Þ
ð7:2:7bÞ

whereC
1ð Þ
ik andC

2ð Þ
ik

�
u; û Xð Þ� are determined as in (7.2.4a). The resulting optimumestimator

is determined by the following condition:

min
û Xð Þ

ð

Gk

dX p0W Xj0ð ÞCk X; û Xð Þ
� �

Bk X; û Xð Þ
� �

ð7:2:8Þ

and the optimum detector structure is given by

Decide gk; that is; P
* gkjXð Þ ¼ 1 if:

ðiÞ Ck X; û*k Xð Þ
� �

Bk X; û*k Xð Þ
� �

< 0

ðiiÞ Ck X; û*k Xð Þ
� �

Bk X; û*k Xð Þ
� �

� Ci X; û*i Xð Þ
� �

Bi X; û*i Xð Þ
� �

; for all i:

ð7:2:8aÞ

7.2.2 QCF: Overlapping Hypothesis Classes

As in the binary signal cases of Chapters 1, 3 and 6, the results of Section 7.2.1 show that

when thehypothesis classes overlap, it is possible to choose a reasonable cost function so that

the resulting detector and estimator structures are identical with those obtained in the

nonoverlapping case.As indicated in Section 7.1.2.2, this permits the use of convenient prior

probability functions such as the Gaussian, refer to Eq. (7.1.13), in the analysis of these

Bayesian detection and estimation systems. Thus, it is evident that choosing the factor

C
2ð Þ
ik

�
u; û
�
in (7.2.4a) to have the following quadratic dependence on u and û Xð Þ, that is,

C
2ð Þ
ik u; û Xð Þ
� �

� C
2ð Þ
ik u� û Xð Þ
h iT

Gik u� û Xð Þ
h i

; ð7:2:9Þ

results in the same estimator and detector structures as with the nonoverlapping

ones (7.1.13), with the specific forms obtained in the quadratic cost function example

discussed in Section 7.1.2. Consequently, the following estimator structures are obtained
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in the case of overlapping signal classes when the cost assignment is given by (7.2.4a) and

C
2ð Þ
ik

�
u; û Xð Þ� is given by (7.2.9):

û*k Xð Þpk<1 ¼
XK

i¼1

C
2ð Þ
ik � C

2ð Þ
i0

� �.
C

2ð Þ
0k

h i
Li Xð Þ

1þP
K

i¼1

C
2ð Þ
ik � C

2ð Þ
i0

� �.
C

2ð Þ
0k

h i
Li Xð Þ

Q̂*
i Xð Þpi¼1; ð7:2:10Þ

where C
2ð Þ
0k � C

2ð Þ
kk > C

2ð Þ
k0 � C

2ð Þ
00 ¼ 0 k 6¼ 0ð Þ and C

2ð Þ
ik � C

2ð Þ
kk i; k ¼ 1; 2; . . . ;Kð Þ. If in

addition we set C
2ð Þ
i0 ¼ 0 and C

2ð Þ
ik ¼ C

2ð Þ
0k for i; k 6¼ 0, then

û*k Xð Þpk<1 ¼
XK

i¼1

Li Xð Þ
1þPK

i¼1 Li Xð Þ Q̂
*
i Xð Þ: ð7:2:10aÞ

The generalized likelihood ratios, Li Xð Þ, and the estimators in the absence of uncertainty,

û*i Xð Þpi¼1, are now given by

Li Xð Þ ¼ pi
Ð
WduW Xjuð Þwi uð Þ

p0W Xj0ð Þ ð7:2:11aÞ

and

Q̂*
i Xð Þ ¼

Ð
WuW Xjuð Þwi uð Þ du
Ð
WW Xjuð Þwi uð Þ du ; ð7:2:11bÞ

refer to Eq. (7.1.19b), where the range of integration has been extended to the whole signal

parameter space W.

If we require next thatC
2ð Þ
ik ¼ 1, then the estimator structure is still given by (7.2.10a) and

the detector structure is now represented by (7.2.8a). This is expressed below for the case in

which the parameter vector is the waveform vector, that is, u!S, where

S ¼ Sk½ � ¼ Sk rm; tmð Þ½ �; k ¼ 1; . . . ;K, and k represents, as before, the kth signal sample:

Ck X; Ŝ*
k Xð Þ

� �
Bk X; Ŝ*

k Xð Þ
� �

¼

C
1ð Þ
0k þ

XK

i¼1

C
1ð Þ
ik � C

1ð Þ
i0

h i
Li Xð Þ þ

XK

i¼1

Li Xð Þ Ŝ*T
i Ŝ*

i

� �

pi¼1

þ 1þ
XK

i¼1

Li Xð Þ
" #

XK

i¼1

XK

k¼1

P HijXð ÞP Hk0 jXð Þ Ŝ*
k Xð Þpk¼1

� �T
Ŝ*
i Xð Þpi¼1;

ð7:2:12Þ

where

Ŝ*T
i Xð ÞŜ*

i Xð Þ
� �

pi¼1
�
Ð
WS

TSW XjSð Þwi Sð Þ dS
Ð
WW XjSð Þwi Sð Þ dS : ð7:2:12aÞ

7.2.2.1 D þ E in Normal Noise In Section 7.1.1, we halted the general analysis of the

detector structure with Eq. (7.1.10) because at that point specific assumptions concerning
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the prior probability density functions wi uð Þ;wi Sð Þ were required. Now that these prior

probability densities are no longer restricted to a subspaceWi of the signal parameter space

W, we may carry the analysis further. For example, if we assume that the noise is Gaussian

with zero mean and that wi Sð Þ are also Gaussian, that is,

wi Sð Þ ¼ G S;mi;Kið Þ � 2pð Þ�J=2
detKið Þ�1=2

exp � 1

2
S�mið ÞTKi

�1 S�mið Þ
� �

ð7:2:13aÞ

and

W XjSð Þ ¼ G X;S;Kið Þ; that is; KS � KN ; ð7:2:13bÞ

then we may evaluate Ŝ
*T

i Ŝ
*

i

� �

pi¼1
and thus completely determine the explicit dependence

of the detector on the received data X. Both numerator and the denominator of (7.2.12a)

contain the factor W XjSð Þwi Sð Þ, which under our Gaussian assumptions (7.2.13a)

and (7.2.13b) becomes G X;S;KNð ÞG S;mi;Kið Þ. This product is represented by

G X;S;Qið ÞG S;mi;Kið Þ ¼ G X; 0;Qið ÞG mi; 0;Kið Þ
G Ŝ

*

i ; 0;Ki

� � ; ð7:2:14Þ

where now (cf. (7.1.23a))

Qi � K�1
N þ Ki

� ��1 ð7:2:14aÞ

Ŝ
*

i � Qi K
�1
N þ Xþ K�1

i mi

� �
: ð7:2:14bÞ

The quantity Ŝ*
i in (7.2.14b) indicates that this is an optimum least-squares estimate of the

waveformvector in the absence of uncertainty and is equivalent to Ŝ*
i Xð Þpi¼1 in the quadratic

cost function case. SinceG S; Ŝ*
i ;QN

� �
is a probability density function, its integral over the

signal space W is unity. Substituting (7.2.14b) in (7.2.14a) gives

Ŝ Xð Þ*T Ŝ Xð Þ*
� �

pi¼1
¼
ð1

�1
� � �
ð
STSG S; Ŝ*

i ;Qi

� �
dS: ð7:2:15aÞ

From the way in which the elements of the covariance matrix of a Gaussian probability

density are defined, one sees that the integral on the right-hand side of this last relation is

given by
ð1

�1
� � �
Z Z

STSG S; Ŝ
*

i ;Qi

� �
dS ¼ Tr Qið Þ þ Ŝ

*

i

� �T
Ŝ
*

i ; ð7:2:15bÞ

where again Tr Qið Þ indicates the trace of the matrix Qi. Accordingly, we have

(from (7.2.15a)

Ŝ Xð Þ*T Ŝ Xð Þ*
� �

pi¼1
¼ Tr Qið Þ þ Ŝ*

i

� �T
Ŝ*
i : ð7:2:16Þ
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Substituting this expression into (7.2.12), we also obtain the following expression for the

detector structure, with u!S. Thus, we have

Ck X; Ŝ
*

k Xð Þ
� �

Bk X; Ŝ
*

k Xð Þ
� �

¼ C
1ð Þ
0k þ

XK

i¼1

C
1ð Þ
ik � C

1ð Þ
i0

� �
þ Tr Qið Þ þ Ŝ

*

i Xð Þpi¼1

� �T
Ŝ
*

i Xð Þpi¼1

� �
Li Xð Þ

� 1þ
XK

i¼1

Li Xð Þ
 !

XK

i¼1

XK

k¼1

P HijXð ÞP HkjXð Þ Ŝ
*

k Xð Þpk¼1

� �T
Ŝ
*

i Xð Þpi¼1

ð7:2:17Þ

where we have equated Ŝ
*

i with Ŝ
*

i Xð Þpi¼1.

SinceP HijXð Þ ¼ Li Xð Þ � 1þPK
i¼1 Li Xð Þ� ��1

,we observe that the detector structure can

be expressed as a function of the generalized likelihood ratios and the least-squares

estimators of the various signals in the absence of uncertainty. Furthermore, the right-hand

side of (7.2.17) can be expressed solely as a function of the generalized likelihood ratios,

Li Xð Þ for i ¼ 1; . . . ;K, or as a function of the least-squares estimators, Ŝ
*

i Xð Þpi¼1 for

i ¼ 1; . . . ;K. This last follows from some relations discussed in Refs. [8, 9]. In particular, it

is shown in Ref. [9] that the least-squares or minimum-variance estimator Ŝ
*

i Xð Þpi¼1 can be

represented by the following vector function of Li Xð Þ:

Ŝ
*

i Xð Þpi¼1 ¼ KNir logLi Xð Þ; ð7:2:18Þ

where in particular rlogLi Xð Þ is a column vector whose components are

ð1=LiÞð@Li=@XjÞ
� �

; j ¼ 1; . . . ;K. When Eq. (7.2.18) is substituted into (7.2.17), the

detector structure is now expressed solely in terms of the generalized likelihood ratios

Li. Conversely, thegeneralized likelihood ratios can be expressed as a function of thevarious

least-squares estimators, Ŝ
*

i Xð Þpi¼1, namely,

Li Xð Þ ¼ e XTK�1
Ni Ŝ

*

i
Xð Þpi¼1þbi

� �
ð7:2:19Þ

where bi � C � Ð XTK�1
Ni

dSi is a bias term (see Problem 6.21 and Eq. 8 in Ref. [9]) to

ensure the vanishing of the error probabilities as sample size increases without limit.

Substitution into (7.2.17) of the various generalized likelihood ratios, expressed as

functions of the received data and the least-squares estimators, as in (7.2.19), provides

a nonlinear detector structure that is a function of only the least-squares estimators and the

received data. In addition, the detector is seen to be a type of estimator–correlator, the

basic operations being correlation of the received data with the various least-squares

estimators in the absence of uncertainty pi ¼ 1ð Þ, and cross-correlation of these same

estimators with themselves.

7.2.3 Simple Cost Functions (SCF1,2): Joint Dþ E with Overlapping

Hypotheses Classes

Because of the way in which these cost functions are defined (refer to Eq. (7.1.3), and

extended by Eq. (7.2.4a), nowwithC
1ð Þ
ik þ C

21ð Þ
ik

�
u; û Xð Þ� replaced specifically by (7.1.24a)
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and (7.1.24b), we see that the analysis and results of Section 7.1.2.3 still apply. Here,

however, the domain of a particular parameter space Wi is extended to include the

entire space W, that is, Wi !W when Wi may extend over all W or may vanish over part

of W. (See the discussions above following Eq. (7.2.5).)

7.3 SIMULTANEOUS DETECTION AND ESTIMATION: SEQUENCES OF

OBSERVATIONS AND DECISIONS [2–5]

In Sections 7.1 and 7.2, we have discussed joint detection (D) and estimation (E) based on

data from a single space–time observation interval. Here, we introduce the important

extension to the “multishot” or sequence ofmore than one observation period,where nowwe

are concerned with optimal or Bayes processing and decision making based on such a

successionof intervals anddecisions.Asbefore,wehave todealwith the problemsofno- and

strong-coupling between the detection and estimation portions of the data processing,where

the results of estimation depend strongly on the choices of cost functions as well as on the

results of the concomitant detection. Among the many obvious applications of the analysis

here is target-tracking, improving the estimation of unknown signal parameters generally,

and signal discrimination, aswell as various other aspects of classification. As expected, this

is usually a much more intensive set of data and processing tasks than those involving the

“one-shot” cases discussedmainly in this book.Accordingly, this section should be regarded

as a partial analytic (algorithmic) introduction to the subject, emphasizing the relatively new

Bayesian features of joint detection and estimation under uncertainty [2–5]. Moreover, the

general subject of target tracking and estimation has been extensively treated elsewhere (see,

for example, Ref. [1]).

Accordingly, in Section 7.3, we consider first the common case of separate (i.e.,

uncoupled) detection and estimation (Section 7.3.1), in which, however, the estimates are

now modified by the fact that they are made under uncertainty as to whether or not the

particular signal is actually present (refer to the binary cases discussed in Section 6.2). Next

(Section 7.3.2), we examine the situation where there is strong coupling between detection

and estimation, which influences both the detection and estimation structures and decisions.

Both unsupervised and supervised leaning modes, that is, “learning without” and “learning

with” teacher, are considered here.

7.3.1 Sequential Observations and Unsupervised Learning:

I. Binary Systems with Joint Uncoupled Dþ E

In our earlier work [2, 3], and in Chapter 6, as well as in previous sections of Chapter 7, we

have constructed a Bayes, that is, minimum-average risk, theory of simultaneous

detection and estimation of a single signal in noise when a single space–time interval

jRjT is available at the receiver for the joint reception process. This is a situation of

considerable importance and a necessary starting point for further developments. Ac-

cordingly, our next step is to consider themore general situationwhenNo intervals (each of

duration jRjT) are available to the receiver, where at the end of each interval we require an
appropriate set of decisions as to the detection and estimation of the single signal at that

stage. In each interval r ¼ 1; 2; . . .ð Þ, the signal, if it is present, has the form Sr rm; tnjuð Þ,
where u ¼ u‘; . . . ; uLð Þ is a set of parameters to be estimated. In each interval rð Þ of

duration jRjT , there are the same probabilities p and 1� p that the signal is present or
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absent, that is, that only noise is present. The parameters u are unknown, but their values
are required to be constant throughout the set of observation intervals NojRjT . This
situation may be considered as a model for adaptive or “learning” processes in the sense

that the receiver gathers information regarding the values of u during each observation

interval and uses this information, along with the preceding data, to improve the detection

and the estimation performance. The underlying assumption here, whichmakes themodel

useful for practical situations, is that the space–time constant of what may be in reality

space–time varying parameters u r; tð Þ is longer than the total observation intervalNojRjT .
Figure 7.3 illustrates a typical data sequence.

Although the theory of multiple alternative joint detection and estimation discussed

earlier in this chapter assumesa“one-shot” reception situation, it couldhavebeenconsidered

as one stage in a sequential decision system. It therefore should be noted at this point that

estimator–correlator structures, such as the one under discussion, have a built-in adaptive

feature. A discussion of this point is to be found in Ref. [11].

We present now an initial step toward the extension of the theory to this more general

situation, including optimum, that is, Bayes, procedures. Specifically, we consider the case

where binary detection and estimation are uncoupled, and where estimation must be

performed in the face of uncertainty as to the signal’s presence p < 1ð Þ.We also assume that

the unknown parameters u to be estimated are such that it is appropriate to assume

C10 guð Þ ¼ C11 gu; 0ð Þ, that is, u are “energy” parameters (as in Eq. (6.1.4a)). The relatively

simple situation of uncoupled detection and estimation is needed to provide the necessary

insight into the more involved cases where coupling occurs.

7.3.1.1 Detection Here we consider first the classical binary on–off detector, tended

not to include r > 1ð Þ received data intervals X1; . . . ;Xr�1ð Þ, where detection decisions

are made recursively at the end of r ¼ 1; 2; . . . ; r space–time intervals, of duration

r2jRjT , by comparison with a threshold Kr > 0ð Þ in the manner of Section 6.2. We begin

first with the optimum (i.e., Bayes) adaptive receiver for detection alone in the binary

on–off case, that is, H1: S� N versusH0: N. This situation has been analyzed initially by

Fralick [12]. His solution is especially interesting, since it has a recursive form. Let

X1;X2; . . . ;Xr be the vectors of the observed data, respectively in the first, second, and

rth interval. Then, it is shown in Ref. [12] that one of the operations of the optimum

adaptive detector is the recursive calculation of w ujX1;X2; . . . ;Xkð Þ, which is pdf of u

r = 1 
|R|T

X1

r - 2 

X1, …, XR-2

FIGURE 7.3 Schematic diagram of binary (on–off) uncoupled simultaneous detection and estima-

tion sequence. A. D and E at end of r intervals ___ (Section 7.3.1.2). B. “Tracking” D and E for each

interval (Section 7.3.1.3). This is for Estimation I.
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given the observations X1;X2; . . . ;Xk. Specifically, the recursive algorithm has the

form

wr uð Þ � w ujX1;X2; . . . ;Xrð Þ ¼ W Xrju; X1;X2; . . . ;Xr�1ð Þ
W XrjX1; . . . ;Xr�1ð Þ w ujX1; . . . ;Xr�1ð Þ: ð7:3:1Þ

Equation (7.3.1) is readily derived by successive applications of Bayes’ theorem, as shown

by the following set of relations:

r ¼ 1: w ujX1ð ÞW X1ð Þ ¼ w uð ÞW X1juð Þ
r ¼ 2: w ujX1ð ÞW X2ju;X1ð Þ ¼ w ujX1;X2ð ÞW X2jX1ð Þ
r ¼ 3: w ujX1;X2ð ÞW X3ju;X1;X2ð Þ ¼ w ujX1;X2;X3ð ÞW X3jX1;X2ð Þ
..
. ..

. ..
.

r ¼ r: w ujX1; . . . ;Xr�1ð ÞW Xrju;X1;X2; . . . ;Xr�1ð Þ ¼ w ujX1; . . . ;Xr�1ð Þ
�W XrjX1;X2; . . . ;Xr�1ð Þ;

ð7:3:1aÞ

from which (7.3.1) follows directly. The pdf wr uð Þ is then employed in the rth interval to

form the required (generalized) likelihood ratio Lrþ1 for the rþ 1 stage, for the optimum

binary on–off test against the thresholdKrþ1 in the usual way.With the help of (7.3.1), this

then explicitly becomes

DecideH1: S� N if: Lrþ1 X1;X2; . . . ;Xrþ1ð Þ¼
ð

W
Lrþ1 Xrþ1juð Þwr uð Þdu

¼ m

ð

W

W Xrþ1juð Þwr uð Þdu
W Xrþ1j0ð Þ

DecideH0: N if: Lrþ1 < Krþ1; m ¼ p=q:

9
>>>>>>=

>>>>>>;

� Krþ1

ð7:3:2Þ

(The threshold Krþ1 is a positive constant ratio of (positive or zero) cost functions in the

manner of Chapters 1 and 3.) Here, for the initial interval r ¼ 1ð Þ, Eq. (7.3.2) reduces to

L1 X1ð Þ ¼
ð

W
Lr X1juð Þw0 uð Þdu ¼ m

ð

W
W X1juð Þw0 uð Þdu=W X1j0ð Þ ¼ L Xð Þ; ð7:3:2aÞ

which is GLR for detection for the single sample dataX for binary detection, as discussed

in Chapters 1–6, with w0 uð Þ the initial a priori probability of u.
It can also be demonstrated [13] that the detector structure (7.3.2) is stable, that is, the

sequence of likelihood ratios Lrþ1; r � 0 converges to a finite limit with probability one.

In addition, it can be shown that the sequence of pdf values wR uð Þ, appearing above (7.3.1)
and subsequently (cf. (7.3.3), etc.) converges to the true value u0 of the unknown parameters

u, namely, limR!1 wR uð Þ ¼ d u� u0ð Þ (see Section 7.3.1.4.). It is important to observe

here that each of the pdf values w0 uð Þ;w1 uð Þ; . . . ;wr uð Þ in the sequence of distributions

represents in any of the r intervals the pdf of u under the hypothesis H1, conditional on past

observations, refer to Eq. (7.3.1).
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7.3.1.2 Uncoupled Estimators for r Intervals, with QCF Let us now turn our attention

to the estimation problem, and use the quadratic cost function ( QCF ). Here, we have the

situation ofH1 alone: a signal is known to be present and no detection is required. It is clear

that we must consider the class of adaptive estimators whose structure changes at each

interval. There are at least two different estimators that can be considered here.2 First, (7.3.3)

suggests that it is possible to design an estimator that is consistent byusing, in the rth interval

for example, the pdf wr�1 uð Þ, (7.3.1), recursively evaluated for the detection procedure.

This is thevector ofBayes adaptiveestimators ofu.At the endof the rth interval, it is givenby
the set of relations:

QCF: g*
u;r X; . . . ;Xrð ÞQCF ¼

ð
u w ujX1; . . . ;Xrð Þdu ¼

ð
u wr�1 uð Þ du; ð7:3:3Þ

where it is readily seen from (7.3.1), that this vector becomes

g*
u;r

					 QCF
p¼1

¼
Ð
WuW ujX1; . . . ;Xrð Þdu
Ð
WW ujX1; . . . ;Xrð Þdu ¼

ð

W

u w ujX1; . . . ;Xrð ÞW X1; . . . ;Xrð Þdu
W X1; . . . ;Xrð Þ ð7:3:3aÞ

¼
ð

W

u wr uð Þdu: ð7:3:3bÞ

Since w u;X; . . . ;Xrð Þ ¼ w u X1; . . . ;Xr�1j Þ w X; . . . ;Xrð Þð , it follows that

g*
u;r

				 QCF
p¼1

¼
ð

W
u wr�1 uð Þdu ¼ g*

u;r X1; . . . ;Xrð Þ QCF
p¼1

: ð7:3:4Þ

As we shall show presently, for this estimator, we have

lim
r!1g*

u;r

			QCF ¼ u0; probability 1; ð7:3:5Þ

that is, the vector estimator g*
u;r is consistent. The proof of this is outlined in Section 7.3.1.4.

Note, moreover, that at the end of each interval r, the estimator g*
ujp¼1 yields the optimum

estimates of u (with respect to a quadratic cost function) for the whole sequence

X1;X2; . . . ;Xr and not for the specific interval r considered.

If, on the other hand, an (vector) estimate of u is required for the specific interval r, during
which the signalmaybeabsent (with probability 1� p), thenweneed adifferent approach to

the extraction problem (see II below). However, that situation is similar to the one examined

for the single-interval case.

We now look at both these estimators in more detail.

I. Uncoupled Estimator for r Intervals p ¼ 1ð Þ: Let us start with the estimator

mentioned above (7.3.4). The point of view here is that we desire an optimum

2 See Ref. [14] for an example of another possible estimator, designed with the constraint that it be linear.
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(vector) estimate of u at the end of rth-stage of the process. In this stage, the a priori
pdf of u, conditional on the past observations X1;X2; . . . ;Xr�1, is wr�1 uð Þ and is

computed recursively from (7.3.1) as in the detection operation, according to (7.3.3) et

seq.). Then aswehave seen above, at the endof rth interval, theBayes vector estimator

of u has the form (7.3.4), namely,

g*
u;r X1; . . . ;Xrð Þ

QCF
p¼1

¼
ð
u wr�1 uð Þdu ¼ g*

u;r

			
p¼1

: ð7:3:5aÞ

We shall show presently (Section 7.3.1.4) that this estimator is also stable, that is,

converges to a finite limit, as well as consistent. Figure 7.3 illustrates this case.

II. Uncoupled Estimator for rth Interval (QCF): As mentioned at the beginning of

Section 7.3.1.2 following (7.3.5), there is another estimator that can be considered

where p � 1, that is, the signal is not surely known to be present. Now the point

of view is that we require an optimum estimate of the parameter u during a specific
part of the process, say in rth interval. This estimate only refers to the interval r

considered, although, of course, the information gathered from previous intervals

is still put to use.

The key point here is that for a specific interval, there is never certainty as to the presence

of the signal. Consider, for example, rth interval. Let w u X1; . . . ;Xr�1j Þ � wr�1 uð Þð be,

namely, theaprioripdf ofu, conditional on the past observationsX1; . . . ;Xr�1.The situation

is similar to the case of a single observation X analyzed already in Section 6.3, the only

difference being that the a priori pdf w uð Þ is now replaced by the conditional a priori pdf

wr�1 uð Þ. Thus, we can immediately extend the general results of Section 6.3 to this situation.

In particular, for QCF, we get specifically the desired estimator (in these uncoupled cases),

refer to Eqs. (6.2.7) and (6.3.29):

g*
u;r

			
p�1

¼ Lr

Lrþ1

g*
u;r

			
p�1; p¼1

; ð7:3:6Þ

where now the accompanying detector that authorizes the acceptance or rejection of the

estimate is given byLr, the average likelihood ratio for rth interval. Its form is also given by

an expression similar to (7.3.2), for example,

Lr � Lr X1; . . . ;Xrð Þ ¼
ð
Lr Xrjuð Þwr�1 uð Þdu ð7:3:7Þ

where g*
u;rjp¼1 is now the estimator g*

u;r (refer to Eq. (7.3.4).

The asymptotic properties of (7.3.6) as r!1 are of interest.Reasoning similar to the one

used above to discuss the stability and consistency of (7.3.4), Fralick [12] has shown that as

r!1, Lr tends to the likelihood ratio L1 ¼ L X1ju0ð Þ, which is appropriate for the

detection of the perfectly known signal S rm; tnju0ð Þ. Thus, from (7.3.5), we obtain

lim
r!1 gu;rjp<1 ¼

L X1ju0ð Þ
L X1ju0ð Þ þ 1

u0; with X1 ¼ lim
r!1 X1;X2; . . . ;Xrð Þ: ð7:3:8Þ
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TheBayes risk corresponding to this estimator is at rth stage,where nowwe take the average

E rð Þ over all the interval data X1; . . . ;Xrð Þ, as represented by E rð Þ � E rð Þ X1;X2; . . . ;Xrð Þ:

R*
r; p<1 ¼ E rð Þ u� g*

u;rjp<1

� �2
 �
¼ E rð Þ u0 � u0 � 2u0 � g*

u;rjp<1
þ g*

u � g*
u

� �
rjp�1

n o
:

ð7:3:9Þ
Asymptotically, from (7.3.6), (7.3.8), and (7.3.9), we have finally

lim
r!1R*

r; p<1 ¼ E1½ � u0
L X1ju0ð Þ þ 1

� �2
¼ u0 � u0

EX1 L X1ju0ð Þ þ 1
h i�2

 ��1

; ð7:3:10Þ

where E 1ð Þ � limr!1 E rð Þ X1;X2; . . . ;Xrð Þ.
On the basis of the above (II), we can obtain Fig. 7.4 for the combined uncoupled

multistage detection and estimation process (with QCF) considered in Section 7.3.1.

7.3.1.3 Uncoupled Estimation (I) and (II): (SCF)1,2 When the “simple” cost functions

(SCF)1,2 of Section 6.2 are employed instead of QCF above, the corresponding Bayes

estimators of the parameters u, namely, unconditional maximum-likelihood estimators

under the condition of uncertainty p < 1ð Þ, have much less complex structures than QCF

counterparts.

For the first class of estimator (I) determined above under a QCF, the corresponding

estimators are as follows:

I: g*
u;rjp¼1jSCF1 ¼ g*

u u‘ X1; . . . ;Xrj Þp¼1

� i
; g*

u;rjp¼1jSCF2 ¼ g*
u u X1; . . . ;Xrj Þp¼1

�h

ð7:3:11Þ
respectively). In the first case, the individual components of the resulting UMLE

estimator g*
u;rjp¼1jSCF1 are optimized separately of each other, whereas for (SCF)2, the

components of g*
u;rjp¼1jSCF2 are optimized simultaneously.

This applies not only to the single interval data but also to the multiple interval

cases of the recursive estimators r > 1 of type I (Section 7.3.1.2).

( )r – 1w Xθ ( )Xθrw

⊗

( )XrΛ
( )rrw Xθ

Detector
Compute

Compute

Detector
decision

rr XX …
Input data

Meter
(X)p = 1,θγ

(r + 1)
To next stage

rth interval
Estimate in the

Global estimate

( )X1
1

Ν
Λ
Λ

p
r

r =
+

Compute

)rw

⊗

Preceding
stage (Xr – 1)

……

1
+

11

FIGURE 7.4 Multistage uncoupled detection and estimation with QCF. Block diagram of the

rth stage.
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For the estimator of rth individual interval (II), where there is uncertainty as to

the signal’s presence, we have in place of (7.3.4,5), g*
u;rjp<1jSCF1;2 , the optimum

estimators:

II:
g*
u;rjp<1jSCF1 ¼ p g*

u;r u‘jX1; . . . ;Xrð Þp¼1

h i

g*
u;rjp<1jSCF2 ¼ pg*

u ujX1; . . . ;Xrð Þp¼1

9
=

;
; ð7:3:12Þ

which are the counterparts of g*
u;rjQCF of (II) above.

7.3.1.4 Consistency and Convergence of the Estimators Here, we outline a

demonstration that the estimators in Sections 7.3.1.2 and 7.3.1.3 are both consistent and

stable, namely,

Consistency: limr!1
ð
G uð ÞdPr uð Þ ¼ G u0ð Þ;

Stability: limr!1 g*
u;r ¼ g*

u;1; with E jg*
u;1j

n o
� C0

9
>=

>;
; ð7:3:13Þ

where C0 > 0ð Þ is a positive constant and E is the expectation operator.

We begin with a sketch of the proof first for stability. For this we need the following

theorem [14]:

Theorem: Any sequence a1; a2; . . . ; ar0þ1ð Þ such that ar �
Ð
G uð ÞdPr uð Þ, where Pr uð Þ ¼

P ujX1; . . . ;Xrð Þ is a probability measure, that is, a cumulative distribution function

corresponding to the pdf wr uð Þ ¼ w u X1; . . . ;Xrj Þð , is a bounded martingale [13] if

ð1ÞG uð Þ is any nonnegative Lebesque measurable function;

ð2ÞmaxG uð Þ � L0 < 1:
ð7:3:13aÞ

Then, the sequence g*
u;1; g

*
u;2; . . . ; g

*
u;r in which each term is defined by (7.3.4) is a bounded

martingale. According to another theorem of Doob [13], the limit of a bounded martingale

exists with probability 1, that is,

lim
r!1 g*

u;r ¼ g*
u;1; and E g*

u;1
			

			
n o

� L0: ð7:3:14Þ

Accordingly, the adaptive estimation procedure (7.3.4) is stable.

In order to establish consistency, let us define the indicator function Iu such that

Iu ¼
1 if u 2 Q;

0 if u =2Q:

(

ð7:3:15Þ

Then the sequence

Pr Qð Þ ¼
ð
IudPr Qð Þ ð7:3:16Þ

is a bounded martingale. Hence, with probability 1,

lim
r!1Pr Qð Þ ¼ P1 Qð Þ: ð7:3:17Þ
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It is well known [15] that if the sequence a1; a2; . . . ; ar0 ; ar0þ1f g is a bounded martingale,

thenE ar0þ1ja1; . . . ; ar0f g converges to ar0þ1 with probability 1. Therefore,Pr Qð Þ converges
to 1 when u0 2 Q and to zero when u0 =2Q. Consequently, P1 Qð Þ must be a step function

at u ¼ u0. The consistency of the estimator follows from the above considerations and

from the fact that if G uð Þ is any arbitrary continuous function, then

lim
r!1

ð
G uð ÞdPr uð Þ ¼ G u0ð Þ; ð7:3:18Þ

Thus, the Bayes estimator (7.3.4) is stable (by (7.3.15) and consistent (by (7.3.18). The

Bayes risk at rth stage has the expression

R*
r ¼ E rð Þ u0 � g*

u;r
P¼1

� �n o2

¼ E g*
u;r � g*

u;r � 2g*
u;r � u0 þ u0 � u0

� �
ð7:3:19Þ

where E rð Þ ¼ E X1; . . . ;Xrð Þ is the expectation operator over the random data X1; . . . ;Xr.

Quite obviously by the above

lim
r!1R*

r ¼ 0: ð7:3:20Þ

Accordingly, on the basis of the above, we have constructed the schematic diagram of

Fig. 7.4 for the combined binary multistage detection and estimation process (with QCF)

considered in Section 7.3.1.2. The Dþ E process may be described as follows:

At each stage r of the process, the detector uses the pdfwr�1 uð Þ evaluated at the previous
stage, together with the new dataXr to compute the likelihood ratioLr, (Eq. (7.3.2)). This is

then comparedwith a threshold for the detection decision at that stage. At the same time, the

pdfwr�1 uð Þ is also used in the estimatorg*
u;rjp¼1, togetherwith the newdataXr to compute an

estimate (7.3.3), which in Fig. 7.4 we may call “global.” According to our discussion of

Section 7.3.1.2 for II, this is the Bayes estimate of u given the dataX1; . . . ;Xr. At the output

of the likelihood computer, the receiver also evaluates the quantityLr= Lr þ 1ð Þ: this number

is then multiplied by the estimate gu;rjp¼1 to yield g*
u;rjp<1. According to our discussion of

Section 7.3.1.2, II, this is the binary Bayes signal estimate of u for rth interval. Furthermore,

the detector also uses the pdf wr�1 uð Þ to evaluate a new, updated version of the pdf (see

Eq. (7.3.1)). This result is then used in the next stage, together with the next data vectorXrþ1

for the next set of detection and estimation processes.

We conclude this discussion noting that the simple relations, discovered by Esposito [9]

and Kailath [11], between logLr and g
*
u;rjp¼1 may greatly simplify the practical implemen-

tation of the receiver depicted in Fig. 7.4. In this regard, see also Problems 6.20 and 6.21. The

same discussion also applies in this case for the SCF1,2, except that now the estimation

portion of the Dþ E process employs the optimum estimators Eqs. (7.3.11) and (7.3.12)),

with Fig. 7.4 modified accordingly. Finally, we note that estimator I is also stable and

consistent, by (7.3.13)–(7.3.20), as well. Here, however, p ¼ 1 and no detection is required.

7.3.2 Sequential Observations and Unsupervised Learning: II. Joint Dþ E for
Binary Systems with Strong and Weak Coupling

In this section,we use the results of Sections 6.3.1 and 6.3.2 to extend the uncoupled analysis

of Section 7.3.1 to include the important cases where the coupling is now between detection

and estimation. Here the coupling is strong that is, the cost functions of Eq. (6.3.1) apply, and
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in the cases where the coupling is weak (Section 6.3.2), in which only C01 depends on the

parameters u, through S uð Þ, Eq. (6.3.21a). The latter implies that (the weak) coupling

between detector and estimator is independent of the structure of the estimator, so that the

resulting total average risk RD þ RE can be separately minimized for detection and

estimation, that is, RD !R*
D, RE !R*

E, separately, as shown above in Section 7.3.1.

7.3.2.1 Strong Coupling We begin by applying (6.3.18) to (7.3.2) for the resulting

detector’s modified likelihood ratio functional for rth interval in the sequence of decisions,

nowon the basis of all the preceding dataX1; . . . ;Xr, at the end ofwhich a detection decision

H1: S� N orH0: N for this interval is made. If the former H1ð Þ, the corresponding optimum

estimator g**
u;rjp<1 of the parameters u is accepted. The binary on–off decision process in

question now becomes, by extension of the results of Section 7.3.1.1 for the detector (I) and

for the estimator (II) of Section 7.3.1.2:

DecideH1: S� N if: L rð Þ
g X1; . . . ;Xrð Þ ¼

ð

W
L rð Þ
g Xrjuð Þwr�1 uð Þdu

¼ m

ð

W

W Xrjuð Þ
W Xrj0ð Þwr�1 uð Þdu C rð Þ u; g**

u;rjp<1

� �
� 1

DecideH1: S� N if: L rð Þ
g < 1

9
>>>>>>=

>>>>>>;

;

ð7:3:21Þ

wherem ¼ p=q as before andwr�1 uð Þ ¼ w u X1; . . . ;Xr�1j Þð . The composite cost function C
is now

C rð Þ u; g**
u;rjp<1

� �
�

C01 uð Þ � C
rð Þ
11 u; g**

u;rjp<1

� �

C
rð Þ
10 u; g**

u;rjp<1

� �
� C00

>0ð Þ: ð7:3:21aÞ

The component cost functions (Eq. (6.3.1)) are now specifically modified to include the

recursive character of wr�1 uð Þ, refer to Eq. (7.3.21), through g**
u;rjp<1. We have

C00 ¼ constant �0ð Þ: the cost of correctly decidingH0; noise only; with f11 ¼ 0

C
rð Þ
10 ¼ C

0ð Þ
1 þ f

rð Þ
10 g**

u;r

� �
: the cost of incorrectly decidingH1 and making the

estimate g**
u;r whenH0 is true

C01 ¼ C
1ð Þ
0 þ f01 S uð Þ½ �: the costs of incorrectly decidingH0 whenH1

is true and u are the true parameters values

C
rð Þ
11 ¼ C

1ð Þ
1 þ f

rð Þ
11 u; g**

u;r

h i
: cost of correctly decidingH1 and making the estimate

g**
u;r whenH1 is indeed the case and u are indeed

the true parameter values:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

:

ð7:3:22Þ
(Note that f

rð Þ
10 ; f

rð Þ
11 are functions of r, because of g**

u;r, whereas C00;C01 are not.) Here,

g**
u;r ¼ g**

u;r X1; . . . ;Xrð Þ and is determined from the appropriate extremal equation (min. or

max.) depending on the cost functionsC
rð Þ
10 ;C

rð Þ
11 ,modified here from (6.3.8) to include all the

data preceding rþ 1ð Þ-st decision:
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II: Estimation:

gu;r !d g**
u;r qC

rð Þ
10

�
gu;r

�
W
�
X1; . . . ;Xrj0

�þ pW
�
X1; . . . ;Xr

� ð

W

C
r1ð Þ
11

�
u; gu;r

�
wr uð Þdu

8
<

:

9
=

;
;

ð7:3:23Þ
where

wr uð Þ ¼ w ujX1; . . . ;Xrð Þ; refer to Eq: ð7:3:1Þ;W X1; . . . ;Xrð Þ
�
ð

W
W X1; . . . ;Xrjuð Þwr uð Þ du:

ð7:3:23aÞ

Note that these cost assignments remain structurally the same as r changes: for a

specified r, they depend on all the data preceding and including rth interval, because

of the recursive “updating” of the detector and estimator. The cost portions of (7.3.22), of

course, do not change with r.

As in the single interval cases r ¼ 1ð Þ, refer to Section 6.3.1 preceding, estimation, when

r � 1,must logically be performed before detection. If the decision of the detector is thatH0

is the true hypothesis state, that is, no signal is present, then the estimate is not accepted.

However, in the common instance of tracking, the estimate is stored in the course of the

tracking sequence of decisions andmay be used to “fill-in” or enhance the track of the signal

source. Note also that when the costs C01, C10, and C11 are constant (with the usual

requirement that the costs of “failure” exceed the costs of “success”), the extended

GLR (7.3.21) reduces for the simple interval r ¼ 1ð Þ, as expected, to the familiar GLR

of Section 6.1 and Chapters 1 and 3.

7.3.2.2 WeakCoupling Wenext extend the results of Section 6.3.2, as in Section 7.3.2.1,

to include decision making for rth interval, based as well on the data of the preceding r� 1

intervals. However, the “weak-coupling” used here requires that now the four cost

functions (7.3.22) of the composite cost function C, (7.3.21a) above, be replaced by their

reduced forms, for example:

ð6:3:21aÞ: C00 � C1�a; C11 ¼ C1�b; C10 ¼ Ca þ C0
10; and C01 ¼ Cb ¼ f01 S uð Þ½ �;

ð7:3:24Þ

whereC0
10 ¼ f10 (a constant). The extendedversionof thisweakly coupleddetector,with the

associated decision process, refer to Eqs. (6.3.22a) and (6.3.22b), becomes explicitly

L r0ð Þ
g X1; . . . ;Xrð Þ ¼ K 0

rLr þ
ð

W
f01 S uð Þ½ � L̂

0
r Xrjuð Þwr�1 uð Þdu

Ca � C1�a þ C0
10½ �

)� 1: decideH1

or

< 1: decideH0

; ð7:3:25Þ

where

Lr � Lr X1; . . . ;Xrð Þ ¼
ð
Lr Xrjuð Þwr�1 uð Þdu ¼ m

ð

W

W Xrjuð Þ
w Xrj0ð Þ wr�1 uð Þdu; ð7:3:25aÞ
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and (from (6.3.22a)),

L0
r � L̂

0
r Xrjuð Þwr�1 uð Þ ¼ L̂

0
r u;X1; . . . ;Xrð Þ ¼ m

W Xrjuð Þ
w Xrj0ð Þ wr�1 uð Þ: ð7:3:25bÞ

The scale factor Kr is the (positive) constant cost ratio (cf. (6.3.22b)), independent of

K 0
r � Cb � C1�b

� �
= Ca � C1�a þ C0

10

� � ¼ K 0: ð7:3:25cÞ
Finally, we note that withweak or no coupling,C0

01;C
0
10 are constants, that is,C

0
01 ¼ Cbþ f01

where f01 is also now a constant. Then, both Dþ E operations can be performed

simultaneously or in any order, as before in the case of the single sample r � 1ð Þ
(Section 6.3.2).

For the optimum estimator in these weak coupling cases, we have directly the desired

extension of the results (6.3.26) and (6.3.27) et seq. to the sequence of g �1ð Þ data intervals
here. The results are for the optimum estimator g*

u;rjp<1, which now satisfies the (vector)

set of equations (when the estimator exists):

qW X1; . . . ;Xrj0ð Þ @f
rð Þ

10

@gu

þ p

ð

W
duW X1; . . . ;Xrjuð Þwr uð Þ @f

rð Þ
11

@gu

" #

gu ! g*
u;rjp<1

¼ 0: ð7:3:26Þ

Here, f
rð Þ

10 ¼ C 0; guð Þ ¼ f10 and f
rð Þ

11 ¼ C u; guð Þ (cf. (6.3.28) and remarks following). We

observe, moreover, that the solutions of (7.3.23) and (7.3.26) are generally different, that

is, g*
u;rjp�1 6¼ g**

u;rjp<1. However, the results of (7.3.26) are identical with the results (6.2.2a)

and (6.2.2b), extended to r-intervals, specifically for the Bayes estimation with QCF and

SCF1,2, although the resulting Bayes risks are different. (We refer the reader to the last two

paragraphs of Section 6.3.2, extended to the r-interval case.)

7.3.2.3 Multiple Signals In Each Interval: Multiple Tracking The results of Section

7.3.2, in particular Sections 7.3.2.1 and 7.3.2.2 may be applied directly to the multiple

tracking problem, where we have one or more signals S
qð Þ
i ; q ¼ 1; . . . ;Q; of

i ¼ 1; . . . ; k; . . . ;K types present in each data interval r � 1ð Þ. We only need to use the

results of Section 7.3.2 for each track q ¼ 1; . . . ;Qð Þ produced by these separate signals

S
qð Þ
k , mainlyQ tracks in all. Thus, we haveQ separate parallel applications of the algorithms

in Sections 7.3.2.1 and 7.3.2.2. This is illustrated schematically in Fig. 7.5. For each track, it

is assumed that the speed of the target is essentially constant and its direction is

comparatively slowly changing from interval to interval, which latter can be accounted

for by adjusting the beam illuminating the target, to keep it in the beam. The amount of the

adjustment then measures the change in direction. Other more refined methods (prediction,

multiple beams, etc.), are also available and are embodied in most modern methods of

tracking targets [1].

7.3.3 Sequential Observations and Unsupervised Learning: III. Joint Dþ E
Under Multiple Hypotheses with Strong and Weak Coupling and Overlapping

Hypotheses Classes

With the help of the results of Sections 7.3.1 and 7.3.1.2, we now extend the analysis of

Sections 7.2.1 and7.2.2 to the situation of r-data intervals and single signals out ofKpossible
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signals. Our starting point is the Bayes risk (7.1.11) with the optimum estimator (7.1.12)

substituted therein, namely:

R
rð Þ*
DþE ¼

ð

GðrÞ
A0 X1; . . . ;Xrð ÞdX1 � � � dXr þ

XK

k¼1

ð

GðrÞ
dX1 � � � dXr

� p0 W Xrj0ð ÞC rð Þ
0k u; û

*

k;r

� �
� 1�

XK

k¼1

Lik X1; . . . ;Xrð Þ
" #

:

ð7:3:27Þ

Here, A0 X1; . . . ;Xrð Þ is the extended version of (7.1.8a) and f01, (Eq. (7.1.8b)). The

generalized likelihood ratio Lik is given by the extended version of (7.1.7), (7.1.12a),

and (7.1.12b), namely,

Lik X1; . . . ;Xrð Þ ¼ m

ð

Wi

W Xrjuð Þw r�1ð Þ
i uð Þdu

W Xrj0ð Þ C rð Þ
ik u; û

*

r

� �
; mi � pi=p0; ð7:3:28aÞ

with

C
rð Þ
ik u; û

*

r

� �
¼

C
rð Þ
i0 u; û*k;r

� �
� C

rð Þ
ik u; û*k;r

� �

C
rð Þ
0k u; û

*

k;r

� � ; û
*

k;r � û*k X1; . . . ;Xrð Þ ð7:3:28bÞ

and

w
r�1ð Þ
i uð Þ ¼ wi ujX1; . . . ;Xrð Þ; cf: ð7:3:21Þ et seq: ð7:3:28cÞ

Track q = 1 
Track q 

Track q = Q 
H1

H1

H0

H1
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H1

H1

H1
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H1
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H1 H0
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H1

H1

H1

r = 1
r = 1

r = 1
r –1

r –2

r –2

r –1

r –1

r

r

2
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2

3

r

X→

↑
Y

FIGURE 7.5 Two-dimensional diagram of multiple tracks q ¼ 1; 2; . . . ;Qð Þ, with r-data intervals

( , ), with decisions at the end of each interval, including the latest interval rð Þ;Dr ¼
r� r� 1ð Þ½ �D ¼ D; r ¼ 1; 2; . . . ; r and showing estimator rejections H0 : N and acceptances

H1 : S� N r � 1ð Þon each track (Unsupervised Learning), Section 7.3.2.
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For detection we have from (7.1.10) (after û
*

r , the optimum estimator has been applied to

the extended version of (7.1.10)), for the kth hypothesis class Hk: Sk � N:

I. Detection:

DecideHk: Sk � N if:

1ð Þ
XK

i¼1

L
rð Þ
ik X1; . . . ;Xrð Þ > 1

2ð Þ C rð Þ
0k u; û

*

k;r

� �
1�

XK

i¼1

Lik

" #

� C
rð Þ
0‘ u; û

*

k;r

� �
1�

XK

i¼1

Li‘

" #

:

8
>>>>><

>>>>>:

ð7:3:29Þ

Optimum estimation in these strongly coupled cases is found from the extension of

condition (7.1.12), which becomes

II. Estimation:

min
u! û

*

R;r

ð

G rð Þ
R

R timesð Þ
p0W Xrj0ð ÞC rð Þ

0k u; ûk;r X1; . . . ;Xrð Þ
� �

� 1�
XK

i¼1

Lik X1; . . . ;Xrð Þ
" #

; k 6¼ 0

:

8
>>>><

>>>>:

ð7:3:30Þ

Figures 7.1 and 7.2 also show the sequence of operations, applying here to the û
*

k;r stage,

where now (7.1.12c) becomes Bk Xð Þ!B
rð Þ
k X1; . . . ;Xrð Þ. (See the discussion after

Eq. (7.1.12), to the end of Section 7.1.1.)

7.3.3.1 The Quadratic Cost Function: Strong Coupling At this point, to proceed

further, we must specify the cost functions in detail, as is done in Sections 7.1.2.1

and 7.1.2.3. For QCF, we have here (7.1.15) now extended to

QCF:
C

rð Þ
00 û; ûr
� �

¼ 0; C
rð Þ
0k û; ûr
� �

¼ a0k þ b0k~u Eiku; k � 1

C
rð Þ
ik û; ûr

� �
¼ aik þ bik ~u� ~̂

ur

� �
Eik u� ûr

� �
; i � 1

9
>=

>;
;

ð7:3:31Þ

before the second optimization, that is, before û*r ! û*k;r, which minimizes the integral

in (7.1.12). This second optimization is described in (7.1.16a)–(7.1.18b), specifically here

for rth interval, recursively including all the data from the preceding r� 1 intervals, as well

as Xr. The result is easily seen to be for these costs functions, with the constants aik; bikð Þ
again obeying the conditions (7.1.14),

û
*

k;r X1; . . . ;Xrð ÞQCF ¼
PK

k¼1 pi bik � bi0ð ÞEikW Xrjuð Þw r�1ð Þ
i uð Þdu

PK
i¼1 bik � bi0ð Þpi

Ð
Wi
uW Xrjuð Þw r�1ð Þ

i uð ÞEikdu
: ð7:3:32Þ
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WhenEik is not a function of i and recalling thatw
r�1ð Þ
0 uð Þ ¼ d u� 0ð Þ, with b00 ¼ 0 now,

we find that (7.3.32) reduces to the simpler result:

û
*

k;r X1; . . . ;Xrð ÞQCF ¼
XK

i¼1

bik � bi0ð ÞL rð Þ
i X1; . . . ;Xrð Þ=b0k

1þPK
i¼1 bik � bi0ð ÞL rð Þ

i X1; . . . ;Xrð Þ=b0k

( )

Q rð Þ
i X1; . . . ;Xrð Þ*QCF:

ð7:3:33Þ
Here, L rð Þ

i X1; . . . ;Xrð Þ is the recursive GLR, that is,

L rð Þ
i � L rð Þ

i X1; . . . ;Xrð Þ �
ð

Wi

W Xrjuð Þw r�1ð Þ
i uð Þdu

W Xrj0ð Þ ; ð7:3:33aÞ

and Q
rð Þ*
i jQCF is the recursive LMS or minimum variance estimator for uk, of a signal Si of

class Hi:Wi, when there is no uncertainty as to the presence of Si;1� i � k, refer to the

discussion following Eq. (7.1.2). Equation (7.3.33b) gives Q
rð Þ*
i jQCF:

Q
rð Þ*
i jQCF�Q

rð Þ
i X1; . . . ;Xrð Þ*QCF

�
ð

Wi

uW Xrjuð Þw r�1ð Þ
i uð Þdu

.ð

Wi

W Xrjuð Þw r�1ð Þ
i uð Þdu:

ð7:3:33bÞ

The quantityC
rð Þ
0k � 1�

X
i
L

rð Þ
ik

h i
, k; k! ‘ð Þ, is the key quantity needed for determining

the optimum detector structure. Setting bik ¼ 1; bi0 ¼ 0; bik ¼ b0k ¼ 1; i ¼ 1; . . . ;K in

the general cost assignments for QCF (7.3.31), we find the optimum detection condi-

tions (7.3.30) become here explicitly

C
rð Þ
0k X1; . . . ;Xrð Þ 1�

XK

i¼1

L
rð Þ
ik X1; . . . ;Xrð Þ

" #

¼ a0k þ
XK

i¼1

aik � ai0ð ÞL rð Þ
i H

rð Þ
i � 1þ

XK

i¼1

L rð Þ
i

" #

�
XK

i¼1

XK

‘¼1

P HijX1; . . . ;Xrð ÞP HkjX1; . . . ;Xp

� �

� ~Q rð Þ*
k Q

rð Þ**
i ;

ð7:3:34Þ
where

Hi X1; . . . ;Xrð Þ �
ð

Wi

~uuW Xrjuð Þw r�1ð Þ
i uð Þdu

.ð

Wi

W Xr uj Þw r�1ð Þ
i uð Þdu

�
ð7:3:34aÞ

and

P HijX1; . . . ;Xrð Þ ¼ L rð Þ
i

,

1þ
XK

i¼1

L rð Þ
i

 !

; L rð Þ
i ¼ L rð Þ

i X1; . . . ;Xrð Þ: ð7:3:34bÞ

Here,P HijX1; . . . ;Xrð Þ is the posterior probability that the hypothesisHi is true.Again, refer

to Eqs. (7.3.21) and (7.3.21a), it is easily shown by a number of applications of Bayes
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theorem with the definition of marginal probability density that (7.3.34b) is valid. Also,

once more (cf. (7.3.21a) et seq.) we have with the assumption that bi0 ¼ 0;
bik ¼ b0k > 0; i ¼ 1;2; . . . ;K that (7.3.33) reduces to

û
*

k;r

			
QCF

¼
XK

i¼1

L rð Þ
i 1þ

XK

i¼1

L rð Þ
i

 !, #

Q rð Þ*
i

			
QCF

¼
XK

i¼1

P HijX1; . . . ;Xrð ÞQ rð Þ*
i

			
QCF

:

"

ð7:3:35Þ

Thus, in this somewhat simpler case, the optimum estimator (7.3.35) is seen to be the

weighted sum of least-squares estimators under no uncertainty regarding the various

hypotheses,where theweights are theaposterioriprobabilities of the respectivehypotheses.

(See the comments following Eq. (7.1.21).)

Thus, Section 7.3.3 is a direct extension of Fredriksen’s work [4, 5]. The series of general

results (7.3.29)–(7.3.32), and slightlymore specialized relations (7.3.33)–(7.3.35), describe

the joint detection and estimation of a signal’s parameters u when the two operations are

strongly coupled together, explicitly through the cost functions (7.3.31), which represent a

generalizationof cost functions assigned to theoriginal binaryon–offproblemconsideredby

Middleton and Esposito [2, 3].

7.3.3.2 “Simple” Cost Functions (SCF1,2) As noted previously, in Sections 5.1.5 and

7.1.2.3, the simple cost function plays an important role in estimation theory. There are

two variations of principal interest—the strict SCF2 and the nonstrict SCF1, both of which

lead to unconditional maximum-likelihood estimators. Sections 7.1.3.2 and 7.3.1.2 have

considered these extensions for multiple hypothesis classes k ¼ 1; . . . ;Kð Þ and for

sequences r � 1ð Þ of decisions.
Herewe treat the combined situation, where in place of the generalizedQCF, (7.1.15), we

employ the following extended “simple” cost functions:

SCF1: C
rð Þ
ik u;ûk

� �

1
¼ aik þ bi ci �

XL

‘¼1

d u‘ � û‘;r

� �
" #

ð7:3:36aÞ

SCF2: C
rð Þ
ik u;ûk
� �

2
¼ aik þ bi ci � d u� ûr

� �h i
: ð7:3:36bÞ

The average risk to be minimized is given by the extension of (7.1.25) to the case of r � 1

intervals as before (cf. (7.1.6)–(7.1.11) and Section 7.3.3.1), with the result that (7.1.26) is

now the condition that ûr ! û
*

r X1; . . . ;Xrð Þ is determined by the following:

II. Estimation:

max
u! û*

ð

G rð Þ¼ GxGx���Gð Þr
dX1 � � � dXr

b0p0W Xrj0ð Þ
XL

‘¼1

d û‘;r � 0
� �

" #

þ
XK

k¼1

XL

‘¼1

bipiW Xrjû‘;r
� �

w
r�1ð Þ
i û‘;r

� �

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

SCF1

ð7:3:37aÞ
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and

max
u! û*

ð

G rð Þ¼ GxGx���Gð Þr
dX1 � � � dXr

b0p0W Xrj0ð Þ d
�
ûr � 0

�h i

þ
XK

k¼1

bipiW
�
Xrjûr

�
w
ðr�1Þ
i

�
ûr
�

8
>><

>>:

9
>>=

>>;
SCF2 ð7:3:37bÞ

where w
r�1ð Þ
i

�
ûr
� � wi

�
ûrjX1; . . . ;Xr

�
. Equation (7.3.37) is the “simple” cost function

counterpart of (7.3.30) for QCF cost function (7.1.15), extended to r-intervals for

C
rð Þ
ik

�
u; û*r

�
, now given by (7.3.36a) and (7.3.36b).The optimal detection counterpart

to (7.3.3.1) is (cf. (7.3.29) or (7.1.28)) given by the following:

I. Detection:

ð1ÞDecideHk if: D
ðrÞ
k X1; . . . ;Xrð Þ < 0

D
ðrÞ
k X1; . . . ;Xrð Þ � D

ðrÞ
‘ X1; . . . ;Xrð Þ; all ‘ ¼ 1; . . . ;K

ð2ÞOtherwise; decideH0:

8
><

>:

9
>=

>;

ð7:3:38Þ
In this instance we have specifically

D
rð Þ
k X1; . . . ;Xrð Þ ¼

XK

i¼0

aik � ai0ð Þpi
ð

Wi

W Xr uj Þw r�1ð Þ
i uð Þdu;

�
ð7:3:38aÞ

with w
r�1ð Þ
i uð Þ ¼ wi ujX1; . . . ;Xrð Þ. Here we observe again that optimum detection and

estimation are uncoupled by these choices of cost function (7.3.36a) and (7.3.36b).

7.3.3.3 Weak Coupling In case of multiple hypotheses and sequences of decision

intervals r � 1ð Þ discussed here (Section 7.3.3), let us examine what happens when the

couplingbetweendetection andestimation isweak, in the sense ofSections 6.2.3 and7.3.2.2.

This is not possible with the cost functions (7.3.28) and (7.3.21), unless they are all suitable

(positive or zero) constants that obey the generic condition that “failure” must be more

expensive than “success.”However,with the choices below,which aremodeledon (6.3.21a),

we can obtain representative results, analogous to those in Section 7.3.2.2. These cost

functions are now

C00 ¼ a00 � 0ð Þ; C0k ¼ a0k þ C0
0k

Ci0 ¼ ai0 þ fi0 Si uð Þð Þ; i � 1; Cik ¼ aik þ C0
ik; k � 1

)

; ð7:3:39Þ

where as before the first subscript denotes the true state and the second the chosen state.

Applying these cost functions to (7.3.28) gives us the desired weak coupling results for the

detectionphase of the jointD andEprocedure here.Wefind that the specific result in a simple

extension of the binary on–off case is as follows:

I. Detection: Decide Hk: Sk � N when

ðiÞ
XK

i¼1

L̂
rð Þ
ik X1; . . . ;Xrð Þ > 1

ðiiÞ C0k � 1�
XK

i¼1

L̂
rð Þ
ik

" #

� C0‘ � 1�
XK

i¼1

L̂
rð Þ
i‘

" # ð7:3:40Þ
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(and not Hk0 otherwise), where now

L̂
rð Þ
ik X1; . . . ;Xrð Þweak � K

rð Þ
ik L rð Þ

i þ mi

ð

Wi

fi0 S uð Þð ÞL̂ rð Þ
i Xrjuð Þw r�1ð Þ

i uð Þdu
C0k � C00ð Þ ; ð7:3:41Þ

where

L rð Þ
i � mi

ð

Wi

W Xrjuð Þ
W Xrj0ð Þw

r�1ð Þ
i uð Þdu ¼

ð

Wi

L̂
rð Þ
i Xrjuð Þw r�1ð Þ

i uð Þdu; ð7:3:41aÞ

where

L̂
rð Þ
i � mi

W Xrjuð Þ
W Xrj0ð Þ ; ð7:3:41bÞ

K
rð Þ
ik � ai0 � Ciið Þ= C0k � C00ð Þ: ð7:3:41cÞ

Again (cf. (7.2.25c), in (7.3.39) with weak or no coupling, C0
0k;C

0
ik are constants when

fik ¼ C0
ik

� �
is also a constant.Also, both theD andEoperations can be performed in anyorder

or simultaneously, as apart from the constant cost functions in (7.3.41). Here, L̂
rð Þ
ik jweak is

independent of the estimator structure. In fact, the optimum estimator is seen to obey the

following condition:

II. Estimation:

min
d

u! u*k;r

 !ð

G rð Þ
k¼ GkxGk ���xGkð Þ

C0kp0W Xrj0ð Þ 1�
XK

i¼1

L̂
rð Þ
ik

" #

; k � 1; ð7:3:42Þ

fromwhich it is also evident that optimization of the estimator is now independent of the

detectors optimization (see the discussion in Section 6.3.3, in particular Eqs. (6.3.27) and

(6.3.28), for evaluating (7.3.42)).

7.3.4 Sequential Observations and Overlapping Multiple Hypothesis Classes:

Joint D þ E with No Coupling

Here we may extend the results of Section 7.2 to the case of sequential sets of r � 1

observations, with the help of the results of Section 7.3.3. From (7.2.2)–(7.2.2b), we can

write the extended results for QCF. These are for the uncoupled Bayes detector (D) here:

I. Detection (D): Decide Hk: Sk � N if:

1ð Þ
XK

i¼1

L
Dð Þ
ik X1; . . . ;Xrð Þ > 1

2ð Þ C Dð Þ
k � 1� L

Dð Þ
ik X1; . . . ;Xrð Þ

h i
� C

Dð Þ
‘ � 1�

XK

i¼1

Li‘ X1; . . . ;Xrð Þ
" #

9
>>>>>=

>>>>>;

; ð7:3:43Þ
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where

L
Dð Þ
ik X1; . . . ;Xrð Þ � miC Dð Þ

ik

ð

Wi

W Xrjuð Þw r�1ð Þ
i uð Þdu

W Xrj0ð Þ > 0ð Þ

mi � pi=p0; same for k! ‘

; ð7:3:43aÞ

with

C Dð Þ
ik ¼ C

D;rð Þ
i0 � C

D;rð Þ
ik

C
D;rð Þ
0k

>0ð Þ; w
r�1ð Þ
i uð Þ ¼ wi ujX1; . . . ;Xrð Þ; refer to ð7:3:1Þ;

L rð Þ
i ¼ Eq:ð7:3:46Þ:

ð7:3:43bÞ
II. Estimation (E):

min
uk ! û*

k;r

ð

G rð Þ
p0W Xrj0ð ÞC E;rð Þ

0k u; û X1; . . . ;Xrð Þ
� �

1�
XK

i¼1

Lik X1; . . . ;Xrð Þ
" #

; k 6¼ 0;

ð7:3:44Þ

which by the argument given in the third paragraph of Section 7.2 (and essentially

following the analysis of (7.1.13)–(7.1.20) translates (7.3.44) into the optimumestimator

for the QCF here, namely,

u*k;r X1; . . . ;Xrð ÞQCF ¼
XK

i¼1

L rð Þ
i 1þ L rð Þ

i

� ��1

Q rð Þ
i X1; . . . ;Xrð Þ*QCF: ð7:3:45Þ

Here, L rð Þ
i X1; . . . ;Xrð Þ is once again, refer to Eq. (7.3.33a), the recursive generalized

likelihood ratio (GLR), namely,

L rð Þ
i ¼ L rð Þ

i X1; . . . ;Xrð Þ � mi

ð

Wi

W Xrjuð Þw r�1ð Þ
i uð Þdu

W Xrj0ð Þ ; ð7:3:46Þ

and Q rð Þ
i

		*
QCF

is given by (7.3.33b), which is explicitly for these recursive relations

r > 1ð Þ:

Q rð Þ
i X1; . . . ;Xrð Þ* �

ð

Wi

uW Xrjuð Þw r�1ð Þ
i uð Þ du

ð

Wi

W Xrjuð Þw r�1ð Þ
i uð Þ du:

,

ð7:3:47Þ

Because of the nature of the optimization of the estimator here (refer to Eqs. (7.1.16a)–

(7.1.18b), the result depends only on the coefficients bik � bi0ð Þ of the quadratic form,�
~u� ~̂

u
�
Eik

�
u� û

�
, which applies only to the estimator ûk, since estimation and detection

are here uncoupled. The result is, of course, that the estimator is optimized for QCF and

the detector is optimized only for the constant cost assignments, representing now the

independence of the average risks RD;RE in the total RD þ RE. Note that Q
rð Þ*
i is again an

LMS estimator and that the L rð Þ
i are the recursive forms of the familiar GLR for optimum

binary on-off detection.
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7.3.5 Supervised Learning (Self-Taught Mode): An Introduction ([4], Section 4.5)

The learning problems discussed at length in Section 7.3 are all examples of unsupervised

learning or “learning without a teacher”. Another approach to the learning problem is

supervised learning or “learning with” a teacher [16]. This method postulates the existence

of a set of learning observations, in that we are given a sequence of observations,

X1;X2; . . . ;Xr, along with the proper classification of each of these observations. An

observation is thus considered to be classified if we can identify the signal class fromwhich

it originated. Given a sequence of classified observations involving the same signal class,

we are thus able in principle to compute a posterior probability density for any initially

unknown or partially known signal parameters, which in turnmay be used as a prior density

for subsequent observation intervals. This approach, like the previous recursive method of

unsupervised learning in Section 7.3, has the advantage that the number of component

densities in any total posterior density is fixed. This is a result of the fact that all possible

classifications of the received data need not be considered if correct classifications

are known.

Here we consider the following sequential problem with the processes of detection and

estimation being performed jointly and strongly coupled. The updated prior probability

densitieswill be determinedby the supervised learning approach, the supervision in this case

being supplied by the detector’s output. Thus, if the detection operation decides a signal of

classWi is present, thenonly thosedata sets Xr̂ð Þ in the total prior density for X1; . . . ;Xrð Þwill
be updated that pertain to the parameters of class Wi. These data sets we indicate by r̂ � 1,

that is, X̂1; X̂2; . . . ; X̂r̂

� �
. Thus, for example, out of X1; . . . ;Xrð Þ data sets, we see that for

X2; . . . ;X6;X7; . . . ;Xr�1ð Þ, the detector decides Wi: Si uð Þ, and so we use the latter set,

renumbering it X2 � X̂1;X6 � X̂2; . . .Xr�1 � X̂r̂ as a new consecutive sequence.

For the learning problem now under consideration, we consider the r̂þ 1st data setXrþ1

and make an estimate of u, based on the detector’s decisions that X̂r̂þ1 contains the signal Si.

The decision space D for this problem consists of three decision elements, g0, g1, and g2,

where

g0 ¼ decision that u ¼ 0: we acceptH0: Si is not present

g1 ¼ decision that u 6¼ 0: but the receiver is unable to identify or observe

the signal Si; that is; we accept the hypothesisH1

g2 ¼ decision that u 6¼ 0: and Si is identified; namely; we accept hypothesisH2

9
>>>>=

>>>>;

:

ð7:3:48Þ

Here H0: N, H1: S� N, but Si is effectively zero for the observer, and H2: Si and Si is

distinguished in the accompanying noise. Thus, the observation space G is partitioned into

three mutually disjoint subspaces G0, G1, and G2, where

Gi ¼ XjP* gi Xj Þ ¼ 1ð g� �
; i ¼ 0; 1; 2; G ¼

X2

r¼0

Gi; ð7:3:49Þ

where P* g1jX̂r̂þ1

� �
are determined so as to minimize the conditional risk Rc X̂r̂þ1

� �
:

Rc X̂r̂þ1

� � ¼
ð

D
dgP gjX̂r̂þ1

� � ð

W

duW ujX̂r̂þ1

� �
; ð7:3:50Þ
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whereC u; gð Þ arecost functions.Here, inmoredetail,W ujX̂r̂þ1

� �
consists of the combination

W ujX̂r̂þ1

� � ¼ P H0jX̂r̂þ1

� �
d u� 0ð Þ þ P H1jX̂r̂þ1

� �
W1 ujX̂r̂þ1

� �
1

þP H2jX̂r̂þ1

� �
W2 ujX̂r̂þ1

� �
2

)

: ð7:3:51Þ

Since the decision space is the discrete set, g0; g1; g2f g, the integral overD reduces to a sum,

and hence (7.3.50) may be rewritten as

Rc Xð Þ ¼
X2

i¼0

P gijX̂rþ1

� � ð

Wi

du C u; gið ÞW ujX̂rþ1

� �
: ð7:3:52Þ

Sincewe also require that a definite decision bemade for each observation interval X̂rþ1, then

the conditional risk Rc Xð Þ can be expressed as follows:

Rc Xð Þ ¼
ð

Wi

du C u; g0ð ÞW ujX̂rþ1

� �
0

þ
X2

i¼1

W gijX̂rþ1

� � ð

Wi

du C u; gið Þ � C u; g0ð Þ½ �W ujX̂rþ1

� �
i

9
>>>>=

>>>>;

: ð7:3:53Þ

Example: QCFs:

To obtain explicit results, wemust use specific cost functions appearing in (7.3.53).We shall

accordingly select the following quadratic cost functions:

C u; g0ð Þ ¼ C
2ð Þ
00 whenH0 is true

C u; g0ð Þ ¼ C
1ð Þ
10 þ C

2ð Þ
10 � ~u� ~̂

u
� �

u� û
� �

whenH1 is true

C u; g0ð Þ ¼ C
1ð Þ
20 þ C

1ð Þ
20 � ~u� ~̂

u
� �

u� û
� �

whenH2 is true

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð7:3:54aÞ

C u;g1ð Þ ¼ C
1ð Þ
01 þ C

2ð Þ
01 � ~̂uû whenH0 is true

C u;g1ð Þ ¼ C
2ð Þ
11 �

�
~u� ~̂

uÞðu� ûÞ whenH1 is true

C u;g1ð Þ ¼ C
1ð Þ
21 þ C

2ð Þ
02 � ~̂uû whenH2 is true

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð7:3:54bÞ

C u; g2ð Þ ¼ C
1ð Þ
02 þ C

2ð Þ
02 � ~̂uû whenH0 is true

C u; g2ð Þ ¼ C
1ð Þ
12 þ C

2ð Þ
02 � ~u� ~̂

u
� �

u� û
� �

whenH1 is true

C u; g2ð Þ ¼ C
2ð Þ
22 � ~u� ~̂

u
� �

u� û
� �

whenH2 is true

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð7:3:54cÞ

For convenience, let us next define a combination of costs:

Ci �
ð

W

du C u; gið Þ � C u; g0ð Þ½ �W ujXð Þ; i ¼ 1; 2: ð7:3:55Þ
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After W ujXð Þ, as given by (7.3.51), and the above cost factors are substituted into the

definition (7.3.55) of C1 and C2, it is easily seen that

C1 ¼ P H0jXð Þ C
1ð Þ
01 þ C

2ð Þ
01 � C

2ð Þ
00

� �
~̂
uû

h i

¼ P H1jXð Þ �C
1ð Þ
10 þ C

2ð Þ
11 � C

2ð Þ
10

� �ð1

�1
~u� ~̂

u
� �

u� û
� �

W ujXð Þ1du
� �

¼ P H2jXð Þ C
1ð Þ
21 � C

1ð Þ
20 þ C

2ð Þ
21 � C

2ð Þ
20

� �ð1

�1
~u� ~̂

u
� �

u� û
� �

W ujXð Þ2du
� �

9
>>>>>>>>=

>>>>>>>>;

ð7:3:56aÞ

C2 ¼ P H0jXð Þ C
1ð Þ
02 þ C

2ð Þ
02 � C

2ð Þ
00

� �
~̂
uû

h i

¼ P H1jXð Þ C
1ð Þ
12 þ�C

1ð Þ
10 þ C

2ð Þ
12 � C

2ð Þ
10

� �ð1

�1
~u� ~̂

u
� �

u� û
� �

W ujXð Þ1du
� �

¼ P H2jXð Þ �C
1ð Þ
20 þ C

2ð Þ
22 � C

2ð Þ
20

� �ð1

�1
~u� ~̂

u
� �

u� û
� �

W ujXð Þ2du
� �

9
>>>>>>>>=

>>>>>>>>;

:

ð7:3:56bÞ

To carry the analysis further, let us assume thatW ujXð Þ is Gaussian, for example, in order

to obtain closed-form specific results. We have

W ujXð Þ ¼ G u;m;s2
� �

; m ¼ m0 orm1; s2 ¼ s2
0 or s

2
1; ð7:3:57Þ

respectively, for W r0 or r1jX̂r̂þ1

� �
and let q0; q1 be the a priori probabilities associated

with states represented by G0 and G1, remembering that G represents the data set

X ¼ Xj

� �
. We observe next that the factor C2 contains an unknown estimator û Xð Þ.

The optimum Bayes estimator, denoted by u* Xð Þq0>0
, is determined in such a way as

to minimize C2. This estimator is easily seen to be equal to the conditional mean,

namely,

u* Xð Þ ¼
ð

W
uW ujXð Þdu ¼ P H1jXð Þm0 þ P H2jXð Þm1: ð7:3:57aÞ

This estimator is substituted in place of û Xð Þm0>0 in C2 to obtain

C*
1 ¼ P H0jXð Þ C

1ð Þ
01 þ C

2ð Þ
01 �C

2ð Þ
00

� �
~̂
uû

h i

¼ P H1jXð Þ �C
1ð Þ
10 þ C

2ð Þ
11 �C

2ð Þ
10

� �
Tr s2

0

� �þ ~m0m0�2~m0uq0>0
þ ~̂

u
*

q0>0

 �
û
*

q0>0

� � �" #

¼ P H2jXð Þ C
1ð Þ
21 �C

1ð Þ
20 þ C

2ð Þ
21 �C

2ð Þ
20

� �
Tr s2

1

� �þ ~m1m1�2~m1û
*

q0>0
þ ~̂

u
*

q0>0

 �
û
*

q0>0

� � �" #

9
>>>>>>>>>=

>>>>>>>>>;

;

ð7:3:58aÞ
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C*
2 ¼ P H0jXð Þ C

1ð Þ
02 þ C

2ð Þ
02 �C

2ð Þ
00

� �
~̂
uû

h i

¼ P H1jXð Þ C
1ð Þ
12 �C

1ð Þ
10 þ C

2ð Þ
12 �C

2ð Þ
10

� �
Tr s2

0

� �þ ~m0m0�2~m0uq0>0
þ ~̂

u
*

q0>0

 �
û
*

q0>0

� � �" #

¼ P H2jXð Þ �C
1ð Þ
20 þ C

2ð Þ
22 �C

2ð Þ
20

� �
Tr s2

1

� �þ ~m1m1�2~m1û
*

q0>0
þ ~̂

u
*

q0>0

 �
û
*

q0>0

� � �" #

9
>>>>>>>>>>=

>>>>>>>>>>;

:

ð7:3:58bÞ
The optimum decision rule is now readily seen to be

W r0jX̂r̂þ1

� �
* ¼ 1; ifW r1jX̂r̂þ1

� �¼W r0jX̂r̂þ1

� �¼ 0

0; otherwise

(

ð7:3:59aÞ

W r1jX̂r̂þ1

� �
* ¼ 1; ifC*

1 < 0 and C*
1 <C*

2; ¼ 0 otherwise; ð7:3:59bÞ

W r2jX̂r̂þ1

� �
* ¼ 1; ifC*

2 > 0 and C*
1 <C*

2 ; ¼ 0 otherwise: ð7:3:59cÞ

Furthermore, the sequence of updated means m1 ¼ m1i½ �ð Þ; i¼ 1; . . . ; r̂þ1, is stable, since

(1) We would reject all the data in the most conservative case, with the conclusion that

this case contained no signal. In such a case, each mi ¼ m0, the original value with

which we started.

(2) At the other extreme, we would accept all the data. Then, mi would converge to zero

when u ¼ 0 to u=p if u 6¼ 0.3

7.4 CONCLUDING REMARKS

The preceding sections provide a foundation for “one-shot” r ¼ 1ð Þ and “multishot”

r > 1ð Þ sequences of optimum decisions: for both detection and estimation, jointly and

independently, where both operations are performed under conditions of uncertainty.

Once more, we desire optimality, in the sense of minimizing the average risk RD þ RE

(independently) and RD � RE (coupled together). The former represents weak or no

coupling (refer to Sections and 7.3.3.3), and the latter strong coupling (refer to

Sections 7.3.3.1 and 7.3.3.2), for both binary andmultiple hypothesis states. All multishot

cases here are examples of unsupervised learning or “learning without teacher.” However,

examples of supervised learning are given in Section 7.3.5. As we have seen in Chapter 6,

in Section 7.1, Eq. (7.1.13), and subsequently, it is the choice of cost function that

determines the degree of coupling, for example, Eqs. (7.1.4), (7.3.21a) and (7.3.29). The

cost functions are also generalized in the manner of Eqs. (7.3.3) and (7.3.4) to account

3 See Ref. [4], Appendix B, for the results of computer simulations.
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explicitly for overlapping hypothesis classes (Section 7.2). Specific results for the

quadratic cost function and the “simple” cost function are illustrated, the former

results characteristic of least mean square estimators and the latter of unconditional

maximum-likelihood estimators, the most common instrument of Bayes risk (or cost)

in estimation.

Since Bayes estimations under uncertainty 0 � p < 1ð Þ for binary on–off detection

always produces positively biased estimators (Section 6.3.4) and similarly under

Hi; i ¼ 1; . . . ;K in the multiple hypothesis cases 0 � p0 < 1; 0 < pi < 1 of Sections

and 7.3.3, estimation on the assumption of certainty as to the presence of a signal is always

suboptimum and produces a larger average estimate and hence a larger average risk than

the optimum (Bayes) cases. For example, if gu here is the estimator under the (false)

assumption of certainty, we have, letting g*
ujfalse equal this false optimum estimator,

g*
ujfalse ¼ g*

u; p<1; or
g*
u

		
false

¼ 1þ L
L

 �
g*
u; p¼1

g*
u

		
false

¼ g*
u; p¼1=p

9
>=

>;
> g*

u; p¼1

QCF ð7:4:1aÞ

SCF1;2 ð7:4:1bÞ

8
<

:

from (7.3.6), (7.3.11) and (7.3.12), for instance, in the binary cases, with corresponding

examples by obvious extension to the multiple sample, multiple hypothesis situations.

Accordingly, making the erroneous assumption of certainty as to the presence of the signal

always leads on the average to too large an estimate. This is one justification of joint and

coupled detection and estimation,which applies for strong aswell asweak signals. A second

one is that this procedure can further help detection and estimation when one encounters

weak or threshold signals, particularly when the coupling is strong. As always, the

accompanying increase in data processing must be considered, but with the current high

speed and minimal costs of modern computing, achieving “on-line” results should be easily

accomplished.

Calculating the Bayes risks in the above situations provides another measure of the

superiority of the Bayesian approach vis-à-vis the suboptimum results for the falsely chosen

estimators in Eqs. (7.4.1a) and (7.4.1b). In fact, couplingD and Eminimizes the Bayes risk

further. Strong coupling results aremore effective thanweak coupling,which in turn is better

in this respect than uncoupledD andE (see section following Eq. (6.3.20)). Accordingly, we

have for the average risks and their minimization the inequalities

RD þ DEð Þ > R*
D þ RE

� �
; RD þ R*

E

� �
> R*

D þ R*
E

� �
> R*

D � R*
E

� �
> R*

D � R*
E

� �

ð7:4:1cÞ

where the first four terms involve no coupling, the fifth weak coupling, and the last, strong

coupling.

Our results in the preceding sections are also easily extended to the important cases of

extrapolation, interpolation, and filtering ([7]; Sections 21.4.2 and 21.4.3 for p ¼ 1). For

applications to tracking, we are particularly concerned with prediction (i.e., forward

extrapolation), where the estimates of the same function of the signal waveform or the

waveform itself at space–time instants outside the data interval jRj;Dtð Þ are desired, and
where jointD andE are employed.This is to be done not only for a single data sample r ¼ 1ð Þ
but alsowhereD andE for r � 1ð Þ samples depend recursivelyon the precedingdata samples

r ¼ 1; . . . ; r� 1ð Þ (Sections 7.3.2 and 7.3.3).
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As an example, let us consider the situation of Section 7.3.3.1 for strong coupling and

multihypotheses wherewewish to determine theminimum least-square prediction of signal

waveform at rl; tl beyond the last data interval received (and processed). If we let

u*k;r ¼ S; S rl; tlð Þ½ �, where S ¼ S rm; tnð Þ½ � and Sl ¼ S rl; tlð Þ½ �, then (7.3.35) can be directly
modified to yield on the basis of quadratic cost functions

Ŝ
*
X1; . . . ;Xrjrl; tlð Þ

			
QCF

¼
XK

i¼1

L rð Þ
i 1þ

XK

i¼1

L rð Þ
i

 !, #

Ŝ
*

i X1; . . . ;Xrjrl; tlð Þ:
"

ð7:4:2Þ

Here,

Ŝ
*

i X1; . . . ;Xr

		rl; tl
� � �

ð

Wi

S rl; tlð ÞW XrjS1; . . . ;Srð Þ

�w r�1ð Þ
i S1; . . . ;SrjX1; . . . ;Xr�1ð ÞdS1 � � � dSr

9
>>=

>>;
; ð7:4:2aÞ

and Li is given by (7.3.33a), modified to

L rð Þ
i ¼ L rð Þ

i X1; . . . ;Xrð Þ ¼ mi

ð

Wi

W XrjS1; . . . ;Srð Þ
W Xrj0ð Þ

�w r�1ð Þ
i S1; . . . ;SrjX1; . . . ;Xr�1ð ÞdS1 � � � dSr

9
>>=

>>;
ð7:4:2bÞ

refer to Eq. (7.3.28c), where (7.4.2) is subject to the assumptions leading to Eqs. (7.3.34)

et seq. This, of course, is the recursive extension for the case (7.3.20)–(7.3.21a), considered

originally for a single data sample r ¼ 1ð Þ by Fredriksen et al. [5].

All these cases, and particularly those with recursive distributions (refer to Eqs. (7.3.1)

and (7.3.2)), are increasingly complex with respect to the distributions involved. They can

present formidable computational problems, especially if the number rð Þof data sets become

at all large, that is, r >> 1. However, this problem can be mitigated if we recall that most

physical randomfields are simpleMarkoff, that is, their most recent values depend only on a

preceding observation, that is,

WJ aJ ; uJ jaJ�1; uJ�1; . . . ;a1; u1ð Þ ¼ W2 aJ ; uJ jaJ�1; uJ�1ð Þ; j ¼ 11; . . . ;MNð Þ; ð7:4:3Þ

where4m1 � m2 � � � �mj � � � � � mJ ; J ¼ MN. A still simpler field statistically is the

purely random field, where

W1 aJ ; uJ j . . . ;a1; u1ð Þ ¼ W1 aJ ; uJð Þ; ð7:4:3aÞ
which is approximated experimentally by sampling at space–time intervals large enough to

avoid significant correlations between neighboring points in the space–time manifold.

For the former, we can easily show ([7], Problem 1.16, and Section 1.5.2, ibid., Eq. (1.95b))

the following:

Simple Markoff:

WJ aJ ; uJ ; . . . ;a1; u1ð Þ ¼
YJ

j¼2

W2 aj ; ujjaj�1; uj�1

� � YJ�1

j¼2

W1 aj ; uj
� �

; J ¼ MN;

,

ð7:4:4aÞ

4 Here aj ¼mnð Þ, for example, is a space–time field a rm; tnð Þ and themj refer to the independent variables rm and tn.
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Purely Random Markoff:

WJ ¼
YJ�1

j¼2

W1 aj; uj
� �

: ð7:4:4bÞ

The above assumes that the random field is fully described by a single random field

a rm; tnð Þ and is not simply a projection of a more complex field. In physical problems,

this is usually not the case, a rm; tnð Þ is usually a projection of a more complex random

field, involving space and time derivatives of the field as well for a full statistical

description, that is,W2 ajjuj; _aj�1juj�1; . . . ; etc:
� �

of a simple Markoff field. The question

of how many other components are needed for a full description depends on the

underlying physics of the problem, expressed, for example, by the appropriate Langevin

equation (cf. Chapter 10 of Ref. [7]) or set of random dynamical equations, which can

completely describe the field. (These questions are touched upon briefly in Ref. [7],

Chapter 10, and references in the following chapters.)

The point towhich wewish to call attention here is that the physical problemmay lead us

to replace the full recursive distributions, such as w
rð Þ
1 ;w

r�1ð Þ
1 in Section 7.3, by a suitable

simple Markoff field (or process), in the appropriate dimensions (i.e., a; _a, etc.) and thus

simplify the calculations in the practical realizations of the above results. For example, the

Markoff conditions (7.4.4a) and (7.4.4b) are written for wr uð Þ, (7.3.1):

wr uð Þ ¼ W ujXrð Þ ¼ W Xrjuð Þw uð Þ=W Xrð Þ: purely random field ð7:4:5aÞ

¼ W ujXr�1;Xrð Þ ¼ W Xrju;Xr�1ð Þw ujXr�1ð Þ=W XrjXr�1ð Þ: purely Markoff field:

ð7:4:5bÞ

It should be noted that the sequential operations of Section 7.3 are not the same as those

employed in theWald theory [17] of sequential (binary) detection. The principal differences

are that in the Wald theory, the conditional probabilities of error a;bð Þ are fixed and the

sample size 	Jð Þ is allowed to vary, and that there are two thresholds for terminating the test,

as distinct from the single threshold employed in the usual binary problems. In our sequential

scheme here, the data sequences are of fixed size (although they may vary from interval to

interval), and b or a;bð Þ are minimized for each interval.

Again we emphasize the introductory nature of our treatment of joint Dþ E with

respect to the broad problem of target tracking and similar applications. At the same time,

we call attention to possible improvements in performance produced by strongly coupled

detection and estimation, even for strong signals, as discussed briefly in the second

paragraph above.5 Thus, strong coupling is generally more effective than weak or no

coupling in minimizing the Bayes risk and the choice of cost function is critical in

achieving optimality. When the “simple cost functions” are employed, that is, those

5 Finally, we refer the reader to Ref. [4] for additional material, particularly to Appendices A–C therein. Here,

results are presented for computer simulations of an appropriate form of unsupervised learning, for some

simulations of supervised learning, and a discussion is given of the convergence of the approximate form of

unsupervised learning, treated in Section 4.4 of Ref. [4]. This approximate form requires all updated probability

derivatives to have the same formed structure, unlike the exact recursive forms used here, which are characterized

by exponential growth as the number (r) of data intervals increase, resulting in great computation burdens at the

time. The latter was a formidable problem computationally about 1970, but is not now in 2000s.

CONCLUDING REMARKS 431



representing unconditional maximum likelihood estimates, detection and estimations

are automatically uncoupled, the estimators are formally simpler than those required for

the LMS estimators (i.e., using QCF). However, the results in each case are not generally

comparable: only explicit calculation of the Bayes risks can provide a quantitative

comparison. In any case, many problems remain for further study, extending into the

learning processes for neural networks [18], pattern recognition and related fields of

applications, including space–time systems for communications [19], some of which are

treated here in the remaining chapters of the present book.
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8
THE CANONICAL CHANNEL I:
SCALAR FIELD PROPAGATION1

IN A DETERMINISTIC MEDIUM

The ultimate purpose of Chapters 8–9, is to establish the required statistics of the physical

channels that connect transmitter and receiver. These include not only the omnipresent

background noise and interfering signals but also the self-generated scatter noise, as well as

the distortions of the signal produced by the inhomogeneous character of the medium itself.

As noted frequently earlier, the canonical channel considered here consists of themedium of

scalar propagation and the coupling to it provided by the transmitting and receiving apertures

or arrays. The latter convert the input signal process into space–time fields and the received

signal and noise fields back into a temporal process. Signal processing, such as detection and

estimation, as embodied in the sequence of operations T̂ATT̂
ðNÞ
M T̂AR is shown symbolically in

Fig. 8.1.We emphasize the scalar nature here of the channel and the resulting propagation of

signals and noise.

Our program in Chapters 8–9 is to present analytic structures of the scalar field and

canonical scalar channel, to illustrate their physical properties, and to quantify the resulting

fields a(r, t) and the channel.

Accordingly, Chapter 8 provides results for a variety of deterministic media, both

bounded and unbounded, to which deterministic signals are applied [1–8]. These results

are needed in the“classical” treatment of random(scalar) channels (the so-called statistical–

physical (S-P) approach [9]) discussed subsequently in Chapter 9 following [10–14]. In

future work we will present the elements of a new approach, for example the physical-

statistics (P-S) equivalent [9,15], also based on the underlying physics but interpreted almost

1 Some vector field propagation is briefly considered in Section 8.6.3.

Non-Gaussian Statistical Communication Theory, David Middleton.
� 2012 by the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.
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entirely by statistical models. These enable us to obtain probability distributions of such

complex phenomena as multiple scatter, unlike the “classical” approaches, which are in

practice limited to lower order moments of the scattered field. Moreover, these scattered

fields, to all orders of single- or multiple scatter, are generally non-Gaussian, with

correspondingly much more complex analytic representations [9,15].

From a more general viewpoint, scattering can be regarded as an important example of

“feedback”, where interaction generates modifying reaction, a feature of most natural

phenomena.An analytical description of this is given here by appropriate integral equations.

We shall encounter examples, both in the deterministic cases of this chapter and in following

work devoted to their stochastic extensions.2 Thus, this chapter provides the structural detail

needed to represent the random canonical channels encountered later in Chapter 9. For

subsequent applications, this chapter provides foundations, that is, “macroalgorithms,” for

computational evaluation in specific situations.3

We remark that the deterministic cases of propagation and scattering occur when every-

thing pertinent is known about the physical situation encountered and the desired “solution”

can then be uniquely determined. These “solutions” in fact are a property of the initial

information and are implied by that information. There is no randomness involved. From the

broader viewpoint of probability theory the deterministic sample or representation, con-

stitutes an ensemble of one member, with probability unity for all components of the

representation. Classical models of this type we call a priori models: they are completely

determined in their initial formulation and are particularly useful when this representation is

specified. Thus, the treatment of these deterministic problems is nonpredictive: all elements
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FIGURE 8.1 The canonical scalar channel: operational schematic of an inhomogeneous (linear)

medium, with source and receiver coupling hð Þ;Að Þ
� �

, and a(r, t) the resulting scalar field. The

quantity Q̂ is the inhomogeneity operator associated with this inhomogeneous (linear) medium.

[Themediumhere is deterministic and scalar, but is formally generalized to randommedia in thegeneral

situation where, as a consequence of randomness, Q̂ is a stochastic operator, cf. Chapter 9.

2 We remark that one difference between conventional engineering usage and the space–time physical formulations

is in the dimensionality of the “feedback” operation. The former is usually one dimensional (i.e., involving time

only), whereas the latter is four dimensional. The former is, au fond, described by ordinary, differential (and

integral) equations; the latter require partial differential and corresponding integral equations.
3 For the analytic background on which much of the present deterministic exposition in this chapter (and to a lesser

extent in Chapter 9) depends, we refer the reader to the classic treatise ofMorse and Feshbach [1], and to the book by

Lindsay [2], as well as to numbers of other well-known works [3–5]. The “classical” treatment of propagation in

random media is concisely surveyed from an operator viewpoint in Chapter 9. It is partially based on the review

chapter of Frisch [10] and the books by Tatarskii [11], Ishimaru [12], and Bass and Fuks [13].More recently, there is

the four volume set (1978), first published in English in 1989, of Rytov et al. [14]. Many additional references are

noted in thepertinent places (e.g., [16,17]) to these topics inoptic andacoustics, applied to specialmedia—suchas the

ocean, the atmosphere, and space, and so on, cf., Chapter 9.
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for the solution are provided initially.However, for a greatmany applications inmanyfields—

certainly in Communication Theory—we must deal explicitly with randomness. Here the

ensemble of representations has many members, each with nonunity probability measures.

Suchmodelswe call a posteriori models, sincewe do not a priori knowwithwhich ensemble

member we have to deal. Such models are predictive, or nondeterministic. Their “solutions”

are expressed in terms of moments and distributions. These models will be discussed and

applied throughout the rest of this book (except for this chapter).

This chapter now presents some of the results of the standard nonrandom, that is

deterministic, classical mathematical physics of propagation in linear homogeneousmedia.

This is then extended to the inhomogeneous situation, including bounded media as well as

the infinite unbounded cases. In brief, the topics discussed here are the canonical scalar

channel for the following:

Section 8.1 Propagation in ideal, unbounded media (except for distributed sources),

including the associated Green’s functions (GFs), and special solutions, as

well as conditions on physical causality, extensions to boundedness, and

the Generalized Huygens Principal.

Section 8.2 Equivalent time-variable (linear) filters, that is “engineering representa-

tions” of the classical space–time field and channel; and the conditions on

the equivalence of these filters to the underlying physical quantities.

Section 8.3 Deterministic scatter from inhomogeneous media, with operational solu-

tions, as a prelude to the treatment of the random channels of Chapter 9.

Section 8.4 The deterministic scattered field of Section 8.2, inwave number–frequency

space.

Section 8.5 Extensions and innovations: global operators and integral equations,

including multimedia and feedback formulations.

Section 8.6 Energy considerations.

Section 8.7 Summary remarks and next steps.

Accordingly, let us begin our journey in this chapter through the hierarchy of physical

situations outlined above as prelude to those described in the subsequent Chapter 9.

8.1 THE GENERIC DETERMINISTIC CHANNEL: HOMOGENEOUS4

UNBOUNDED MEDIA

Webeginwith a short formal overview of the generic canonical channel. The channel and its

constitutive elements are here treated as nonrandom, or deterministic. This includes not only

4 In customary mathematical usage “homogeneous” refers to a field with no sources present, that is, the field in a

source-free region, whereas inhomogeneous denotes a field in the presence of sources, that is, a nonzero source

GTð Þ. The partial differential equation describing the field in the former case is a homogeneous partial differential

equation, whereas the latter is an inhomogeneous partial differential equation (PDE) (See also pp. 792, 793 of

Ref. [1] for these terms applied to boundary conditions.)

However, here we shall use these terms to describe the physical properties of the medium in question: a medium

whose properties are independent of position (and time), is “homogeneous”, and one where the properties change

with position and time is “inhomogeneous”. The former is represented by a propagation equation with constant

parameters while the latter has position-dependent parameters.
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the medium itself but also the coupling to it by the aperture or arrays, in the manner of

Fig. 8.1. Our initial aim is to develop canonical expressions for the channel, which by

definition have a similar basic structure and are therefore not restricted to any particular

physical application. This includes beam forming (in the manner of Section 2.5) for

transmission and reception, homogeneous and inhomogeneous media, deterministic and

ultimately random signal and noise fields in Chapter 9. For this we make liberal use

of operator formulations. These are compact and emphasize the large-scale structure and

interactions of the channel as well as providing a vehicle for numerical evaluation. Having

done this we can go on in many cases (cf. [13,14]) to the more detailed analysis implied

by these operational forms.

8.1.1 Components of the Generic Channel: Coupling

We consider first the coupling to the medium and the input signal source. This is

represented by the aperture weighting (or Green’s) functions. These are, in effect, (linear)

space–time filters, hT; hR, which embody their associated “beam patterns”, AT;AR, in the

manner of Sections 2.5, namely, the double Fourier Transforms of hT; hR. The input signal
source SinðtÞ and ĜT, the local aperture operator, is such that the source density function

GT per unit element dj of its associated aperture, at a point j is,

GT j; tð Þ ¼ ĜTSin tð Þ ¼
ð1

�1
hT j; t� tð ÞSin j; tð Þdt: ð8:1:1Þ

In some situations the aperture weighting is time-variable, namely, the structure of hT
changes with time (t), in addition to the “memory” (t) of the filter, so that hT (and similarly

hR) are now time-varying filters, with weighting functions hT;R j; t; t� tð Þ. In a similar

fashion the output of the receiving aperture hR whena(R, t) is the input field to the receiver,
is given by

X tð Þ ¼ R̂a R; tð Þ ¼
ð

VR hð Þ
dVR hð Þ

ð1

�1
hR h Rð Þ; t� t; tð Þa R; tð Þdt: ð8:1:2Þ

Here h(R) embodies the spatial co€ordinates of the field with respect to a reference system

located at the receiver. The quantity R̂ is the aperture operator for the received signal:

R̂ �
ð

VR

dVR hð Þ
ð1

�1
hR h R½ �; t� t; tð Þð ÞR;tdt; ð8:1:3Þ

and dV(h) is a volume element, which can be replaced by a surface or line element,

depending on the physical distribution of the aperture in space. A similar interpretation

of Sin j; tð Þ in (8.1.1) applies, as well, depending on the distribution of the applied

signal to the transmitting aperture represented by hT. For apertures, as distinct from

arrays, it is assumed that the applied signal is distributed to a continuum of spatial

element dj, dh.
For arrays the situation is somewhat different: here they are approximated by point-

elements, as described in Section 2.5.3. Thus, for transmission we have for the source
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producing the field a(R,t) external to the source,

ð

VT

ĜTSin j; tð Þdj!
XM

m¼1

ð1

�1
h
ðmÞ
T jm; t� t; tð ÞSin jm; tð Þdt; ð8:1:4Þ

with the (m¼ 1, . . .,M) point-filters, h
ðmÞ
T , all within a domain V

ðMÞ
T in space. For reception,

the continuous aperture operator R̂ becomes the discrete element operator

R̂! ~1R̂M ; with XM tð Þ ¼ ~1R̂Ma R; tð Þ ¼
XM

m¼1

ð1

�1
h
ðmÞ
T hm Rð Þ; t� t; tð Þa R; tð Þdt;

ð8:1:5Þ
where 1 is a column vector of 1’s and R̂M is the column vector ½R̂m ¼

Ð1
�1 h

ðmÞ
R a dt�, as

indicated above in Eq. (8.1.5). The beam patterns that these arrays produce depend of course

on the placement of the M sensors in space and on their combination at some point in

reception to produce X(t), and in transmission to produce the field a(R, t) in the medium.

We shall illustrate this phenomenon of field generation for a variety of simple, common

homogeneous media presently in Section 8.2.

We can represent the channel compactly by Fig. 8.1, in terms of the following (mostly)

linear operators:

X tð Þ ¼ T̂ART̂
ðNÞ
M T̂AT Sinf g ¼ T̂AR af g:

T̂AT ¼ �ĜT ; GT ¼ ĜT Sinf g
T̂AR ¼ R̂ or R̂

� �

a ¼ T̂
ðNÞ
M T̂AT Sinf g ¼ T

ðNÞ
M �GTf g

8
>><

>>:

9
>>=

>>;
: ð8:1:6Þ

Accordingly,X0 tð Þ ¼ T̂S X tð Þf g is the discrete, that is (vector) input, to subsequent temporal

signal processing when X(t) is the (continuous) input to the samples.

8.1.2 Propagation in An Ideal Medium5

As a necessary introduction to the more realistic situations of propagation in nonideal

media, where the nonideality is manifest by inhomogeneity (including boundaries),

scattering, and randomness, we consider first the comparatively simple cases of the Ideal

Medium. This is defined by the following properties: unbounded, deterministic, and

homogeneity. (The medium is unbounded in the sense that an (outward) propagating

wavefront never encounters a bounding surface.) When a source is included, such media

remain “ideal”, exclusive of the source, even if the source itself is stochastic and the

resulting field is therefore random.

Accordingly, we begin by describing the propagation equations canonically, in terms of

differential operators, these are specifically identified by the particular medium they

represent, now for the time being restricted to the ideal channel and nonrandom signals.

The channel in turn, includes the couplings to the medium by apertures or arrays, as

5 The “classical” analytical foundations of this chapter are provided here principally by appropriate Chapters of

Refs. [1–5]: specifically, byChapter 7, [1], aswell asChapters 11 and 12 ofRef. [1]; also Section 8.11 ofRef. [5] and

Chapters 8–10 of Ref. [2].
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illustrated schematically in Fig. 8.1. The coupling operators are introduced in Sections 2.5

and are given specifically above by Eqs. (8.1.1)–(8.1.5). For the Ideal Medium we write

canonically,6

L̂
0ð Þ
aH ¼ �ĜTSin ¼ �GT 6¼ 0 in VTð Þ;
¼ 0; elsewhere:

#

þE
: ð8:1:7Þ

Here E represents the initial and boundary conditions which must be incorporated in the

solution of (8.1.7) and which are determined by the specific physics of the application

at hand.

The quantity aH is the homogeneous field generated by the source density GT and ĜT in

the associated source density operator. We observe specifically from (8.1.1) that

GT R; tð Þ ¼
ð1

�1
hT t; t� t Rj ÞSin t;Rð Þdt ¼ hT � Sinð ð8:1:8Þ

where � here denotes the convolution of the input applied at point R of the aperture

weighting function hT, and ĜT �
Ð
h � ð Þtdt is an aperture operator. The Ideal Medium

operator L̂
ð0Þ

usually has the form (cf. the example in [(8.1.7) and 8.1.8a)]7

L̂
ð0Þ ¼ L̂

ð0Þ r2;
@2

@t2
;r; @

@t
; a1;. . . ; an

� �
; ð8:1:8aÞ

in rectangular coordinates, where the parameters a ¼ a1;. . . ; an are (real) constants inde-
pendent of time and position, R ¼ î1xþ î2yþ î3z

� �
. We have written E¼ I.C.þB.C. to

remind us here that specific solutions always require physically meaningful initial

conditions (I.C.s) and boundary conditions (B.C.s). Of course, in the present situations

of the unbounded Ideal Medium as we have defined it here, the boundaries are at S0 and at

S (orR) !1 for no boundaries on the external field. Thegeometry of this source is sketched

6 For a rigorous treatment of linear operators like these used in Chapters 8–9 and elsewhere in this book, see for

example Kolmogoroff and Fomin [18], also Mukherjea and Pothoven, [19].
7 From a purely mathematical viewpoint the physical propagation equations represented by (8.1.7), embodied

operationally in L̂
ð0Þ
, (8.1.7) and (8.1.8a), and given explicitly in Table 8.1 below, are general second-order linear

partial differential equations. They take the form

F a;x1;. . . ;xK ;
@a

@x1
;. . . ;

@a

@xK

� �
þ
XK

ij

aij x1;. . . ; xKð Þ @2

@xi � @xj a x1;. . . ; xKð Þ ¼ 0 ðIÞ

where the xi; i ¼ 1; 2;. . . ;K, are the independent variables. Here the aij ; i; j ¼ 1; 2;. . . ;K are real, continuously

differentiable functions of the xi , F is real, continuously differentiable in each of its arguments, and

a ¼ a x1;. . . ;xKð Þ is the solution to (I). The aij are defined to be symmetric, that is, aij ¼ aji . The classification

of such equations (I) is made from selected properties of the principal part
� �PK

ij aij@
2a=@xi@xj

�
. It can be

shown ([5], Section 8.11, pp. 498–501) that, according to the eigenvalues of the matrix A ¼ aij
� �

at any

K-dimensional point x01;x
0
2;. . . ; x

0
K , the equation (I) is called

(a) elliptic, if all eigenvalues are positive, or negative;

(b) hyperbolic, if eigenvalues all have one sign, except one, which has the opposite sign;

(c) parabolic, when some eigenvalues are zero.
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in Fig. 8.2. Equation (8.1.7) is technically an inhomogeneous propagation equation because

of the presence of a source, but satisfies the homogeneous condition8 outside the source

regime ([1], p. 834). In Table 8.1 we list themost common types of propagation encountered

in acoustic and electromagnetic9 applications with their linear operators L̂
ð0Þ
, which we use

throughout the book. Here and elsewhere throughout this book, c0 denotes a constant speed

of propagation of a wave front in an ideal medium.

The relations in Table 8.1 all apply for rectangular co€ordinates in three dimensional

spaces. The solution for the one- and two-dimensional cases are presented as problems at the

end of the chapter. (We add Type 6 because of its close relation to 3, the wave equation with

radiation absorption.)

8.1.3 Green’s Function for the Ideal Medium

The Green’s function (GF) for the ideal (i.e., unbounded) medium is defined as the impulse

response of this medium to a four-dimensional “impulse” or delta function, in direct

extension of the electrical engineering definitions for the weighting function of a linear

time-invariant filter. Thus, the defining relation here is given by

L̂
ð0Þ
gð0Þ1 ¼ �d R0 � Rð Þd t0 � tð Þ � �dR0Rdt0t; ð8:1:9aÞ

; gð0Þ1 ¼ L̂
ð0Þ�1 �dR0Rdt0tð Þ � M̂1dRR0dtt0 ; ð8:1:9bÞ

R′
dR′

RO

z

y

x

∞

∞

∞ >>
0 B.C.sS ∈

( ),T t′G R

( ) 0SS →

FIGURE 8.2 Unbounded ideal medium (S !1) with a bounded source, GT, for which boundary

conditions and initial conditions apply, [E�B.C.þ I.C.], cf. Eq. (8.1.7) and Eq. (8.1.39) et. seq.

8 In our terminology the presence of a boundary constitutes an inhomogeneity, since it can produce a scattered,

albeit here a deterministic field.
9 Types 1–3 apply for acoustical propagation, Types 1, 2 also for the scalar representations of electromagnetic

waves, (like the dominant E-field component) as well as the propagation of sound in solids, fluids, and gases

(Type 4), and related Types (5, 6) for diffusion problems. In all cases the parameters a ¼ ða1; a2;���Þ have values
appropriate to the media involved.

THE GENERIC DETERMINISTIC CHANNEL: HOMOGENEOUS UNBOUNDED MEDIA 441



where M̂1 is the inverse operator to the differential operator L̂
ð0Þ
, that is M̂

�1
1 ¼ L̂

ð0Þ

formally, where g
ð0Þ
1 is the desired Green’s function for the ideal medium.10 Accordingly,

M̂1 is an integral operator, which now includes initial and boundary conditions (E), to be
described explicitly below, (cf. Section 8.1.6.3 and Table 8.3, ff.). Integrating (8.1.9b) over

TABLE 8.1 Linear Differential Operators L̂
ð0Þ

for Common Types of Propagation

Equationsa,b

Typec PDE’s: L̂
ð0Þ Classification Parameters

1. The time-dependent

Helmholtz Eq. r2 � 1

c20

@2

@t2
Hyperbolic a1 ¼ c�20

1a (Wave equation without

absorption); Harmonic or

classical Helmholtz Eq. ([1];

pp. 834–840) pp. 893–894; [5],

pp. 511–514.

r2 þ k2 Elliptic a1 ¼ k2

2. Wave equation with radiation

absorption. [1], pp. 865– r2 � a2R
@

@t
� 1

c20

@2

@t2
Hyperbolic

a1 ¼ a2R;

a2 ¼ c�20

3. Wave equation with

relaxation absorption 1þ t̂0
@

@t

� �
r2 � 1

c20

@2

@t2
Hyperbolic

a1 ¼ t̂0;
a2 ¼ c�20

4. Wave equation with

relaxation and absorption 1þ t̂0
@

@t

� �
r2�a2R

@

@t
� 1

c20

@2

@t2
Hyperbolic

a1 ¼ t̂0;
a2 ¼ a2R;

a3 ¼ c�20

5. Diffusion equations (Heat

Flow, etc.) [1], Section 7.4;

pp. 860–861, [5], pp. 516, 517.

r2 � b20
@

@t
Parabolic a1 ¼ b20

6. Maximum velocity of heat

absorption ([1], pp. 865–869).

(extension of 2.).

r2 � a2H
@

@t
� 1

c20

@2

@t2
Hyperbolic

a1 ¼ aH ;

a2 ¼ c�20

aRectangular co€ordinates, in 3 space dimensions. For example, r2 ¼ @2

@x2 þ @2

@y2 þ @2

@z2

� �
;

r ¼ î1
@
@xþ î2

@
@yþ î3

@
@z

� �
.

bThese propagation equations are usually applicable approximations. By their derivative from conservation laws,

the equations of state and other considerations, specific approximations are obtained. These are briefly discussed,

for example, in Section 1.2.1 of Chew [6] for the acoustic cases. Amuch fuller treatment is given in Chapters 5 and

10 of Flat�e [20]. The ocean is a well-known and important example of a highly inhomogeneous (and anisotropic)

acoustic medium, particularly over long ranges and significant depths. These more complex cases require

computational solutions. These, in turn, may be obtained in a first step from the initial operational formulations

(or “macro algorithms”) here in Chapter 8 (Sections 8.3 and 8.4) and particularly in Chapter 9 following. We shall

also use throughout the notation gð0Þ1 ; M̂
ð0Þ
1 , interchangeably with g1; M̂1, when there is no ambiguity in meaning;

see, for example, Section 8.3.3 ff. where gð0Þ1 6¼ gð1Þ1 ; gðkÞ1 , and so on.
c See footnote 9.

10 The subscript (1) denotes the ideal, unbounded medium.
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R0; t0ð Þ shows at once that M̂1 and g
ð0Þ
1 are related by

M̂
ð0Þ
1 R; tjR0; t0ð Þ¼

ð1

�1
dt0
ð1

�1
gð0Þ1 R; tjR0; t0ð Þð ÞR0;t0dR0 ¼ L̂

ð0Þ�1
; with dR0 � dx0dy0dz0; t0 � t

ð�Þ
0 ;

¼0; t0 < t
ð�Þ
0 ; ð8:1:10Þ

where now the initial condition for g1 (and ) for M̂
ð0Þ
1 ) is 0, t< t

ð�Þ
0

� �
, for the point

source�dR0Rdt0t producing this impulse response g1, Eq. (8.1.9a) of themedium.The initial

condition represents temporal causality, whereby the medium can not respond to the point

excitation before the excitation is initiated, clearly a reasonable (macroscopic) condition.

From the above it is also clear that M̂1 is an integral operator, whose kernel is g
ð0Þ
1 , cf.

Eqs. (8.1.9a and 8.1.10). Figure 8.3 shows the geometry of g
ð0Þ
1 R; tjR0; t0ð Þ and the domain of

a source GT .
11

The importance of the Green’s function lies in the fact that, knowing it and the initial

and boundary conditions (I.C.sþB.C.s) on the field one can directly obtain from (8.1.7)

particular solutions for any arbitrary source distribution GT. Thus, from [(8.1.7), (8.1.8)]

and (8.1.9b) one has the field aH, subject to boundary conditions (B.C.s) and initial

conditions (I.C.s) on the source function GT R0; t0ð Þ. We shall give the general result

in Section 8.1.6. Note that the Green’s Function11 g1, being a d-function point source,

has no preset boundary conditions and an initial condition which depends only on a range of

specific times (t’). Also, we observe finally, that the integral Green’s function11 (8.1.10) can

be viewed as a projection operator M̂1
� �

, whereby all points R in the medium can receive

the field generated by a distributed source GTð Þ. Thus, M̂1, in conjunction with the GT ,

represent the field at all points Rj j > VT; t
0 > t1�10

� �
, produced by this source inVT at time t0.

R′

−R′R

R

TV

TO

TG

z

P(R)

x

y

∞

∞

∞

FIGURE 8.3 The radiative domain of the Green’s function gð0Þ R; tjR0; t0ð Þ, is everywhere outside
the space–time point P(0, 0) at OT . The radiative domain of a distributed source GT about OT is the

volume outside VT, that Rj j � limV!1 V � VTð Þ and t > t0�.

11 Henceforth we shall drop the superscript (0) on gð0Þ1 and M̂
ð0Þ
1 until we have to distinguish between homogeneous

and inhomogeneous media, beginning with Section 8.3 ff. and where appropriate in subsequent chapters.
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The calculation of Green’s functions from (8.1.9a) is readily carried out by Fourier and

Laplace transforms. These can represent a spatial transform pair (cf. Section 2.5.1 et seq.):

B kð Þ ¼ FR b Rð Þf g ¼
ð1

�1ðRÞ

eik �Rb Rð ÞdR and b Rð Þ ¼ Fk B kð Þf g ¼
ð1

�1ðkÞ

e�ik �RB kð Þdk= 2pð Þ3;

ð8:1:11Þ
with dR¼ dx dy dz; R¼ î1xþ î2yþ î3z, and k¼ î1kxþ î2kyþ î3kz in rectangular

co€ordinates. Temporal transforms are given as usual by

A sð Þ ¼ Ft a tð Þf g ¼
ð1

�1
e�sta tð Þdt; Re sð Þ � 0; t> 0�; ¼ 0; t� 0�; ð8:1:12aÞ

a tð Þ ¼ Fs A sð Þf g ¼
ði1þd

�i1þd

A sð Þes t�t0ð Þds=2pi¼
ð

Br1ðsÞ

A sð Þes t�t0ð Þds=2pi; ð8:1:12bÞ

where s¼ ivþ c � 0ð Þ; c< d and the straight line (d� i1, dþ i1) d� 0, defines the

Bromwich contour (cf. Chapter IV of Ref. [21]).

By suitable choice ofd this allows us to include transients, namelya(t)> 0when t � t�0
� �

and a(t)¼ 0, t < t�0 . In steady-state regimes, in which t0 ! �1, we choose d¼ 0 and use

s¼ iv¼ 2pif, withv, f real frequencies, and with appropriate indentations of the Bromwich

contourBr1 to include any singularities to the left of and on Re(s)¼ 0. In this case [(8.1.12a)

and (8.1.12b)] is a Fourier transformpair.Otherwise, for t0 > �1ð Þ it is aLaplace transform
pair. Thus, the Bromwich contour Br1ð Þ combines steady state or transient behavior, by an

appropriate selection of d, cf. Fig. 8.4.

Following the examplesof [(8.1.11) and (8.1.12)]wecanalsoobtain ageneral space–time

transform pair by combining these equations and replacing R by R –R0 � r and t by

t – t’� t. This gives relations like

g1 ¼ FRFt g1 R; t R0; t0j Þð g � g1 k; s R0; t0j Þ:ðf ð8:1:13aÞ

The inverse of the (double) transform of Eq. (8.1.13a) is thus explicitly

g1 R; tjR0; t0ð Þ ¼ FsFk g1 k; s R0; t0ð Þf g ¼
ð

Br1ðsÞ

ð

k

g1e�ik � R�R
0ð Þþs t�t0ð Þdkjds 2pð Þ4i:

.

ð8:1:13bÞ
Equation (8.1.9a) becomes now (see, e.g., pp. 513, 514 of Ref. [5]):

L̂
ð0Þ
g1 ¼

ð

k

ð

Br1ðsÞ
L0 k; sð Þg1e�ik � R�R0ð Þþs t�t0ð Þdkds= 2pð Þ4i

¼ �
ðð

e�ik � R�R
0ð Þþs t�t0ð Þ � dkds

2pð Þ4i ð8:1:14Þ
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Here L̂0 ¼ L̂
ð0Þ r;r2;. . . ; @=@t; @2=@t2;. . .ð Þ ) L0 k; sð Þ;which is obtained by differentiat-

ing e�ik �Rþst in the integrand of (8.1.14) and is the coefficient of expð�ik �Rþ stÞ; that is,12

L̂0 r;r2;. . . ;
@

@t
;
@2

@t2
; k

� �
e�ik �Rþst ) L0 �ik;�k � k;. . . ; s; s2;. . .

� � � L0 k; sð Þ:

ð8:1:15Þ
Accordingly, we obtain from (8.1.14)

g1 ¼ �
ð

k

ð

s

e�ik � R�R
0ð Þþs t�t0ð Þ dkds

2pð Þ4i

¼
ð

k

ð

Br1ðsÞ
L0 k; sð Þg1 k; sjR0; t0ð Þ1e�ik � R�R

0ð Þþs t�t0ð Þ dkds

2pð Þ4i : ð8:1:16Þ

On comparing integrands in (8.1.16) we see from (8.1.14), (8.1.13a) and (8.1.13b) that, on

setting

Y0 k; sð Þ � �L0 k; sð Þ�1; and ; g1 R; t R0; t0j Þ ¼ FkFs Y0 k; sð Þf g;ð ð8:1:17aÞ

C

O

ia

c+ i∞

x = – (c+ib)

c– i∞

s-plane

Equivalent
Paths

1A

1C

2C
Br1

C

O

c– i∞

s-plane
Br1

2A

c+ i∞

ai

–ai

is ia x eπ= +

is ia x e π−= +

is ai x eπ= −     +

ai x e−π i−     +

s-plane
Br1ia

–ia

C

O

3A

Oia-c
Br1

s-planeib-c

4A –ia-c
–ib-c

C

FIGURE 8.4 Bromwich contours Br1 for a variety of equivalent contours (C) (cf. [21]);A1, simple

pole on imaginary s-axis, with branch point at s¼ 0 and simple pole at – (cþ ib); A2, double branch

points at s¼� ia; A3, double branch points at s¼� ia; A4, simple poles at� ia� c and � ib – d.

(The equivalent contours Cþ Br1 ¼ 0 because Br1 ¼ �C, with branch barriers given by the dotted

lines to the branch points at s¼ 0, � ia.)

12 We note that L0 k; sð Þ is the result of applying the operator L̂0 to a given function (here exp 	 ik �Rþ stð Þ and is
thus itself a function, not an operator.)
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or in detail

g1 R; tjR0; t0ð Þ ¼
ð

Br1ðsÞ
es t�t0ð Þ ds

2pi

ð

k

e�ik � R�R
0ð Þ Y0 k; sð Þ½ � dk

2pð Þ3 ¼ g1 R� R0; t� t0ð Þ;

ð8:1:17bÞ

where now specifically the (double) Fourier transform Fk;s here for these Hom-Stat media

are with respect to r�R�R’ and Dt� t� t’.
Equation (8.1.17b) is the general expression for determining the Green’s function for

these ideal media, and the one we shall use in Section 8.1.5 to obtain the specific results

of Table 8.2. The corresponding integral Green’s function operator M̂1, Eqs. (8.1.9b)
and (8.1.10) is explicitly here

M̂1 R; tjR0; t0ð Þ ¼
ð1

t
ð�Þ
0

dt0
ð

Br1ðsÞ

es t�t0ð Þds
2pi

ð1

�1
dR0ð ÞR0;t0

ð

k

e�ik � R�R
0ð Þ Y0 k; sð Þ½ � dk

2pð Þ3 ;

ð8:1:18Þ

¼ M̂1 R� R0; t� t0ð Þ: ð8:1:18aÞ

For a source densityGT R; tð Þ, Eq. (8.1.8), we have at once the resulting homogeneous field

a R; tð ÞH ¼ M̂1 �GTð Þ in this medium. In fact, we see from the defining relations [(8.1.9a)

and (8.1.9b)], for a (here deterministic) homogeneous and stationary (i.e. Hom-Stat)

medium13the Green’s function (and its integral operated form M̂1) are always a function
of the differences r¼R –R’, Dt¼ t� t0. Specific examples are given presently in Section

8.1.5 ff. (This is also true for random media which are Hom-Stat, cf. Section 9.1.2 ff.)

The possible presence of the gradient operator! (and odd powers of!) in these scalar

equations of propagation in some such form as a0 � r, and so on, which produces a0 � k in

Y0 k; sð Þ, represents an inhomogeneous element. (Since the media here are postulated to be

homogeneous, we exclude the presence of !, etc.)

Equations (8.1.17b) and (8.1.18) can be put into more convenient equivalent forms

for evaluation if we now employ a form of spherical coordinates k ¼ k;w ¼ cos uð Þ;fð Þ.
The result is

g1 R; tjR0; t0ð Þ ¼
ð

Br1ðsÞ
es t�t0ð Þ ds

2pi
� 1

2pð Þ3
ð1

0

k2dk

ðþ1

�1
dw

ð2p

0

e�ik R�R0j jw Y0 k; sð Þ½ �df:

ð8:1:19Þ
With the extension of the limits on k to �1 � k � 1ð Þ; we have directly

g1 R; tjR0; t0ð Þ ¼
ð

Br1ðsÞ
esDt

ds

2pi
�
ð1

�1

k2dk

2pð Þ2
eikr � e�ikr

ikr

� �
Y0 k; sð Þ; ð8:1:20Þ

13 From a probabilistic point of view a deterministic medium may be considered as constituting an ensemble

of one representation.
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where

r � R� R0j j; Dt � t0 � t: ð8:1:20aÞ

8.1.3.1 Example: The Helmholtz Equation in an Ideal Unbounded Medium As a

useful example, let us evaluate g1 for the time-dependent Helmholtz equation (No. (1) in

Table 8.1). Its Green’s function is found as follows: from (8.1.15) we have

r2 � 1

c20

@2

@t2
! � Y0 Helm ¼ �k � k� s2=c20 ¼ � k2 þ s2=c20

� �
:

		 ð8:1:21Þ

Equation (8.1.20) becomes specifically on integration over w, with the additional observa-

tion that the k-integrand is even in k:

g1 R; tjR0; t0ð ÞHelm ¼
1

2pð Þ2ir

ð

Br1ðsÞ
esDt

ds

2pi

ð
1

Ckk2 þ s2=c20
ke�ikrdk; ð8:1:22Þ

cf. (8.1.17b).At this pointwecan evaluate either thek- or the s-integral first. For the former or

the latter, we have

1

k2 þ s2=c20
¼ 1

ðk � is=c0Þðk þ is=c0Þ or
c20

ðs� ikc0Þðsþ ikc0Þ : ð8:1:23Þ

In each case the respective poles at k ¼ �is=c0 and s ¼ ik0c0 around C are the ones that

yield “outgoing”waves andwith the conditionDt< 0 also represent space–time causality.14

Applying (8.1.23) to (8.1.22) gives us after a little manipulation the well-known result

g1 R; tjR0; t0ð ÞHelm ¼
1

4pr

ð1

�1
es Dt�r=c0ð Þ ds

2pi
; 1

ð1

�1
eikc0 Dt�r=c0ð Þ c0dk

2pð Þ ; 2

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

¼ d Dt� r=c0ð Þ
4pr

: ð8:1:24Þ

Here Fig. 8.5a and b illustrate the contours Ck of integration.

We observe that the first resolution of the integrand in (8.1.23) into the poles of k gives

k ¼ v=c0 for the required outgoing propagation. This is the linear relation between k andv
characteristic of nondispersivemedia. In fact, when k is nonlinear in v, our outgoing wave
solutions for k indicate the dispersive but still homogeneous nature of the media. See

examples (2)–(6), in Table 8.2.

14 In Fig. 8.5a, for the contribution of the simple poles on C(�1i,1i), the first at k ¼ �is=c0 integrates in the

counter clockwise direction (þ) to i
Ð 0
p du ¼ �pi and the second, at k ¼ �is=c0, integrates in the clockwise

direction (�)þ 0� Ð p
0
idu ¼ �pi, for a total of�2pi. The total contribution is Ck � 2pið Þ þ C0 ¼ 0 orCk ¼ 2pi,

since C0 vanishes at infinity. Moreover, we see that the Bromwich contour Br1, cf. Fig. 8.4, requires that all

singularities in s lie to its left. This ensures that transients t � t�0
� �

are included, as well as steady-state results

�1 < t <1ð Þ.
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8.1.4 Causality, Regularity, and Reciprocity of the Green’s Function

The causality condition on g1 exhibited by the choice of poles (8.1.23) et. seq. in our

Helmholtz example above can be alternatively expressed by the relations:

(i) Space–Time Causality or Radiation Condition:15

lim
R!1

R n̂ � r � @

c0@t

� �
g1 ¼ 0; R ¼ Rj j; ð8:1:25Þ

which ensures that only outgoing waves from the source 	GTð Þ are propagated in
this unbounded medium. Generally, this causality condition is obtained by

appropriately modifying the contours in the complex k- or s-planes—the

Helmholtz case above ((8.1.22)b) et seq.) is an example, cf. Fig. 8.5 to ensure

only the singularities that yield the required outgoing waves. Other conditions

and properties are

(ii) Regularity at Infinity:15

This ensures that g1 vanishes as R ! 1 in such a way that

lim
R!1

Rg1! 0; ð8:1:26Þ

(which is not necessarily guaranteed by (8.1.25).) This condition is a reflection of

the fact that (here) the point source has finite energy and consequently its field,

generated by g1, must also, for all R � Rj j:
There are two other conditions on g1:

(iii) Uniqueness:

At all points exterior to a closed surface S, g1 satisfies

L̂
ð0Þ
g1 ¼ �dR0Rdt0t; ð8:1:27Þ

k+=

=k−

0cis+

0cis−

0s ikc=

0ikc−

SCkC

C′ C′

Incoming
   wave

Incoming
   wave

Outgoing
   wave

Outgoing wave

k-plane s-plane

O O

(a) (b)
–i∞

i∞
i∞

–i∞

(∞)

(∞) ∞+i∞

1 2

FIGURE 8.5 (a and b) Contours of integration Ck;Cs for causality: Dt� r=c0ð Þ � 0, for the

outgoing wave in (8.1.23) for the Helmholtz equation, cf. 1, Table 8.1.

15 Ref. [3], the extension of Eq. (17) from Eq. (20).
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and g1 obeys the homogeneous boundary conditions

ag1 þ b n̂ � rg1 ¼ 0: ð8:1:28Þ
(iv) This is also seen from the fact that it is reasonable to postulate that the initial

conditions16 are g1 ¼ 0; @g1=@t ¼ 0; t ðand t0Þ � 0: The boundary conditions

become g1 ¼ n̂ � rg1 ¼ 0; as well here.
(Therefore, conditions (i) – (iv) also determine the uniqueness of the field aH

consequent upon the Green’s function g1, and B.C.s and I.C.s.)

Finally, there is another important consequence of the causality condition on the

Green’s function:

(v) Reciprocity:17

g1 R; t R0; t0j Þ ¼ g1 R0;�t0 R;�tj Þ;ðð ð8:1:29Þ
which in addition requires g1 to satisfy the initial conditions (iv), namely,

g1 R; tjR0; t0ð Þ ¼ 0;
@g1
@t
¼ 0; t � t0ð�Þ ð8:1:29aÞ

Reciprocity (8.1.29) is determined by (1) the fact that the same boundary conditions

apply to the Green’s functions in (8.1.29) and (2) by causality for the initial

conduits (8.1.29a) cf. [5].17 Simply stated, (8.1.29) allows one to interchange the

location of the impulsive source with that of the field at point R, that is, R0 !R;ð
R!R0Þ, with the respective times reversed, that is, t0 ! �t and t!�t0.

We remark that some of the propagation equations listed in Table 8.1 (and for the associated

media themselves) are not invariant under a time reversal t ¼ �t0ð Þ but do distinguish

between past and future, that is, G R; t R0; t0j Þ ¼ 0; t � t0�ð . This is characteristic of

diffusion-dominated propagation, for example, Items 4 and 5 in Table 8.1. They still obey

reciprocity, Eq. (8.1.29), however, since it embodies causality.

8.1.5 Selected Green’s Functions

For themedia types cited inTable 8.1 abovewemay still apply thegeneral relationL0 k; sð Þ to
the more general results (8.1.19) and (8.1.20). Similar contour selections to those used

in (8.1.21)–(8.1.24), although more complex in the cases involving branch points as well as

simple poles, yield the specific results given below. These include not only the desired

Green’s functions but also their space- and time-Laplace transforms.18

16 For the 1=c20
� �

@2=@t2 and @=@t terms we use the reciprocity relation (8.1.29), representing causality, for

example, g1 R; tjR0; t0ð Þ ¼ g1 R0;�t0jR; tð Þ, where now �t0 is earlier than –t. Accordingly, gð0Þ1 R0;�t0jR; tð Þ and
@gð0Þ=@t ¼ 0, and only the lower limit t ¼ t0 is possibly nonzero, representing nonzero initial conditions. For the

details see [2], pp. 835–837.
17 For [5], see pp. 511, 512, Eqs. (8.176)–(8.179) and for proofs and discussion; also [1], pp. 835, 836.
18 Most of the details are available in Sections 7.3 and 7.4 of Ref. [1], along with the table, pp. 890–894 [1]. See

also [5], Section 8.11, p. 498, with examples a – e, pp. 501–517, and Table 8.3, p. 529, references, p. 530. An

appropriate use of thewell-knownTable 1 of Campbell and Foster [22] is also recommended, as are the tables of the

Bateman Manuscript Project [23].
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8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Our summary of results here, for the media listed in Table 8.1, accordingly becomes for

these unbounded cases.19

(1) Time-Dependent Helmholtz Equation:20

r2 � 1

c20

@2

@t2

� �
g1 ¼ �d R0 � Rð Þd t0 � tð Þ � �dRR0dtt0 : ð8:1:30aÞ

�L�10 ¼ Y0 k; sð Þ ¼ k2 þ s2=c20
� ��1

; Y0 R; sjR0ð Þ

¼ Y0 r; sð Þ ¼ e�sr=c0

4pr
; r � R� R0j j;Dt ¼ t� t0: ð8:1:30bÞ

g R; t R0; t0j Þ1 � G r;Dtð Þ1 ¼ d Dt� r=c0ð Þ=4pr;Dt � 0:
� ð8:1:30cÞ

(2) Wave Equation with Radiation Absorption:

r2 � a2R
@

@t
� 1

c20

@2

@t2

� �
g1 ¼ �dRR0dtt0 : ð8:1:31aÞ

�L�10 ¼ Y0 k; sð Þ ¼ k2 þ s2=c20 þ a2Rs
� ��1

; Y0 r; sð Þ ¼ e� rs=c0ð Þ 1þc2
0
a2R=sð Þ1=2.4pr

ð8:1:31bÞ

g R; tjR0; t0ð Þ1 � G r;Dtð Þ1 ¼
e�ð

1
2
Þa2Rc20Dt

4pr



d Dt� r=c0ð Þþ

þ a2Rr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=c0ð Þ2 � Dt2

q J1
a2Rc

2
0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=cð Þ2 � Dt2

q� �
1Dt�r=c0

�
1Dt;

9
>>>>>=

>>>>>;

or equivalently ð8:1:31cÞ

G r;Dtð Þ1 ¼
e�ð1=2Þa

2
Rc

2
0
Dt

4pr


 d Dt� r=c0ð Þ þ a2Rcr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2 � r=c0ð Þ2

q I1
a2Rc

2
0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2 � r=c0ð Þ2

q� �
� 1Dt�r=c0

8
><

>:

9
>=

>;
1Dt;

ð8:1:31dÞ
([1], pp. 866–868 or pair no. 863.1, s ¼ 0, of Ref. [23])

19 We remark that it is generally simpler to integrate over k first, and then s, as we can see from the results of 1–6

below. Note, however, that because of the causality condition one (or more) of the poles, branch points, and so on,

which lie on the k-axis (�i1, i1), must be excluded. The notation 1Dt denotes a unit step function, with Dt � 0�.
Similarly, 1a�b ¼ unity for a� bð Þ � 0�, and so on.
20 Note again that Lð0Þ here is a specific function, not the operator L̂

ð1Þ
, cf. footnote for Eq. (8.1.15).
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(3) Wave Equation with Relaxation Absorption:

1þ t̂0
@

@t


 �
r2 � 1

c20

@2

@t2

� �
g1 ¼ �dRR0dtt0 : ð8:1:32aÞ

�L�10 ¼ Y0 k; sð Þ ¼ 1þ t̂0sð Þk2 þ s2
.
c20

h i�1
; Y0 r; sð Þ ¼ e�ðrs=c0Þ 1þt̂0sð Þ�1=2

4pr 1þ t̂0sð Þ ð8:1:32bÞ

g1 � G r;Dtð Þ1 ¼
1

4pr
1� 1

ffiffiffi
p
p
X1

n¼0

�1ð Þn 1=2ð Þn
2nþ 1ð Þ!

r

c0
ffiffiffiffiffiffiffiffiffi
t̂0Dt
p

� �2nþ1(

� e�Dt=t̂0 1F1ð�1� 2n; 1=2� n;Dt=t̂0Þ
)

1Dt ð8:1:32cÞ

(use pair no. 581.4 of Ref. [23].)

(4) Wave Equation with Relaxation and Radiation Absorption:

1þ t̂0
@

@t

� �
r2 � a2R

@

@t
� 1

c20

@2

@t2

 �
g1 ¼ �dRR0dtt0 : ð8:1:33aÞ

�L�10 ¼ Y0 k; sð Þ ¼ 1þ t̂0sð Þk2 þ a2Rsþ s2=c20
� ��1

; Y0 r; sð Þ

¼
exp �ðrs=c0Þð1þ ða2Rc2=sÞ=ð1þ t̂0sÞ

� �1=2h i

4pr 1þ t̂0sð Þ

8
<

:

9
=

;

ð8:1:33bÞ

g1 � G r;Dtð Þ1 ð8:1:33cÞ

(5) The Diffusion Equation: r2 � b20
@

@t

� �
g1 ¼ �dRR0dtt0 : ð8:1:34aÞ

�L�10 ¼ Y0 k; sð Þ ¼ k2 þ b20s
� ��1

; Y0 r; sð Þ ¼ e�b0r
ffiffi
s
p

4pr
; ð8:1:34bÞ

; g1 ¼ G r;Dtð Þ1 ¼
b0

8 pDtð Þ3=2
e�b

2
0
r2=4Dt1Dt: ð8:1:34cÞ

((Eq. 8.188, [5], p. 517; [1], p. 860, 861))

(6) Diffusion: Maximum Velocity of Heat Absorption: See (2) above.
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The quantities Y0 and Y0 are the kernels of the following Fourier and Laplace trans-

forms.21 Thus, we have from (8.1.13a)–(8.1.22), when k¼ k and we use (8.1.19)

and (8.1.20a):

G r;Dtð Þ1 ¼ FsFk! k Y0 k; sð Þe�st0þik �R0
n o

¼
ð

Br1ðsÞ
esDt

ds

2pi

ð1

�1
Y0 k; sð Þe�ikr kdk

2pð Þ2ir ;

ð8:1:36aÞ

G r;Dtð Þ1 ¼ Fs Y0 r; sð Þe�st0
n o

¼
ð0

Br1ðsÞ
esDtY0 r; sð Þds=2pi; r � jR� R0j;Dt ¼ t� t0;

ð8:1:36bÞ

Y0 r; sð Þ ¼ Fk Y0 k; sð Þk2eikR0
n o

¼
ð1

�1
Y0 k; sð Þe�ikr kdk

2pð Þ2ir ð8:1:36cÞ

with the inverses

Y0 k; sð Þk2e�st0 ¼
ð1

�1
eikr

dr

2p

ð1

�1
e�stG r;Dtð Þ1dt ¼ FrFt G r;Dtð Þ1

� �
; ð8:1:37aÞ

Y0 r; sð Þe�st0 ¼
ð1

�1
e�stG r;Dtð Þ1dt ¼

ð1

t0�t�
e�stG r;Dtð Þ1dt ¼ Ft G r;Dtð Þ1

� �
;

ð8:1:37bÞ

Y0 r; sð Þ ¼ FR G r;Dtð Þ1
� � ¼

ð1

�1
eikrG r;Dtð Þ dr

2p
: ð8:1:37cÞ

Note that the Green’s function here is always a function of r ¼ jR� R0j. This is a direct
consequence of the postulated homogeneity of the medium, and in fact represents an even

stronger property, namely isotropy. These are established analytically by the symmetrical

nature of the point-source dRR0dtt0ð Þ, generally the basic response of themedium.Whenk !
k, that is, when L0 ¼ L0 k; sð Þ, (cf. remarks following Eq. (8.1.20)), we have the general

relations (8.1.13a), which are given by (8.1.19) in a form of rectangular co€ordinates. The
specific results above (8.1.30)–(8.1.37) aremuchmore complex. Since theGreen’s function

G(r,Dt)1 and the fields resulting from them are all real, we have the additional relations for

21 Depending on d in the Bromwich contour Br1ðsÞ, (8.1.12b) and discussion following.
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their transforms (8.1.36) and (8.1.37)

Y0 r; sð Þ ¼ Y0 r;�sð Þ* and Y0 k; sð Þ ¼ Y0 �k;�sð Þ*: ð8:1:37dÞ

8.1.5.1 Dispersion I Next, we observe for those unbounded homogeneous (and

isotropic) media that solving Y0 k; sð Þ for ksingular associated with the outgoing wave, that

is, the causal condition in these physical problems, gives us one measure of the medium’s

dispersion. The dispersion here, of course, is the result of energy dissipation in themedium,

represented analytically by the presence of the operator ð@=@tÞ in L̂
ð0Þ
, cf. Eq. (8.19) and

Table 8.1 and correspondingly, in theGreen’s functions (8.1.31b)–(8.1.34b), andTable 8.2.

The result specifically is to spread thewave number–frequency spectrumY0 k; sð Þ vis-à-vis
that of the nondissipative medium. Mathematically, this type of dispersion is represented

by a nonlinear relation between (angular) wave number k and (angular) frequency v,
namely,

k ¼ F vð Þ=c0;F vð Þ 6¼ v ð8:1:38Þ

for otherwise homogeneous isotropic media, which without dissipation support a linear

relation, that is, k ¼ v=c0. Media for which (8.1.38) applies are termed frequency

dispersive. (For further discussion see Section 8.3.4.3.)

Table 8.2 summarizes the previous properties and (some of) the areas of application of

these propagation equations of the resulting field aH ¼ M̂1 �GTð Þ, Eq. (8.1.11), obtained
from the appropriate Green’s function above and described in Section 8.1.6 immediately

following.

8.1.6 A Generalized Huygens Principle: Solution for the Homogeneous Field aH

In the simplest terms, the Huygens Principle assumes that each point on a given

wavefront behaves like a point source that in turn radiates a spherical wave, traveling

at a speed c0. The resulting field at a specified point at a later time is then the sum of

the fields of these individual point sources. The envelope of the waves from all such

synchronous points constitutes the next wave front. Nothing, however, is said specifi-

cally about the original source itself and its associated boundary and initial conditions

C(B.C.s and I.C.s). Here we take these into account. The result we call a Generalized

Huygens Principle (GHP), which now gives us the complete solution for the field

aH R; tð Þ in this infinite homogeneous medium, produced by the source (density) GT

distributed about the origin OT in the manner of and contained by, the surface S0, cf.

Fig. 8.6 below.

8.1.6.1 GHP for the Field aH We begin by incorporating the boundary and initial

conditions (C) explicitly in the solution of its defining relation (8.1.9a). Its reciprocal

property is a consequence, as we have seen (Eq. (8.1.29), of causality and the fact that both

g1 R; tjR0; t0ð Þ and its reciprocal g1 R0;�t0jR;�tð Þ obey the same boundary conditions.22

Nowby a similarmethod used to establish reciprocity of theGreen’s function,we beginwith

22 For details, see pp. 835, 836 of [1].

THE GENERIC DETERMINISTIC CHANNEL: HOMOGENEOUS UNBOUNDED MEDIA 453



T
A
B
L
E
8
.2

T
y
p
es

o
f
H
o
m
o
g
en
eo
u
s
Is
o
tr
o
p
ic

D
is
p
er
si
v
e
U
n
b
o
u
n
d
ed

M
ed
ia

M
ed
.
T
y
p
es
:
E
q
.
C
la
ss
.

W
av
e
N
u
m
b
er
:

k
þ
¼
�i

s=
c 0

ð
Þ1
þ
a
0
sðÞ

½
�¼
�i

g
sðÞ

F
ea
tu
re

a
a
0
sðÞ

P
h
y
si
ca
l

A
p
p
li
ca
ti
o
n
sb

1
.
T
im

e-
d
ep
.
H
el
m
h
o
lt
z

(h
y
p
er
b
o
li
c)

(g
en
er
al
iz
ed

H
el
m
h
o
lt
z)

�i
s=
c 0
¼

v
=
c 0

N
o
n
-D

¼
0
(n
o
d
is
p
er
si
o
n
)

S
o
n
ar
;
ra
d
ar
;

te
lc
o
m
;
sp
ac
e

2
.
R
ad
ia
ti
o
n
ab
so
rp
ti
o
n

(h
y
p
er
b
o
li
c)

�
is
=
c 0

ð
Þ1
þ
a
2 R
c2 0
=
s

�
� 1

=
2
¼

v
=
c 0

1
�
ia

2 R
c2 0
=
v

�
� 1

=
2

D

¼
1
þ
a
2 R
c2 0
=
s

�
� 1

=
2
�
1
D ¼:

a
2 R
c2 0
=
2
s

1

8 < :

R
ad
ar
;
te
lc
o
m
.

3
.
R
el
ax
at
io
n
ab
so
rp
ti
o
n

(h
y
p
er
b
o
li
c)

�
is
=
c o

ð
Þ1
þ
t̂ 0
s

ð
Þ�

1
=
2
¼

v
=
c 0

1
þ
it̂

0
v

ð
Þ�

1
=
2

D
¼

1
þ
t̂ 0
s

ð
Þ1=

2
�
1
’

0

¼
�t̂

s=
2

(
S
o
n
ar
,
te
lc
o
m
;

w
at
er
,
ai
r,
sp
ac
e

4
.R

ad
ia
ti
o
n
an
d
re
la
x
at
io
n

ab
so
rp
ti
o
n
(h
y
p
er
b
o
li
c)

�
is
=
c o

ð
Þ

1
þ
a
2 R
c2 0
=
s

1
þ
t̂ 0
s

�
�

1
=
2

¼
v
=
c 0

ð
Þ

1
�
ia

2 R
c2 0
=
v

1
þ
it̂

0
v

�
�

1
=
2

D
¼

W
at
er
/a
ir
;
so
n
ar

5
.
D
if
fu
si
o
n
(p
ar
ab
o
li
c)

�
is
=
c 0

ð
Þb

0
c 0
=
ffiffi sp
¼

v
=
c 0

ð
Þ

b
0
c 0
ei
p=

4

ffiffiffiffi vp
�

�
D

¼
H
ea
t
fl
o
w
;
so
li
d
s

li
q
u
id
s

6
.
D
if
fu
si
o
n
an
d
ra
d
ia
ti
o
n

ab
so
rp
ti
o
n
(h
y
p
er
b
o
li
c)

�
is
=
c o

ð
Þ1
þ
a
2 0
c2 0
=
s

�
� 1

=
2
¼

v
=
c 0

ð
Þ1
�
ia

2 0
c2 0
=
v

�
� 1

=
2

D
¼

H
ea
t
fl
o
w
;
so
li
d
s

li
q
u
id
s
(m

ax
.

v
el
o
ci
ty
)

a
D
¼
d
is
p
er
si
v
e
�

d
is
si
p
at
io
n
.

b
In

el
ec
tr
o
m
ag
n
et
ic

ap
p
li
ca
ti
o
n
s,
o
n
ly

th
e
d
o
m
in
an
t
sc
al
ar

E
-fi
el
d
.

454



the relations (8.1.7) and (8.1.9a), namely,

L̂
0ð Þ
aH ¼ �GTgC and L̂

0ð Þ
g1 ¼ �d R0 � Rð Þd t0 � tð Þ ð8:1:39Þ

and multiply the former by g1 and the latter by aH and subtract the result, to obtain

g1L̂
ð0Þ
aH � aHL̂

ð0Þ
g1 ¼ �g1GT þ aHdR0Rdt0t: ð8:1:39aÞ

Next, we integrate over the volumeVT containing the source and over time t0 ¼ t0 to t, to get

ðt

t0

dt0
ð

VT

dR0 g1L̂
ð0Þ0

a0H � a0HL̂
ð0Þ0

g1
n �

¼ �
ðt

t0

dt0
ð

VT

dR0g1G0T þ aH R; tð Þ: ð8:1:40Þ

To proceed further we must now introduce the explicit structure of L̂
ð0Þ
, which from the

examples of Section 8.1.5 has two or three additive terms involving ½r2; ð@=@tÞ;
ð1=c20Þð@2=@t2Þ�. Specific results are then obtained from the application of Green’s theorem

(see, e.g., [24]) in expressionswhich containr2 and thus exhibits the effects of the boundary

conditions on any sources on S10!
� �

S00. We have23

ð

VT

A2r20A01 � A1r20A02
h i

dR0

¼
þ

S0

A2r0A01 � A1r0A02
� � � n̂0� �

S0
0

dS00 �
þ

S0

L1 g1;a0H
� � � n̂0� �

S0
0

dS00; ð8:1:41aÞ

withr0A1 � n̂0 � n̂0 � r0A1 ¼ @A1

@n0 and so on. The integrand is taken on the bounding surface

n̂0dS0 ¼ dS00
� �

, which we indicate explicitly by writing S00 ¼ S0 R0; t0ð Þ. Here n̂0 is an

( ),H tα R
( ),P tξ R

( ),H tα R

n̂n̂
R′

TV

TG 0S

TO

∞

∞

∞

∞

∞

FIGURE 8.6 Geometry of a finite distributed source GT in VTð Þ bounded by the surface S0, and in
an infinite homogeneous medium V � VT!1ð Þ.

23 In the following, the primes refer to the variables of integration, in R0 and to (R0, t0)—dependent quantities,

that is, S00 ¼ S0 R0; t0ð Þ, and so on.
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outwardly drawn normal. Thus, we have

G
S0
L1ðg1;a0HÞdS00 ¼ G

S0
0

ðg1n̂0 � r0a0H � a0Hn̂
0 � r0gÞdS00

g1n̂0 � r0f0dS00 ¼ g1 � ðrfÞ0 � n̂0dS00 ¼ g1 � ðrfÞ0 � dS00;

9
=

;
ð8:1:41bÞ

where alternatively n̂0 � r � @=@n0.
For the terms containing @=@t; @2=c20@t

2, and thus embodying the initial conditions, we

have for these components of L̂
ð0Þ

ð

VT

L2 g1;a0H
� �

VT
TdR
0

¼
� 1

c20

ð

VT

� dR0 @g1
@t0

a0H �
@a0H
@t0

g1

 �

R0;t0ð Þ
: for

@2

@t02

þa
ð

VT

dR0 g1a0H
� �

R0;t0ð Þ: for
@

@t0
þ ðspace � time terms LS0
T ; if anyÞ;

8
>>>><

>>>>:

ð8:1:41cÞ

this last for the initial conditions on a0H in LS0
T , where ½ � R0;t0ð Þ represents the initial

condition at R0; t0ð Þ. Here Þ
S0
0

represents the integral over the closed surface S00
� �

and

dR0 ¼ dx0dy0dz0 is a volume element in VT. Combining (8.1.40)–(8.1.41b) we have finally

the three components for the complete solution for the field aH:

aH R; tð Þ ¼
ðt

t0

dt

ð

VT

dR0g1 R; tjR0; t0ð ÞGT R0; t0ð Þ

þ

ðt

t0

dt

þ

S0

L1 g1;a0H
� � � n̂0� �

S0
0

dS00 þ
1

c20

ð

VT
TþS00
T

L2 g1;a0H
� �jt0�dR0

 ðB:C:sÞ !  ðI:C:sÞ !

8
>>>><

>>>>:

9
>>>>=

>>>>;

; ðB:C:þ I:C: � CÞ

ð8:1:41dÞ
with the governing conditions (8.1.41b) and (8.1.41c) embodied in C. Thus, the first term

of (8.1.41d) gives that part of the field in the infinite space beyond S00 due to the source

within VT, the second term is the contribution to the field attributable to any sources on the

bounding surface S00, and the third term is the component representing the initial impulses

applied to VT at time t0. The source density GT contains the coupling by the aperture or

array, of the signal input to this homogeneous infinitemedium inwhich the fieldaH R; tð Þ is
propagating.

From (8.1.10) in (8.1.41b), we see that the generic form of the integral Green’s function

operator M̂1 is specifically for volumes and surfaces, respectively, in these cases of the

infinite homogeneous medium,

M̂1jV ¼
ð
dt0
ð

VT

g1 R; t R0; t0j Þð ÞR0;t0dR0
�

ð8:1:41eÞ
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and M̂1jS0
0
¼
ð
dt0
þ

S0
0

gð0Þ1 n̂0 � r0 � n̂0 � r0g1
� �� �

ð ÞR0;t0dS00 Rð Þ ð8:1:41fÞ

vis-à-vis the reference plane z0 ¼ 0. The last term in (8.1.41d), (in more detail in 8.1.41b),

represents the effects of the initial conditions, which can often be omitted because

aH;
@aH

@t

� �
t0
¼ 0.

8.1.6.2 Evaluation of the Surface Integrals in Eqs. (8.1.41a–d); (8.1.42) To carry out

evaluations of the surface integral
Þ ð ÞdS00, we need to determine dS00 ¼ dS00 R0; t0ð Þ in

more detail. For these deterministic examples we begin first with the assumption that the

surface S00 is fixed relative to the reference coordinates (x
0, y0, z0), i.e. dS00 R0; t0ð Þ ¼ dS00 R0ð Þ.

The surface S00 may be irregular, so that the (outward drawn) normal n̂0 to it can have avariety
of directions depending on the locations of the element dS00. Then, we canwrite z R0ð Þ for the
surface elevation with respect to the xy-plane, at a point R0 from OT, as shown in Fig. 8.7

with a typical portion of the (fixed) surface S00. The normal n̂0 at the element dS R0ð Þ varies
with location of the irregularity and is given by24

n̂0 ¼ îxn
0
x þ îyn

0
y þ îzn

0
z; with n

0
x ¼ zxn

0
z; n

0
y ¼ zyn

0
z; n

0
z ¼ 1þ z2x0 þ z2y0

� ��1=2
ð8:1:42aÞ

and for the surface element25:

dS00 ¼ dx0dy0=n0z ¼ dx0dy0 � 1þ z2x0 þ z2y0
� �1=2

; with zx0 ¼
@z

@x0
; zy0 ¼

@z

@y0
; zz0 ¼

@z

@z0
¼ 1

ð8:1:42bÞ

z

x

yTO

z′

r′

R′

dy′ dx′

ˆ ze r′i ζ ζ+
z

( ),y′x′ζ
0dS′

0S′n̂

= =
.

FIGURE 8.7 An irregular surface S0 with surface element dS00 R0ð Þ, Eq. (8.1.42b), (on an irregular
strip).

24 It is assumed that the surface is continuous, with at least continuous first and second derivatives.
25 Eqs. (8.1.42a–c) follow directly from n0x ¼ zx0=F; n

0
y ¼ zx0=F; n

0
z ¼ zz0 ¼ 1ð Þ=F, where F is a normalization

factor, obtained from jn0j ¼ �n02x þ n02y þ n02z
�1=2 ¼ �z2x0 þ z2y0 þ 1=2

�
=
�
F2
�1=2 ¼ 1, so thatF ¼ �1þ z2x0 þ z2y0

�1=2

and n0z ¼ F�1.
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and z ¼ z R0ð Þ ¼ z0; zx0 ¼ zx0 R
0ð Þ, etc. Here n̂0 ¼ n̂0 R0ð Þ, and25

; n0x ¼
zx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2x0 þ z2y0
q ; n0y ¼

zy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2x0 þ z2x0

q ; n0z ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2x0 þ z2y0

q : ð8:1:42cÞ

From Fig. 8.7 we see that for (a fixed position) r0 ¼ îxx
0 þ îyy

0,

R0 ¼ r0 þ z ; z ¼ îzz R0ð Þ ¼ z rþ zð Þ¼: z rþ Fð Þ; n̂0 ¼ n̂0 R0ð Þ: ð8:1:42dÞ

We now have in detail the needed results for evaluating the various surfaces integrals

encountered in the GHP, namely,

@

@n0
¼ n̂0 � r0 ¼ zx @=@x0ð Þ þ zy @=@y0ð Þ þ @=@z0ð Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2x0 þ z2y0

q

¼ Ĵ
0
R0ð Þ; and ; dS00 R0ð Þ ¼ dr0 1þ z2x0 þ z2y0

� �1=2
;

so that explicitly

n̂0 � r0ð ÞdS00 � Ĵ R0 ¼ r0 þ zð Þð ÞR0dx0dy0

¼ zx0
@

@x0
þ zy0

@

@y0
þ @

@z0

� �
ð ÞR0dr0; dr0 ¼ dx0dy0; ð8:1:42eÞ

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

which accordingly defines the local surface operator Ĵ
0 ¼ Ĵ

0
R0ð Þ.

This becomes approximately

Ĵ
0 � zx0

@

@x0
þ zy0

@

@y0
þ @

@z0

� �
¼ rR0zð Þ �rR0 ; ð8:1:42fÞ

since z is normally small enough for Ĵ to depend only on r0 þ z. This may be expressed by

requiring the variance of z to be small compared to the magnitude of z
		 		, that is,

var z� z
		 		2, and to r0, namely, var z� z

2
; r0 or r0. Note that if z0 ¼ 0, the condition

becomes var z� r0. The former condition applies for surface roughness small compared

to the radius of curvature (r) of the surface, while the latter applies for flat mean surfaces

r ¼ 0ð Þ characteristic of ocean surfaces, for example, and sometimes ocean bottoms, with

analogous cases for land.

If the surface is moving, for example, the ocean with respect to a stationary or moving

source, then z R0ð Þ! z R0; t0ð Þ and dS00 R0ð Þ! dS00 R0; t0ð Þ, so that n̂0 and r0 are also

functions of time (t0) as well as location R0ð Þ. The result (8.1.42e) is directly extended

to (8.1.42g) below:

@

@n0
ð Þ0dS00¼ n̂0 �r0ð ÞR0;t0dS00 R0; t0ð Þ ¼: zx0

@

@x0
þ zy0

@

@y0
þ @

@z0

� �

R0;t0
ð ÞR0;t0dr0

¼ rR0zð Þ �rR0 ð ÞR0;t0dr0:

9
>=

>;
¼ Ĵ

0 � ð ÞR0;t0dr0;

ð8:1:42gÞ
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If themotion of the surface is large atR0, the position of the point z on the surface changes
significantly. However again, in most physical situations z changes only a small amount

with respect to the mean surface, so that R0¼: r0 þ z, where appropriate to the operator Ĵ
0
,

and the quantities it operates upon. Then we find from (8.1.42f) and (8.1.42g) that the

operators [(8.1.42a) and (8.1.42b)] can be written with acceptable approximation as

M̂1jV ¼
ð
dt0
ð

VT

g1 �ð ÞR0;t0dR0; M̂1jS0
0
¼:
ð
dt0
þ

S0

g1Ĵ
0 � Ĵ

0
g1

h in o

R0;t0
ð ÞR0;t0

 �

R0;t0
dr0;

ð8:1:42hÞ

with Ĵ
0
now given explicitly by (8.1.42f) and (8.1.42g). We also note once more

that these systems are deterministic: there are no random elements. In Chapter 9, we

shall discuss what happens when randomness is introduced, to represent the many

important a priori situations which now require a probabilistic description for their

quantification.

8.1.6.3 GHP Examples Inhomogeneous Media If there are no sources on the surface

S0, thenaHjS0
0
¼ 0 andn0 � r0aHjS0

0
¼ 0,Eqs. (8.1.42a) and (8.1.42b), and the surface integral

accordingly vanishes. (As we shall see in Section 8.3.3 following, however, if there are

inhomogeneities in the medium outside the source contained in S00, the resulting

(deterministic) backscatter produces an additional, reflected scatter contribution from

S00,. Eq. (8.3.20). This in turn may be regarded as equivalent to scatter from virtual

sources on S00. Here we shall include the case of sources on S00, whether actual or

virtual.) Explicit results for the propagating field a R; tð Þare now obtained from the

Green’s functions of Section 8.1.5. We have accordingly for the integral of the surface

integrals, cf. (8.1.42e) and (8.1.42f):

ĝ
ð0Þ
S � g1Ĵ

0 � Ĵ
0
g1

h i� �
ð ÞR0;t0 ; with dS00 ¼ dS0 R0; t0ð Þ: ð8:1:42iÞ

Note that in the case of the surface integrals the operator kernel g1 for volumes becomes a

local surface operator ĝ
ð0Þ
S0 . The corresponding (global) integral operator for the surface

component is
Ð
dt
Þ
ĝ
ð0Þ
S ð ÞR0;t0dS00.

(1) Time-Dependent Helmholtz Equation:

aH R; tð Þ ¼
ðt

t0

dt0
ð

VT

g1 R; tjR0; tð ÞGT R0; t0ð ÞdR0

þ
ðt

t0

dt0
þ

S0
0

ĝ
ð0Þ
S a0HdS

0
0 R0; t0ð Þ

þ 1

c20

ð

VT

@g1
@t0

a0H

� �

R0;t0

� g1
@a0H
@t0

� �" #

R0;t0

dR0; ð8:1:43Þ
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where specifically

@g1
@t0

aH

� �

R0;t0

¼ @0

@t0
g1 R; tjR0; t0ð Þ

 �
aH R0; t0ð Þ;

g1
@aH

@t0

� �

R0;t0

¼ g1 R; tjR0; t0ð Þ@aH R; tjR0; t0ð Þ
@t0

�
;

ð8:1:43aÞ

(2) Wave Equation with Radiation Absorption:

aH R; tð Þ ¼
ðt

t0

dt0
ð

VT

g1G0TdR
0 þ
ðt

t0

dt0
þ

S0
0

ĝ
ð0Þ
S a0HdS

0
0

þ aR

ð

VT

g1a0ð Þt0;R0
dR00 �

1

c20



ð

VT

@g1
@t0

� �

t0;R0

aH R0; t0ð Þ � g1 R; tjR00; t0
� � @aH

@t0

� �

t0;R0

" #

dR00;

ð8:1:44Þ

(3) Wave Equation with Relaxation Absorption:

aH R; tð Þ ¼
ðt

t0

dt0
ð

VT

g1G0TdR
0

þ
ðt

t0

dt0
þ

S0
0

g1 1þ t̂0
@

@t0

� �
Ĵ0a0H � a0H 1þ t̂0

@

@t0

� �
Ĵ0g1
� � �

dS00

� 1

c20

ð

VT

g01
@a0H
@t0
� a0H

@g0

@t0

 �t

t0;R0

dR00; ð8:1:45Þ

(4) Wave Equation with Relaxation and Radiation Absorption:

aH R; tð Þ ¼
ðt

t0

dt0
ð

VT

g1G0TdR
0 þ
ðt

t0

dt0
þ

S0

g01 � 1þ t̂0
@

@t0

� �
Ĵ0a0H



�a0H � 1þ t̂0
@

@t0

� �
Ĵ0g01
� �

dS00�S0 þ a2R

ð

VT

ga0H
� �

t0;R0
dR00

� 1

c20

ðt0

VT

g01
@a0H
@t0
� a0H

@g01
@t0

 �t

t0;R0

dR00; ð8:1:46Þ
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(5) The Diffusion Equation:

aH R; tð Þ ¼
ðt

t0

dt0
ð

VT

g1G0TdR
0 þ
ðt

t0

dt0
þ

S0

� ĝ0Sa0HdS00

þ b20

ð

VT

g
ð0Þ
1 a0H

h i

t0;R0

dR00;

ð8:1:47Þ

(6) Diffusion: Maximum Velocity of Heat Absorption: (See (2), Eq. (8.1.44) above).

Here the primes (0) refer to the variables of integration, that is, as noted earlier

r0a0H ¼ î1
@=@x

0� �þ î2
@=@y

0� �
î3

@=@z
0� �� �

aH R0; t0ð Þ, and so on, g1 ¼ g R; tjR0; t0ð Þ, of course.
In all of these relations (1)–(6) the Green’s function g1 can obey a variety of boundary

conditions, according to Table 8.3 below.

8.1.6.4 The Simplest Case—Homogeneous Media and Volume Sources Only: Zero
Field Initially For most of the cases of interest to us here there are no surface sources, and

the domain V � VTð Þ of the field is infinite so that
Ð
dt0
Þ
S0
ð ÞdS00 ¼ 0. Furthermore, for the

initial conditions on field generation it is reasonable to set aH ¼ 0; @aH=@t ¼ 0 at t ¼ t0,

with t ¼ t0 as the initial time.The result for thefield is averyconsiderable simplification, that

is, only the first term generally in (8.1.42) remains nonvanishing (with similar effect in the

specific cases 1–6 above). Accordingly, we now have the “simple” result

aH R; tð Þ ¼
ð1

t0

dt0
ð

VT

g1 R; tjR0; t0ð Þ1GT R0; t0ð ÞdR0; ð8:1:49Þ

generally. In particular, for the homogeneous and isotropic media discussed here in

Section 8.1 [cf. 1–6, Eqs. (8.1.30)–(8.1.34) above], Eq. (8.1.38) with (8.1.36a) becomes

finally for any (real) source density GT,

aH R; tð Þ ¼
ð1

t0

dt0
ð

VT

G r;Dtð Þ1GT R0; t0ð ÞdR0; ð8:1:49aÞ

¼
ð

t0

dt0
ð

VT

dR0GT R0; t0ð Þ
ð

Br1 sð Þ

esDtY0 r; sð Þds=2pi; ð8:1:49bÞ

¼
ð1

t0

dt0
ð

VT

dR0GT R0; t0ð Þ
ð

Br1ðsÞ

esDt
ds

2pi

ð1

�1
Y0 k; sð Þ e

�irkkdk

2pð Þ2ir ;
r ¼ R� R0j j
Dt ¼ t� t0

)

; ð8:1:49cÞ26

26 Note that k ! k here. (Generally, we have k 6¼ k in the analysis.)
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and on replacing the Green’s function and source density by their (double) Fourier

transforms FR0Ft0 ð Þ and integrating over R0 and t’ to obtain

¼
ð

Br1

est
ds

2pi

ð1

�1
Y0 k; sð ÞG00 k; sð ÞTe�ik �R

dk

2pð Þ3 : ð8:1:49dÞ

where Y0 andY0 are given explicitly in (1)–(6) of Section 8.1.5.We remind the reader that

the (distributed) source density GT , given by (8.1.1), or (8.1.4), contains the coupling

aperture or array for the input signal. The isotropy, and with it homogeneity, of these

media is at once evident from r � R� R0j j. For finite sources of duration T (in time),

measured from t0 ¼ 0, we simply insert the factor 1� e�sTð Þ in (8.1.49b) and (8.1.49c).

For (8.1.49), consequently, the integral over t0 is for the interval (0, T). The source

density GT r;Dtð Þ embodies the finite interval in space through R0, for example

0 � R0 � RTð Þ.
As expected, when the propagation equations are supported by different physical media,

for example atmospheres versus oceans, and so on, their parameters, of course, assume

different values (and dimensions). Thus, for heat flow (5, 6 above and Table 8.2) the speed c0
of propagation is different in air from that in a solid or fluid—namely the speed of sound in

that particularmedium. In like fashion, the speed of propagation of electromagneticwaves is

different from that of heat, or sound, in similar media. The same is true for the other

parameters aR; a0; t̂0;. . .ð Þ which appear in these equations.

8.1.7 The Explicit Role of the Aperture or Array

In addition, for a more complete description of the propagated field, we must include

the coupling aperture or array explicitly, as required by our definitions of the channel. The

aperture, of course, determines the directional characteristics of the radiated energy from

the source. We observe, for example from Eqs. (2.5.9a), (2.5.9b), (2.5.12a), and (2.5.12b),

that we can write for the source density

GT R; tð Þ ¼ ST R; tð ÞD ¼
ð1

�1
YT R; fð ÞSin R; fð ÞDeivtdf ð8:1:50Þ

with Sin�D 6¼ 0; t 2 D;R 2 VTð Þ and zero elsewhere. Here YT is the aperture transfer or

system function, cf. (Eq. (2.8.1a) and Sin�D represents the input signal to it, of finite

duration D, cf. Section 2.5.1. We can accordingly rewrite (8.1.49c) for the radiated field,

again where the only source is in VT and with zero initial conditions, to obtain

aH R; tð Þ ¼
ð

Br1ðsÞ

est
ds

2pi

ð1

�1
Y0 k; sð Þ e

�irkkdk

2pð Þ2ir

�
ð

VT

dR0
ð1

�1
dt0
ð1

�1
YT R0; f 0ð ÞSin R0; f 0ð ÞDe s0�sð Þt0 ds

0

2pi

s ¼ 2pif ; s0 ¼ 2pif 0:

ð8:1:51Þ
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Since

ð1

�1
e s0�sð Þt0 dt

0

2pi
¼ d s0 � sð Þ; and r ¼ R� R0j j; ð8:1:51aÞ

we readily obtain for (8.1.51), on writing R0 � j for the spatial variable of the source

elements in the source density of the transmitter (Section 2.5.2), the desired result

aH R; tð Þjaperture ¼
ð

Br1ðsÞ

est 1� e�sT
� � ds

2pi

ð

VT

YT j; s=2pið ÞSin j; s=2pið ÞDdj



ð1

�1
Y0 k; sð Þ e

�i R�jj jkkdk

2pð Þ2i R� jj j : ð8:1:52Þ

[In (8.1.52), we have replaced the finite duration (0� t� T) of the input signal Sin�D by the
equivalent time truncation factor 1� e�sTð Þ.] Here, of course, Y0 k; sð Þ ¼ �L�10 , given

explicitly in Section 8.1.5. The corresponding result for (8.1.49b) [and (8.1.52)] is easily

found to be

aH R; tð Þjaperture ¼
ð

Br1ðsÞ

est
1� e�sTð Þds

2pi

ð

VT

YT j; s=2pið ÞSin j; s=2pið ÞY0 R� jj j; sð Þdj:

ð8:1:53Þ

In the case of arrays of discrete (point) sensors in space, we use Eqs. (8.1.4) and (8.1.5)

for GT in place of Eq. (8.1.1), (8.1.50) or Eqs. (2.5.9a), (2.5.9b), (2.5.12a), and (2.5.12b),

namely,

GT R; tð Þjarray ¼
XM

m¼1

ð1

�1
h
ðmÞ
T jm; t� tð ÞSðmÞin jm; tð ÞDdt; ð8:1:54aÞ

¼
XM

m¼1

ð1

�1
Y
ðmÞ
T jm; s=2pið ÞSðmÞin jm; s=2pið ÞDestds=2pi: ð8:1:54bÞ

Here the sensor’s filter weighting (i.e., Green’s) function or equivalently, its system function

(cf. Section 2.5.1 et. seq.), is not time-variable, that is, h
ðmÞ
T jm; tð Þ 6¼ h

ðmÞ
T jm; t; tð Þ, in

keeping with the usual condition that the input signal and its receiving sensor are not in

relative motion.27 The expressions for the field aH R; tð Þ correspond to Eqs. (8.1.52)

and (8.1.53), but employ (discrete) arrays instead of (continuous) apertures. This follows

directly from GT [(8.1.54a) and (8.1.54b)] in place of GT, (8.1.50). We have now, again for

27 Relative motions, however, might occur here in towed or otherwise transmitting arrays, for example, for active

radar and sonar applications. In such cases time-varying filters, with hT ¼ hT j; t; tð Þ, would be appropriate for the
array structure.
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input signals of duration (0, T):

aH R; tð Þjarray ¼
ð

Br1ðsÞ

est 1� e�sT
� � ds

2pi

XM

m¼1

ð1

�1
Y
ðmÞ
T jm; s=2pið ÞSðmÞin jm; s=2pið ÞD

�
ð1

�1
Y0 k; sð Þ e�i R�jmj jkkdk

2pð Þ2i R� jmj j :
ð8:1:55Þ

Similarly, we obtain for (8.1.53), the array counterpart

aH R; tð Þjarray ¼
ð

Br1ðsÞ

est 1� e�sT
� � ds

2pi

XM

m¼1
Y
ðmÞ
T jm; s=2pið ÞSðmÞin jm; s=2pið ÞDY0 R� jmj j; sð Þ:

ð8:1:56Þ

and of course (8.1.55) equals (8.1.56), just as (8.1.52) equals (8.1.53). However, this is not

necessarily the case for aH�aperture ¼ aH�array.
We observe again [cf. remarks following Eq. (8.1.37c), as well as those preceding

Eq. (8.1.40)] that whereas the media considered so far are homogeneous and isotropic, as

exemplified by their Green’s functions, the fields produced in them are directional, that is,

are anisotropic. This occurs because of the nonuniform beam patterns produced by

the aperture or array employed in their generation, cf. [(8.1.52) and (8.1.53)], [(8.1.55)

and (8.1.56)]. Accordingly, the relations (8.1.52) and (8.1.53) for the directional fields

here now represent inhomogeneous, unbounded (scalar) fields (produced by the directional

source at VT, independent of propagation in the homogeneous but possibly dispersive, (i.e.,

absorptive)media, cf. Table 8.2 above. Inmany physical applications, such as radar in water

vapor or rain, or sonar in theocean atmoderate to long ranges, dispersion canbe aproblem, as

well as for the signal frequencies employed. Furthermore, the medium itself can produce

scattering and distortions in directions of propagation, which can also be significant, so that

these comparatively simple results no longer apply.We shall address someof these problems

presently.

8.2 THE ENGINEERING APPROACH: I—THE MEDIUM AND CHANNEL

AS TIME-VARYING LINEAR FILTERS (DETERMINISTIC MEDIA)

In the previous section, we have presented a general physical description of a propagating

field in an unbounded homogeneous (linear) medium, which may or may not be dispersive.

The central element here is the appropriateGreen’s function of thismedium, or equivalently,

the space-timeweighting function, g1 ¼ G r;Dtð Þ1, cf. (8.1.30a) et. seq. In addition, for the
channelwe include a general signal source and the coupling of the source to themedium, the

latter in the form of a suitable aperture or discrete array.28 The resulting fieldaH R; tð Þ is thus

28 Strictly speaking, we usually define the channel as having both a transmitting and a receiving coupling,

cf. Fig. 8.1.
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represented generally by Eqs. (8.1.42a), or equally by Eqs. (8.1.43)–(8.1.48) above, which

simplify to [(8.1.52) and (8.1.53)] and [(8.1.55) and (8.1.56)].

A frequent alternative or “engineering” approach is to represent the medium and the

channel by appropriate linear filters. These filters can be time-invariant or time-variable.

The former represents the medium and the coupling to it when there is no selective

motion of the source and its projection by aperture or array, as well as motion of the

medium itself. The latter case arises when there is relative motion of one or more of

these elements and usually appears as a Doppler effect. The weighting function of these

elements, h(t) or h(t, t), are also the Green’s functions discussed above in Section 8.1

which fully describe propagation for a given source when initial and boundary

conditions are specified.29 Here, for h(t, t) in the aforementioned case of relative

motion, t describes the filters time variability due to this motion, which t represents the
“memory” of the filter (see the comments in Section 3.5.2 1, Eqs. (3.5.15a), (3.5.15b),

(3.5.15c). In this instance, however, there is no relative motion between the components

of the channel, so that time-invariant filters appear to be reasonable candidates for

possible equivalents to the physical, space–time Green’s function and the resulting

canonical channel.

8.2.1 Equivalent Temporal Filters

The task now is to establish the possible validity and the conditions under which these

commonly used filter equivalents are employed. We begin with the general operator forms

for the field, and the channel (which includes the receiving coupling, ĥR):

aH R; tð Þ ¼ ĥM ĥTSin

� �
� ĥMTSin � ĥFSin; X tð Þ ¼ ĥRaH ¼ ĥRĥMĥTSin � ĥCSin

ð8:2:1aÞ

with the assumptions to be tested here, namely,30

aH R; tð Þ ¼?
� � ð1

�1
hF tjRð ÞSin t� tð Þdt; X tð Þ ¼?

� � ð1

�1
hC tjRð ÞSin t� tð Þdt: ð8:2:1bÞ

Note that we at once require the necessary condition that Sin ¼ Sin tð Þð Þ be independent of its
spatial location (j) in the aperture or array (denoted by ĥT in ĥF), that is, that the same

signal be applied to each sensor element in the source function. (See, e.g., Section 2.5.1,

2.5.2, Eq. (2.5.17c) and Section 2.5.3.1). Figure 8.1 illustrates the canonical channel, which

is also discussed in Section 8.1.1. This is established explicitly from Eq. (8.2.2b) immedi-

ately following. For the unbounded homogeneous media considered here we consider first

29 We remark that these temporal filters are the solutions of an ordinary differential equation (ODE), whose

coefficient may be time-variable , cf. Middleton [25]. Sections 2.2.1 and 2.2.2, Eqs. (2.26), (2.27) and the rest of

Section 2.2 therein. On the other hand, the physical medium here can be interpreted as a linear space–time filter,

whose weighting function is the Green’s function g1 R; t R0; t0j Þð , Eq. (8.1.9a)–(8.1.20b) et seq., where the

coefficients are functions of the independent variables and partial differential operators, in the manner

of (8.1.9a), cf. footnote 2.
30 For the general time-varying case, (8.2.1b) is modified by replacing hF tð Þ by hF t; tð Þ and hC t Rj Þð by hC t; t Rj Þð .
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the results Eqs. (8.1.52) and (8.1.53) for a finite sample (0, T) of the field:

Eq: ð8:2:1bÞ: aH R; tð ÞD ¼ ĥFSin ¼?ð Þ
ð

Br1

est 1� e�sT
� �

YF s=2pijRð ÞSin s=2pið ÞD
ds

2pi

ð8:2:2aÞ

Eqs: ð8:1:52Þ and ð8:1:53Þ: ¼
ð

Br1

est 1� e�sT
� � ð

VT

YT j; s=2pijRð ÞSin j; s=2pið ÞDdj

�
ð1

�1
Y0 k; sð Þ e

�ik R�jj jkdk

R� jj j 2pð Þ2i
ð8:2:2bÞ

where YF f jRð Þ ¼ Ft h tjRð Þf g. From (8.2.2a) it is immediately evident that we must have Sin
independent of position j in the aperture or array, that is, Sin j; s=2pið ÞD ¼ Sin s=2pið ÞD,
namely, that the same signal is applied to each element (dj) of the aperture or array.

Moreover, we must impose the far-field (FF) or Fraunhofer constraint on the radiated

field, so that the size of the source, VT jð Þ, is ignorable in determining this field: the field

appears to be coming from a single-point in space, namely. OT in Fig. 2.15, that is from

R� jj j¼: R in the denominator of (8.2.2b). However, a directional beam is still generated,

effectively now at OT. However, for this we must retain j in the phase factor of exp

�ik R� jj jð Þ, which becomes in the far-field approximation k R� jj j¼: k R� îT � j
� �

, cf.

Section 2.5.2.1. This factor still depends on j and R and provides the directionality of the

radiated signal, as determined by the resulting beam pattern in (8.2.2b), namely

AT nT� nOT; s=2pið ÞFF ¼
ð1

�1
YT j; s=2pið Þeikj � îT�îOTð Þdj; with nT � kîT=2p;nOT ¼ kîOT=2p:

ð8:2:3Þ
Herewe have inserted a steering-vector nOT [cf. (2.5.16a) et seq.] into the phase factor of the
aperture. This modifies Y0 r; sð Þ to Y0 R; sð Þ, the Fourier transform of Eq. (8.1.36c), which is

now the far-field form

Y0 r; sð Þ¼: Y0 R; sð ÞFF ¼
ð1

�1
Y0 k; sð ÞFFe�ikR

kdk

2pð Þ2iR ¼
1

4pR

ð1

�1
Y0 k; sð ÞFFe�ikR

kdk

pi
:

ð8:2:4Þ
The quantity k! kþ ¼ �igðsÞð Þ noted above in Table 8.2, represents the complex wave

number associated with dissipation, that is, for dispersive media, obtained by solving

the denominator of (8.2.4) for the singularity representing outgoing radiation from the

source. Equation (8.2.4) thus determines Y0 R; sð ÞFF. Specific values of kþ correspond to

different types ofmedia.Combiningnow (8.2.3) and (8.2.4) in (8.2.2a)with the position-free

input Sin yields directly the desired results for the far-field aHjFF:

aH R; tð Þ
FF

Sin 6¼Sin j;�ð Þ

¼:
ð

Br1

est 1� e�sT
� �

Sin s=2pið ÞD AT nT h½ ��nOT h½ �; s=2pið ÞFFF sð ÞFF
�

� e�g sð ÞR

2pR

 ��
ds

2pi
: ð8:2:5Þ
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Here FFF and kþ and g(s) are specifically, with s¼ iv:

FðsÞFF ¼
ð1

�1
Y0 k; sð Þkdk=pi; with k! kþ ¼ �igðsÞ ¼ �i s

c0

� �
1þ a0ðsÞ½ �;

and nT ¼ nTðsÞ ¼ nT gðsÞð Þ; and so on : ð8:2:5aÞ

Note that for the Helmholtz medium that �ig sð Þ ¼ v=c0, characteristic of non-dispersive
media, and a0 sð Þ ¼ 0, so that F sð ÞFF ¼ 1, cf. Example, 8.1.3.1. In general, however, if the

medium is dissipative,kþ for the required outgoingwave from the source, is no longer linear

in v (or s), and the values of F sð ÞFF and AT are accordingly modified.

Next, comparing (8.2.5) and (8.2.2a) we see that YF s=2pið ÞFF is represented in detail

by (8.2.5), namely

YF R; sð ÞFF � AT nT g sð Þð Þ � nOT g sð Þ; s=2pið Þð ÞFF F sð ÞFF
e�g sð ÞR

4pR

� �
;

¼ AT s=2pið ÞFFF sð ÞFFe�g sð ÞR=4pR;

9
>=

>;
ð8:2:6Þ

or by its Fourier transform

hF tjRð ÞFF � Ff hFf g ¼
ð1

�1
YF R; sð Þe2pif tdf ¼ AT s=2pið ÞFF F sð ÞFF

e�g sð ÞR

4pR

� �
: ð8:2:6aÞ

The field aH R; tð Þ, (8.2.5), becomes finally for the continuous sample on (0, T), from

Sin 6¼ 0; Tð Þ and zero elsewhere, namely,

aH R; tð Þ
FF
Sin tð ÞD
D

¼:
ð

Br1

estSin s=2pið ÞDYF s=2pijRð ÞFF
ds

2pi
¼
ð1

�1
hF t Rj ÞFFSin t� tð ÞDdt:
�

ð8:2:7Þ
This result (8.2.7) shows that it is indeed possible to represent the physical (Green’s

function assisted) solution for these homogeneous fields in unbounded media by a suitable

(here) time-invariant linear filter, [(8.2.6) and (8.2.6a)], which in turn establishes the

equivalence of (8.2.2a) and (8.2.2b).

The necessary and sufficient (nþ s) conditions together are that:

Equivalency Conditions for the Field, Eq. (8.2.7):

ð8:2:8Þ

I: Sin j; tð ÞD ¼ Sin tð ÞD at each element dj of the source function

GT ¼ ĜT Sinf g in VT jð Þ; the region occupied by the aperture;

that is; the driving signal is the same at each element:

II: The region for which an equivalent time-invariant filter represents the

corresponding physical solution is the far-field or Fraunhofer region:

III: This filter depends parametrically on range Rj jð Þ in a specified
way; cf : ð8:2:6Þ and ð8:2:6aÞ:

8
>>>>>>>>>><

>>>>>>>>>>:
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Whether or not themedium is dispersive, as long as it is homogeneous, that is, is unbounded

and without scattering elements, this equivalence is not altered, provided the condi-

tions (8.2.8) are obeyed.

The above procedure, based on [(8.2.2a) and (8.2.2b)] for the channel as awhole, namely

ĥRaH, cf. (8.2.1), is readily carried out if we require that the nþ s conditions (8.2.8) apply

for the reception process as well. From Section 2.5.4 with d n̂� 0ð Þ, we have at once the
received far-field signal in (0, T )

X tjRð ÞD ¼ ĥRaH D
FF
aHindep � of h

¼
ð

Br1

est 1� e�sT
� �

ARec DîRs=2pic0; s=2pi
� �

Sa s=2pijRð ÞD
FF

ds

2pi
: ð8:2:9Þ

Here a in Sa indicates the received signal, that is, aHj at the receiving aperture, and

DîR ¼ îR � îOR, with R regarded as essentially constant in a sufficiently small interval

DR about any fixed range in the far-field. Since hR ¼ Ff ARecf g we can write (8.2.9)

alternatively

X tjRð Þ D
FF
¼
ð1

�1
hR tð ÞSa t� tjRð Þ

D
FF

e�ivt; v ¼ 2pf : ð8:2:9aÞ

in which (I) of (8.2.8) applies, so that Sa is also independent of the location of the receiving

aperture element dh. The (time-invariant) filter hR is explicitly

hR tð Þ ¼
ð1

�1
ARec DîR f=c0; f

� �

FF
eivtdf : ð8:2:10Þ

Accordingly, combining this with (8.2.7) and (8.2.9a) gives directly

X tjRð ÞD ¼
ð ð1

�1
hR tð ÞhF t0jRð ÞFFSin t� t� t0ð ÞDdt dt0 ð8:2:11Þ

with (8.2.6a) for hF t0 Rj ÞFF
�

. We see that the result (8.2.11) cannot be expressed in the form

of a time-varying filter operating on Sin�D, but is rather as a double filtering operation, here
involving two time-invariant filters hR; hF. Consequently, the expression (8.2.1a) cannot

apply for the channel, but only for the source field aH, that is, hRhF 6¼ hC, even when the

conditions (8.2.8) are obeyed.

An exception occurs, however, if in the further and often acceptable approximation, hR
represents an all-pass filter with respect to the input signal, in the manner of Fig. 8.8 (for

narrowband inputs):

hR ¼ ARec DîR f0=c0; f0

� �
d t� 0ð Þ; ð8:2:12aÞ
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so that (8.2.11) becomes

X tjRð ÞD¼: ARec

			
f0
�
ð1

�1
hF tjRð Þ

FF
f0

Sin t� tð Þdt ð8:2:12bÞ

with hF given explicitly by (8.2.6a). Then we can indeed write (8.2.1b)

X tjRð ÞD¼:
ð1

�1
hC tjRð Þ FF

all-pass

Sin t� tð Þdt ð8:2:13aÞ

where now explicitly

hC tjRð Þ
FF
all-pass

¼: A f0ð Þ
Rec
all-pass

� hF t Rj ÞFF:
� ð8:2:13bÞ

[The all-pass approximation (8.2.12a) and (8.2.12b)may also be acceptable in transmission,

where s! s0 (or f ! f0) in hFðtjRÞ¼: hFjall-pass, Eq. (8.2.6a).]
Note thatwhenanarrayof (point) sensors is employed, the results of Section 2.5.3.1 are at

once applicable for the field aH in the above [cf. Eq. (8.2.5) et. seq.]. For the channel, the

results of Sections 2.5.4 and 2.5.5 are similarly applicable.

Finally, when there is relative motion of the transmitting and receiving platforms, and/or

of themedium itself, the equivalence of the “engineering”model is again established for the

fieldaH.The conditions of (8.2.8) applyprovided these are extended to require time-variable

filters31 in place of time-invariant ones. Similarly, a pair of time-variable filters are needed in

representing the channel, extending (8.2.10) and (8.2.11) appropriately.Again,whenever the

31 As noted earlier (cf. Chapter 3) in the context here of an equivalent description of the propagating field and the

associated channel, when there is relative motion, the time-variable filter represents a mapping of spatial variations

into time (t), with the “memory” of the filter expressed by t, that is, h (variability: t; memory: t) ¼ h(t, t), the
notation being consistent with our convention of expressing dependency on space first and on time second, that is,

“space–time”. The mapping involved occurs here because R¼R(t) and R tð Þ ¼ c0t, or some similar relation: for a

specific distance R there is a specified time in the field. The geometry of the observer in relation to a fixed point in

space then easily determines R ¼ c0t. If the point R is in (small) motion relative to source or receiver, then

R ¼ ct ¼ c0 þ v1ð Þt; vdj j=c << 1, where �vd is the Doppler speed of relative motion, depending on the frame of

reference of the observer.

RA R−all-passA

0 0 ∆ ∆s =
0s0s s− ( )0 sss + →

)(
0

2in isS π−

FIGURE 8.8 (Modulus of a) narrowband signal Sin s0=2pið Þ0 with a narrowband (i.e., all-pass beam
pattern in �Ds0;Ds0ð Þ), or aperture response of the receiver.
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approximation of an all-pass receiving aperture is acceptable, this can be further reduced to a

single, now time-variable filter, in themanner ofEq. (8.2.13) above for the channel aswell. In

summary, the conditions for the time-variable or time-invariant linear filter hC equivalently

to represent the channel are now as follows:

Equivalency Conditions for the Channel hCð Þ :

ð8:2:14Þ

I: Sin j; tð ÞD ¼ Sin tð ÞD : the same input signal must be applied to each;

element dj of the aperture ðor arrayÞ:
II: The far-field or Fraunhofer region of the field and for the channel

must apply:

III: This filter hCð Þ is parametrically a function of range ðRÞ:
IV: The receiver portion of the coupling must be essentially an all-pass

network; that is; hR¼: d t� 0ð Þ

8
>>>>>>>>><

>>>>>>>>>:

8.2.2 Causality: Extensions of the Paley–Wiener Criterion [26]

Just as there is a variety of conditions which the space–time Green’s functions of these

deterministic linear media must obeymathematically [cf. Section 8.1.4], and to be physically

applied in practice, so also is there an analogous set of conditions for their engineering

equivalents. In addition to the requirement that the time-invariant and time-variable filters

hCð Þ, (8.2.7) represent the field in the Fraunhofer or far-field region, the input signal must be

similarly applied to each sensor or sensor element. To represent the channel aswell nowwith a

single filter, hC tð Þ, the receiver coupling hRð Þmust be an all-pass filter in the spectral domain

of the input signal, cf. Fig. 8.8, in themanner of (8.2.12a)–(8.2.13a) above. Again, formoving

platforms and media the time-invariant channel filter is replaced by a time-variable filter.

Finally, for realizability, or equivalently causality, these filters must operate only on

the “past” of their inputs, as well as being stable, i.e., the weighting function must obey the

condition32

ð1

�1
h tð Þj jdt <1: bounded inputs) bounded outputs: ð8:2:15Þ

The causality condition for these linear time-invariant filters is given by the well-known

Paley–Wiener condition ([26]; also pp. 96, 97; p. 702 of Ref. [25]):

JP�Wj j ¼
ð1

0

log YoFðiuÞFF
		 		2

1þ u2
du <1; u ¼ ðnormalized angular frequency 	 v ¼ 2pf Þ;

ð8:2:16aÞ

where YoF, Eq. (8.2.6) is the system function, that is, Ft hFf g, of the equivalent filter defined
here by (8.2.6a). When a time-variable filter is required, the extended version of (8.2.16a)

32 SeeSections. 2.2, 2.2.1, and 2.2.2 ofRef. [25], for further discussion in the case of linear discrete lumped constant

or variable parameter networks obeying linear ordinary differential equations, cf. Eq. (2.28) of Ref. [25]. Here,

however, although analogous, we have the discrete networks replaced by continuous ones, except for the couplings

to the field when arrays are used. The ODEs then become linear partial differential equations.
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becomes

JP�W ûð Þj j �
ð1

0

log YoF iû; iuð ÞFF
		 		2

1þ u2
du <1; ð8:2:16bÞ

with û now a normalized frequency, û ¼ 2pn̂=n̂0. Since hF t; tð Þ ¼ hF t; t�tð Þ, with hF ¼ 0

we have t� t � 0 and hF t; tð Þ ¼ 0; t � 0, in t� 0 when t� 0. Thus, causality represented

by hF ¼ 0, t� 0 implies t< 0 also: the time-constraint on h(t,t) implies a similar constraint

for space expressed in terms of time, that is, t(R)< 0, when t� 0. Here the spatial variations

caused by Doppler effects expressed in time changes are experienced as frequency

variations. In Eqs. (8.2.16a) and (8.2.16b), YoF and YoF are the Fourier transforms

No Doppler: YoF ivjRð Þ ¼ Ft hFf g ¼
ð1

�1
hF tjRð Þe�ivtdt; with hF tjRð Þ �

ð1

�1
hF t; t Rj Þdt:ð

ð8:2:17aÞ

Doppler: Y0 iv̂; ivjRð ÞF¼ FtFt hFf g¼
ð1

�1
dt

ð1

�1
dt hF t; t Rj Þe2pin̂t�ivt; v ¼ 2pf ; v̂ ¼ 2pn̂ð Þ:�

ð8:2:17bÞ

Thus, the causality conditions [(8.2.16a) and (8.2.16b)] for the linear temporal filter

equivalents here embody the physical requirement of outgoing radiation from the sources,

mathematically exhibited by the appropriate singularity on the contour (�1, 1) of

integration, in the manner of (8.1.22) and (8.1.23), cf. Fig. 8.5a and b.

For future use we shall need the complete set of Fourier transforms

Y t; fð Þ ¼ Ft hFf g ¼
ð1

�1
h t; tð Þe�2pif tdt � time variable system or response function; 33

ð8:2:18aÞ

H n̂; tð Þ ¼ Ft hFf g ¼
ð1

�1
h t; tð Þe2pin̂tdt � spreading function; ð8:2:18bÞ

Y n̂; fð Þ ¼ FtFt hFf g ¼
ð ð1

�1
ht t; tð Þe2pin̂t�2pif tdtdt � bifrequency response function;

ð8:218cÞ

33 For general usage we employ the notation of (8.2.18a)–(8.2.20), now without the range parameter (R), it being

implicitly assumed when referring to a physical field or channel unless otherwise indicated. For specialized

descriptions, wemay also include various sub- and superscripts, as well as changes of variables, likev for f, v̂ for n̂,

and others. It will be clear from the context what the notation signifies.
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The inverse relations (i.e., transform pairs) for the time-variable weighting function for the

Green’s function, here of the medium are

hF t; tð Þ ¼ Ff Yf g ¼
ð1

�1
Y t; fð Þe2pitf df ; ð8:2:19aÞ

¼ Fn̂ Hf g ¼
ð1

�1
H n̂; tð Þe�2pitn̂dn̂; ð8:2:19bÞ

¼ Fn̂;f Yf g ¼
ð ð1

�1
Y n̂; fð Þe�2pitn̂þ2pitf dn̂df ; ð8:2:19cÞ

and with the cross-relations such as Fn̂ Hf g ¼ Ff Yf g ¼ h t; tð Þ, and so on. Causality in

these cases is determined by the extension of the Paley-Wiener condition, (8.2.16), and

stability by

ð ð1

�1
h t; tð Þj jdt dt <1; or

ð ð1

�1
Y n̂; fð Þj jdn̂ df <1; etc : ð8:2:20Þ

(an application of Parseval’s Theorem). Physically (8.2.20) is an expression of the fact that

finite inputs produce finite outputs. These relations have their counterparts for the Green’s

function, respectively, in (8.1.25) and (8.1.26) above [Section (2.2) of Ref. [25] treats at

considerable length the corresponding properties of time-invariant linear filters.]

The extension to the time-variable cases has been given in detail by Bello ([27], also in

Goldberg [28]), as well as Blahut et.al. [29], Gr€unbaum et.al. [30], Kailath [31], and

Kennedy [32].

8.3 INHOMOGENEOUS MEDIA AND CHANNELS—DETERMINISTIC

SCATTER AND OPERATIONAL SOLUTIONS [6]

We note again that the salient feature of the deterministic state is one in which everything

is known about our model of reality—there are no random elements. Here, the channel is

completely specified and the desired calculation of the field a(R,t) is thus uniquely

determined. From a probabilistic viewpoint our model constitutes an ensemble of one

member with probability measure unity. For deterministic inhomogeneous media we may

expect much greater complexity in determining the Green’s function than for the homo-

geneous cases treated previously, even for unbounded media like those discussed in

Sections 8.1 and 8.2. Furthermore, in the bounded cases we have the additional feature

of the scattered radiation from the boundaries, which are also postulated to contain

inhomogeneities in addition to the medium itself. These inhomogeneities may form a

continuum or may be discrete, but their treatment is handled in essentially similar fashion.

For the Green’s function in these cases it turns out, rather surprisingly at first glance, that

reciprocity—the equivalent interchange of source and observer—is preserved. This may be

explained succinctly by the observation that the Green’s function has an omni-directional

beampattern, so that the scattering produced by these inhomogeneities are always contained

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;
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in such a beam pattern: there can be no scattering “out-of-the-beam.” This is not the case,

however, for typical fields fromdistributed sourcesGT.Thesehavedirectionalbeams,which

vanish effectively inside the 4p ster-radians of the omni-directional beam. Some or all the

scattered energywith respect to these beams, in both transmission and reception, will be lost

outside the beam and consequently some or all of the equivalence of reciprocity will be

destroyed. Figures 8.9 and 8.10 ff. illustrates these effects. (These remarks apply equally to

dispersive and nondispersive media, and are discussed at greater length in Sections 8.3.1,

8.3.2, 8.3.3 below.)

Other difficulties in the treatment of inhomogeneousmedia are the problems of explicitly

accounting for the different classes of multiple scatter, that is, single scatter, pair scattering,

and so on, and in addition including boundaries for reflection and transmission of

the propagating waves. If, for example, we designate Q(R, t) as the local density of the

inhomogeneous effect, in thevolumeor at an interface, then conventional techniques can fail

in handling them, since such media do not generally support space- and/or time-harmonic

solutions (the latter involving steady-state solutions), unlessQ¼Q(R) or a space-harmonic

representation whenQ¼Q(t). Even the “classical” perturbation and variational techniques

(cf. Chapter 9 of Ref. [1]) are only applicable whenQ is deterministic. This is not the usual

situation which we encounter in the oceans and atmosphere34, whose local and distributed

properties are essentially random in both space and time.

However, the deterministic cases, examples of which are discussed here, do supply

typical or representative members of an appropriate ensemble, when suitable probability

measures are assigned to the set. These, in turn, enable us to obtain the desiredmoments and

pdfs that quantitatively describe the random fields of the physical phenomena under

consideration. Thus, the deterministic cases are preludes35 to the general stochastic situation

of propagation in the ocean, the atmosphere, and in space. An extensive deterministic or

nonprobabilistic treatment of these problems of obtaining (single) representative ensemble

members has been provided by Chew [6], for both linear homogeneous and inhomogeneous

media, who considers both acoustic and electromagnetic propagation and deterministic

scattering with methods of evaluating both direct and inverse problems.

We note in addition here that as long as these deterministic propagation equations are

linear in the field, the role of the (deterministic) scattering elements does not alter the field’s

linear character. However, as Chew ([6], Chapter 2), for example, has pointed out, the

scattered field here is nonlinear with respect to the scatterers themselves. Situations of this

type belong to the class of inverse problems. In this case, the field solutions are still linear but

are no longer unique (Chew [6], p. 511, etc). Theymust be selectedwith thehelpof additional

information, particular to the problem at hand.We shall see examples of this in Section 8.3.1

following, in the use of seriesmethods of solution. [Chew’swork, [6], is entirely “classical,”

i.e., deterministic.] Finally, inhomogeneous (scattered) and boundaries (themselves inho-

mogeneous) produce nonlinear fields, but only for the random media, represented by a

stochastic (i.e., Langevin) equation, or propagation, as discussed presently in Chapter 9.

34 The ocean is highly inhomogeneous and thus requires varieties of approaches of different complexities discussed

in the above reference. The atmosphere can be similarly complex acoustically and electromagnetically, also

depending on the frequencies used. Space is comparatively free for propagation, except, of course, for large

radiating bodies (the sun) and the electromagnetic (EM) fields it generates, as well as other types of ambient

radiation, including magnetic fields, charged particles and so on, on a much larger scale then oceans and

atmospheres. All these phenomena can and do interfere to varying degrees with reception.
35 From the more general viewpoint of probability theory, a deterministic example represents an ensemble of one

known member. See also the discussion in Chapter 9.
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Although exact analytical results in themoregeneral extension to randomfield, aswell as

in most of the general deterministic cases have been elusive and their numerical solutions

constrained by limited computer power in the recent past and earlier, various approximate

methods have been, and are, available for treating these media. Among them is ray-tracing,

a comparatively high frequency technique (for example, see Tolstoy and Clay [33], and

Brekhovskhikh [34]), andmodal analysis, a comparatively low-frequencymethod [33]. An

extension of these ideas, combined with path-integral methods and super-eikond proce-

dures, has also been developed and applied, for instance, to the study of sound speed

fluctuations in nonisotropic oceans [20] and in subsequent studies, by Jensen et al. [35]. All

these methods are necessarily approximate, where a skillful approximation is one of the

major keys to success.

In our present account of the general scattering problem, here in Chapter 9 immediately

following, our philosophy is to preserve the exact formal solutions, which are presented in a

canonical operator development, reserving approximations to the last possible moment.

This has the great conceptional advantage of allowing us to identify for given situations the

disposable or nonrelevant parts of the general formulation. In any case approximations

are almost inevitable: we seek to postpone them as long as possible. Accordingly, from the

general formulation we may find manageable analytic solutions, with some measure of the

limitations on their applicability. In turn, theoperator formulation canprovideuswith typical

representations of a random ensemble, or Langevin equation (cf. Chapter 10 of Ref. [25]),

whose solutions in turn are statistical moments and probability distributions (cf. Chapter 9).

It is here, ultimately, that online computational techniques based on the operational solutions

or “macro-algorithms” can give us the desired numerical results (even in the deterministic

cases, cf. Chew [6], Chapters 8 and 9).

8.3.1 Deterministic Volume and Surface Scatter: The Green’s Function and

Associated Field aðQÞ

Let us begin with volume scatter, by determining the GF of the unbounded medium

containing a continuum of scatterers that constitute the inhomogeneities in the infinite

medium (V ! 1). This is shown in Fig. 8.9 with the bounding surfaces S0, and S0 now
removed to infinity, that is, S0 > S ¼ 1: all scatterers are included in the volume defined by

the surface S� S0 ¼ 1; S0 > 0, where S0 is the finite closed surface bounding the source

function in VT, and the point sources at R0; t0ð Þ within VT. The GF g
ðQÞ
1 R; t R0; t0j Þð is

determined by the operator equation, cf. [(8.1.9a) and (8.1.9b)], extended here to36

L̂
ð1Þ
gðQÞ1 ¼ �dR0Rdt0t; where L̂

ð1Þ � L̂
ð0Þ � Q̂ for V � VT: ð8:3:1Þ

The operator Q̂ � Q̂ R; tð Þ represents the local density operator for these volume scatterers.

They in turn act as secondary sources whose radiative contribution depends on the primary

source in VT. Similarly, the operator equation for the field a
ð0Þ
1 is given by

L̂
ð1Þ
aðQÞ1 ¼ L̂

ð0Þ � Q̂
� �

aðQÞ1 ¼ �GT R; tð Þ�þC; 6¼ 0;GT 2 VT;¼ 0 elsewhere; ð8:3:2Þ

36 The subscripts on gðQÞ1 ;aðQÞ1 indicate the infinite medium (outside VT), and the superscript (Q) denotes the

presence of inhomogeneities. We shall modify or omit these indicators in the following wherever there is no

confusion in doing so.
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cf. (8.1.7), respectively for (8.3.1) and (8.3.2). This latter pair is the extension of the former

for the now inhomogeneous medium, as contrasted with the homogeneous cases considered

previously in Section 8.1. Both Eqs. (8.3.1) and, (8.3.2) are subject to appropriate initial and

boundary conditions, the latter associated here with the surface of the source function37GT;

(note remarks following Eq. (8.1.42), etc.).

The formal solutions are obtained as before [(cf. 8.1.9a), (8.1.9b), (8.1.10)]. We begin

with (8.3.1) and multiply both sides of Eq. (8.3.1) by M̂
ð0Þ
1 . This is the integral Green’s

function operator for the corresponding infinite inhomogeneous medium, which is over all

space and time, including the impulsive point sources at R0 ¼ R and time t0 ¼ t. We obtain

M̂
ð0Þ
1 L̂

ð0Þ � Q̂
� �

gðQÞ1 ¼ �M̂
ð0Þ
1 dR0Rdt0t; which becomes 1̂ � M̂

ð0Þ
1 Q̂

� �
gðQÞ1 ¼ gð0Þ1 :

ð8:3:3Þ

This gives us directly the desired result

gðQÞ1 ¼ 1̂ � M̂
ð0Þ
1 Q̂

� ��1
gð0Þ1 ¼ 1̂ � ĥ1

� ��1
gð0Þ1 ; ð8:3:4aÞ

with

ĥ1 � M̂
ð0Þ
1 Q̂: ð8:3:4bÞ

The integration implied in M̂
ð0Þ
1 is over all space contained in S0. The quantity ĥ is similar to

the “mass operator” (or the “field renormalization operator” in quantum electrodynamics

∞

∞

∞

∞

∞

∞

S ′

S ′

2dR 2dR ′

1dR

P(R, t)dR′

dR″

0S

z

x
y

0R

TV

FIGURE 8.9 Schematic of elementary emitters dR0; dR00 as part of distributed source in VT,

exciting inhomogeneous elements, dR1, and coupled pairs dR2; dR
0
2, each of which scatter in all

directions: single scatter (k¼ 1) is omni-directional, and pair scatters (k¼ 2) obey a dipole pattern of

energy redistribution, with these and higher order (multiple) scatter from k-tuples k � 3ð Þ. Here the
deterministic scatterers k � 1ð Þ represent elements in a continuum of the medium in the semi-infinite

volume V (where S ! 1) excluding the primary source within its boundary surface S0. (Backscatter

from S0 is also indicated.)

37 For the moment we shall neglect the backscatter from the surface S0 bounding the source. We consider here

only the scatter, locally embodied in Q̂, which is attributable to the inhomogeneities in the medium outside the

source in VT . Backscatter is considered in Section 8.3.4.
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or quantum field theory).38 In control theory it is analogous to the “loop-cycle” or “loop-

iteration operator”. Where a Q̂ is a local operator, M̂
ð0Þ
1 and ĥ are nonlocal or global, that is,

they function over the whole (here infinite) domain of S0 !1.

Note that Eq. (8.3.4) is also equivalent to the integral equation

gðQÞ1 ¼ gð0Þ1 þ h1g
ðQÞ
1 ; ð8:3:4cÞ

which is particularly suited to those cases where strong as well as weak scattering occurs.

We can also express (8.3.4) in a more revealing representation by writing the operator

1̂ � ĥ
� ��1

in series form:

gðQÞ1 ¼
XQ!1

k¼0
ĥðkÞ1 gð0Þ1 ¼ gð0Þ1 þ

X1

k¼1
ĥðkÞ1 gð0Þ1 ¼ gð0Þ1 þ

X1

k¼1
gðkÞ1 ; ĥðkÞ1

�� �� ¼ ĥ11̂
�� �� <1;

ð8:3:5Þ

gðkÞ1 � ĥðkÞ1 ¼ g1

This series solution for the inhomogeneousGreen’s function gðQÞ is called the perturbation
series solution (PSS). Here ĥðkÞ1

�� �� represents39 the norm of ĥðkÞ1 . In this series formwemust

have ĥ1k k < 1 for convergence. For weak scatter ĥ1k k << 1ð Þ this series expression is
particularly useful (cf. the Born approximation, discussed in Section 9.3.)

The physical interpretation of (8.3.4), is that the point source at R0; t0ð Þ of the Green’s
function propagates omni directionally and a portion of this field in turnmay be scattered by

an inhomogeneity at R1; t1ð Þ, represented by g
ð1Þ
1 . The process can repeat itself with pairs

(k¼ 2) and triples (k¼ 3) and more (k> 3), of interacting scatterers. Thus, k � 1ð Þ
expresses the order of the scattering, namely, a “k-tuple”. All orders can potentially occur:

for weak scatter only k¼ 1 (and possibly k¼ 2) need to be considered. For strong scatter, k-

tuples ranging from 1 to large or essentially infinite values may need to be taken into

account. Note also that the form 1̂ � ĥ1
� ��1

in these results suggests some kind of

“feedback” operation, by analogy with classical control theory. We shall use this feature to

outline briefly one potential method of (numerical) solution in Section 8.5.3.

Finally, we readily obtain similar results to [(8.3.4a) and (8.3.5)] for surfaces, if we start

with the well-known scattering relation

g
ðQÞ
S ¼ g

ð0Þ
S þ ĥSg

ðQÞ
S ; ĥS � M̂

ð0Þ
S Q̂S: ð8:3:5aÞ

From (8.3.5a) we observe that a formalism corresponding to (8.3.3) et. seq. can be defined,

namely,

g
ðQÞ
S ¼ 1̂ � ĥS

� ��1
g
ð0Þ
S ; implying L

ð1Þ
S ¼ L̂

ð0Þ
S � Q̂S; M̂

ð0Þ
S ¼ L̂

ð0Þ�1
S : ð8:3:5bÞ

38 Herewemodify the terminology somewhat and call ĥ1 the global mass operator or global field renormalization

operator, and Q̂ the (local) mass operator, with Q the kernel of this local mass operator.
39 We shall not attempt a rigorous treatment of linear operator theory here, referring the reader instead to several

well-known texts on the subject [18,19].
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from which follow relations analogous to (8.3.2)—(8.3.5), now for (deterministic), surface

scatter here.

8.3.2 The Associated Field and Equivalent Solutions for Volumes and Surfaces

A similar interpretation can be made, for example, for the field from a distributed source

(in VT), with appropriate initial and boundary conditions, and produced in the infinite

scattering medium S! S0 !1ð Þ of Fig. 8.9.
Webeginwith the relation (8.3.2) and carry out a set of operations similar to those used for

obtaining the GF relations (8.3.4) and (8.3.5). As before, cf. 8.3.1, we shall see that there are

two equivalent forms of solutions: an integral equation and the perturbation series solution.

The formal result is easily found from the relations

L̂
ð1Þ
aðQÞ1 ¼ �GT or aðQÞ1 ¼ 1̂ � ĥ1

� ��1
aH; aH ¼ M̂

ð0Þ
1 �GTð Þ: ð8:3:6Þ

From (8.3.6), we have respectively

aðQÞ1 ¼ aH þ ĥ1a
ðQÞ
1 and aðQÞ1 ¼ aH þ

X1

k¼1
ĥðkÞ1 aH: ð8:3:7aÞ

From (8.3.4b) we exhibit the integral Green’s function and local inhomogeneous operators

that comprise the mass operator ĥ1:

aðQÞ1 ¼ M̂
ð0Þ
1 �GTð Þ þ M̂

ð0Þ
1 Q̂aðQÞ1 ; aðQÞ1 ¼ aH þ

X1

k¼1
M̂
ð0Þ
1 Q̂

� � kð Þ
;aH; ĥ1k k < 1 ð8:3:7bÞ

for the two forms of solution. For the first, this integral equation is not restricted by the

convergence condition hk k < 1, only that hk k <1, whereas the perturbation form

in (8.3.7b) usually requires ĥ1k k to be comparatively small (< 1) for useful results.

It is clear fromEq. (8.3.6)–(8.3.7b) that the scattered fielda
ðQÞ
1 is nonlinearly dependent

on the local scattering element, represented by the operator Q̂. However, the linearity of

the medium (and hence for the field a propagation in it) is still evident from the following:

consider the additive field a12 ¼ a1 þ a2. From (8.3.7b) it follows at once that

a
ðQÞ
1
		
12
¼ aH1

þ
X1

k¼1
hðkÞ1 aH1

þ aH2
þ
X1

k¼2
hðkÞ1 aH2

¼ aH1
þ aH2

ð Þ þ
X1

k¼1
hðkÞ1 aH1

þ aH2
ð Þ;

¼ a
ðQÞ
1�1 þ a

ðQÞ
1�2

9
>>=

>>;

ð8:3:7cÞ

Sinceh
ðkÞ
1;1;2 ¼ M̂

ð0Þ
1 Q̂1 þ Q̂2

� �
and Q̂1 ¼ Q̂2 ¼ Q̂. This last relation holds because the same

scatterers are nowproducing the total scattered fielda
ðQÞ
1 j12, that is, in this deterministic case

the scatterers are unchanged, or “frozen” in this nonrandommedium. On the other hand, for

randommedia, this argument no longer holds, vide Chapter 9.We also observe, by the same

argument, that only in the important cases of randomfields, do boundariesmatter. Therefore,

there is nonlinearity. This occurs because ĥ boundary is different for each for each
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representation in the ensemble. When the randomness is removed by averaging, that is, the

result is now deterministic, and the propagation of the average result is then linear,

superposition then applies.

In addition, from (8.1.42a) for the global (or integral) Green’s function operator M̂
ð0Þ
1 we

have specifically the following generic forms for volume and for general (closed) surfaces

in V:

M̂
ð0Þ
1
		
V
¼
ð
dt0
ð

VT

g
ð0Þ
1 R; tjR0; t0ð ÞV ð ÞR0;t0dR0;

M̂
ð0Þ
1 jS ¼

ð
dt0
þ

S0

gð0Þ1 n̂0 � r0 � n̂0 � r0gð0Þ1
h i� �

ð Þ R0;t0ð Þ2S0dS
0; ð8:3:8Þ

The (local) inhomogeneity operator Q̂ B; t0ð ÞV or S depends generally on space–time but is, by

definition, not a projection operator like M̂1jV;S. However, M̂
ð0Þ
1 jS and its kernel g

ð0Þ
1 jS are

also functions of the surface geometry, specifically embodied in J0(8.1.42i).
The local inhomogeneity operators Q̂V ;S R0; t0ð Þ depends on the medium in question. It is

a local volume or surface quantity, which in the case of surfaces is usually a reflection or

transmission kernel QS ¼ R0 R0; t0ð Þ or T0 R0; t0ð Þ. The mass operator ĥ, cf. (8.3.4a)

and (8.3.4b), is for surfaces or volumes

ĥ1jS ¼ M̂
ð0Þ
S Q̂S or ĥ1jV ¼ M̂

ð0Þ
V Q̂V ð8:3:8aÞ

In particular, we now find that these mass operators become, in detail from [(8.1.42a)–

(8.1.42f)] and [(8.1.42h) and (8.1.42i)] with the added local inhomogeneity kernelsQV ;QS,

ĥ1jV ¼ M̂
ð0Þ
V Q̂V ¼

ð
dt0
ð

VT

gð0Þ R; t R0; t0j ÞQV R0; t0ð Þð ÞR0;t0dR0
�

ð8:3:9aÞ

ĥ1jS ¼ M̂
ð0Þ
S Q̂S ¼

ð
dt0
þ

S0

gð0Þ1 J0 � J0gð0Þ1
h in o

QS R0; t0ð Þð ÞR0;t0
h i

dR0 ð8:3:9bÞ

where now aðQÞ !QSa
ðQÞ, cf. also Eq. (8.3.25b). Here the surface kernel J0 is explicitly

Ĵ0 R0; t0ð Þ ¼ zx0
@

@x0
þ zy0

@

@y0
þ @

@z0

� �

R0;t0
¼: Ĵ0 r0; t0ð Þ; ð8:3:9cÞ

Inparticular,wehaveused the results ofSection8.1.5.2 to evaluate n̂0 � r0ð ÞdS0. Thequantity
to be used in the parentheses ð ÞR0;t0 of (8.3.9a) and (8.3.9b) is for the PSS form of solution the

unperturbed field aH, cf. Sections 8.1.6.1, and 8.1.6.3, where a
ðkÞ
1 ¼ ĥðkÞ1 aH. On

the other hand, for the integral equation equivalent in (8.3.7a) and (8.3.7b) one uses the

scattered field aðQÞ. In either case the total scattered field is aðQÞ, Eqs. (8.3.6) and (8.3.7).

Equivalent results for aðQÞ are obtained where we employ the GHP and those of

Sections 8.3.4.1 and 8.3.4.2 following. Here one more in the PSS form aH is the homo-

geneous or unscattered part of the total fieldaðQÞ, and ĥ 1� ĥð Þ�1aH ¼
P1

k¼1 h
ðkÞaH

� �
is the

scattered portion.
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8.3.2.1 Example As a simple volume example, using the (time-dependent) Helmholtz

equation in this unbounded inhomogeneous medium and neglecting backscatter, we have

explicitly (with the boundary and initial conditions that accompany (8.3.2)):

r2 � 1

c20
1þ « R; tð Þ½ � @

2

@t2

� �
aðQÞ R; tð Þ ¼ �GT R; tð Þ; 6¼ 0;GT 2 VT;¼ 0; elsewhere; þ C

ð8:3:10Þ
Now

L̂
ð0Þ
V � r2 � 1

c2
@2

@t2
and Q̂V R; tð Þ � « R; tð Þ

c20

@2

@t2
; with L̂

ð1Þ
V � L̂

ð0Þ
V � QV ; cf: ð8:3:2Þ;

ð8:3:11Þ
subject, say, to the initial conditions t < t

ð�Þ
0 ¼ 0; @

2aðQÞ
@t2
¼ @aðQÞ

@t ¼ aðQÞ ¼ 0 and with no

surface sources on the boundaries40 ofVT. Thus,a
ðkÞ ¼ ĥðkÞaH; k � 1, represent thevarious

orders of k-tuples as well as their contributions to the resulting scatter components.

Equation (8.3.6) can be written alternatively

aðQÞ1 � M̂
ðQÞ
1 aH ¼ M̂

ðQÞ
1 M̂1 �GTð Þ� �

; M̂
ðQÞ
1 ¼ 1̂ � ĥ1

� ��1 ¼ 1þ
X1

k¼1
ĥðkÞ1 ; ð8:3:12Þ

The integral Green’s function for the inhomogeneous medium here is M̂
ðQÞ
1 ¼ M̂

ðQÞ
V for

the infinite volume VS � VTð Þ!1, which is the inhomogeneous counterpart of M̂
ð0Þ
1 in the

homogeneous cases discussed in Section 8.1 above. Since there is negligible backscatter

assumed in thepresent case, Q̂S ¼ 0 and; ĥS ¼ 0.There is no surface-generatedcomponent

of scatter. Only volume scatter in the medium occurs, with ĥV , Eq. (8.3.9a) the only mass

operator activated. Thus, the scattered field is due solely to activated scatterers in the volume.

Table 8.4 provides specific examples of Eqs. (8.3.20) and (8.3.22), extensions of the

homogeneous cases of Section 8.1.6.3 to include inhomogeneous media.

Although this table applies here for the deterministic cases considered inChapter 8, it also

applies for random media, where now the parameters e; â0, and so on are random and the

resulting ensemble of propagation equations (1)–(6) constitute the corresponding Langevin

equations, cf. Chapter 9.

At this point, we need to consider the various operators used in Sections 8.3.1 and 8.3.2

in more detail. Their formal properties are treated vigorously in Ref. [18,19]. We proceed

therefore with some further specific results below.

8.3.3 Inhomogeneous Reciprocity

It is possible now to show that the Green’s function for the inhomogeneous volume and

surface environments are reciprocal, that is, the field remains unchanged if source location

and the observation point are interchanged. Analytically, as we have seen earlier (cf. 8.1.29)

for the homogeneous, unbounded medium, this means that now g
ðkÞ
1 R; tjR0; t0ð Þ ¼ g

ðkÞ
1

R0;�t0 R;�tj Þð , and limR!1 g
ðbÞ
1 ¼ g

ðQÞ
1 , cf. Sections 8.1 and 8.2.

40 An in the case of the GHP discussed in Section 8.1.5 above for the homogeneous media.
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â
R

ð
Þ@ @

t
�

1 c2 0

@
2

@
t2

�t̂
R
;t

ð
Þ@ @

t
r2
þ
â
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8.3.3.1 Volume41 To verify this important feature for inhomogeneous media some

preliminaries are required. First, we observe that for a representative k-tuple we obtain

(all k� 1)

k � 1: g
ðkÞ
1 Rk; tkjR0; t0ð Þ ¼

ðð
gðQÞ1 Rk; tkjR0k�1; t0k�1

� �
Q R0k�1; t

0
k�1

� �


gðk�1Þ R0k�1; t0k�1jR0; t0
� �

dR0k�1dt
0
k�1

¼ M̂
ð0Þ
1 Q̂g

ðk�1Þ
1 ¼ ĥg

ðk�1Þ
1 ¼ hðkÞgð0Þ1 ; V1 � VTð Þ!1 here:

9
>>>>=

>>>>;

ð8:3:13Þ
We have already shown that g

ð0Þ
1 is reciprocal, including symmetry in R;R0, that is,

gð0Þ R; tjR0; t0ð Þ ¼ g
ð0Þ
1 R0;�t0jR;�tð Þ, [(v), Section 8.1.4, by the method outlined

in (8.1.39)–(8.1.42)]. Accordingly, for k¼ 1, we get from (8.3.13)

gð1Þ1 R1; t1jR0; t0ð Þ ¼
ðt1

t0

dt00

ð

VTðR0Þ

gð0Þ1 R1; t1jR00; t00
� �

Q R00; t
0
0

� �
gð0Þ1 R00; t

0
0jR0; t0

� �
dR00dt

0
0;

ð8:3:14Þ
which on applying reciprocity to the Green’s functions g

ð0Þ
1 in the right-hand members

of (8.3.14) allows us to write

ðð
gð0Þ1 R00;�t00jR1;�t1
� �

Q R00;�t00
� �

gð0Þ1 R0;�t0jR00;�t00
� �

dR00dt
0
0 ¼ gð1Þ1 R0;�t0jR1;�t1ð Þ;

ð8:3:15aÞ
with�t0 > �t00 > �t1, consistent with the interchange of sources and the sequence of times

of emission from the (single) scatterers here. Since g
ð0Þ
1 jrecip ¼ g

ð0Þ
1 , the left member of

(8.3.15a) becomes again the right member of (8.3.14) and we have the desired reciprocal

relation for k¼ 1:

gð1Þ1 R1; t1jR0; t0ð Þ ¼ gð1Þ R0;�t0jR;�t1ð Þ ¼ ĥgð0Þ1 ¼ M̂
ð0Þ
1 Q̂gð0Þ1 R; tjR0; t0ð Þ: ð8:3:15bÞ

Proceeding in the same way, we obtain for k¼ 2

g
ðkÞ
1 ¼ g

ð2Þ
1 R2; t2jR0; t0ð Þ ¼

ð

V

. . .

ð
gð0Þ1 R2; t2jR01; t01
� �

Q R01; t
0
1

� �
gð0Þ1 R01; t

0
1jR02; t02

� �

Q R02; t
0
2

� �
g
ð0Þ
1 R02; t

0
2jR0; t0

� � � dR01dR02dt01dt02;
ð8:3:15cÞ

or

g
ð2Þ
1 ð�R0; t0jR2;�t2Þ ¼

ð
. . .

ð
g
ð0Þ
1 ðR01;�t01jR2;�t2ÞQðR02; t02Þgð0ÞðR02;�t02jR01;�t01Þ

QðR01; t01Þgð0Þ1 ðR0;�t0jR02;�t02Þ; � dR01dR02dt01dt02
ð8:3:15dÞ

41 For simplificationwe omit the subscript (V) on the Green’s functions an don the inhomogeneity kernelQðR0; t0Þ,
and so on.
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on applying reciprocity to the g
ð0Þ
1 . Changing the variable of integration R01@R02; t

0
1@t02,

noting that t0 > �t02 > �t01 as required, and involving reciprocity oncemore, we see that the

right-hand members of (8.3.15d) are equal to (8.3.15c). Thus, the left-hand members

of (8.3.15c) and (8.3.15d) are equal and hence g
ð2Þ
1 is reciprocal.

Repeating for k� 3, using (8.3.13) in each case, we see that g
ðkÞ
1 jRecip ¼ g

ðkÞ
1 , that is,

gðkÞ Rk; tkjR0; t0ð Þ ¼ g
ðkÞ
Recip ¼ gk R0;�t0jRk;�tkð Þ, (8.3.15b) and by extension g

ðQÞ
1 jRecip ¼

g
ðQÞ
1 as k ! 1. Thus, we have in abbreviated form

g
ðQÞ
1 ¼ g

ðQÞ
1 jrecip; with

g
ðQÞ
1 ¼ lim

k!1
gðkÞ1 ¼

ðð
gðkÞ1 Q̂gðk�1Þ1 dRk�1dtk�1;

g
ðQÞ
1 jrecip ¼ lim

k!1
ĥgðk�1Þ1
� �

¼
X1

k¼0
hðkÞgð0Þ1

ð8:3:16Þ

cf. (8.3.13). This leads directly to the extension of the Generalized Huygens Principal

discussed in Section 8.1.6, to the situation here, alsowith an unbounded but inhomogeneous

medium. (This medium, however, is so far still deterministic.)

8.3.3.2 Surfaces Surfaces are handled in similar fashion. Instead of the (local) Green’s

function kernel for volumes g
ð0Þ
1 R; tjR0; t0ð ÞV , we have now the local Green’s function

operator for surfaces:

ĝð0Þ1 jS � gð0Þ1 Ĵ
0 � Ĵ0gð0Þ1
h i� �

J
ĝð0Þ1 R; tjR0; t0ð ÞS; ð8:3:17Þ

where the local surface operation component Ĵ is given by (8.1.42i), namely,

Ĵ0 ¼ Ĵ0 R0; t0ð Þ ¼ zx0
@

@x0
þ zy0

@

@y0
þ @

@z0

� �

R0;t0
; z0 ¼ z r0; t0ð Þ: ð8:3:17aÞ

[See Section 8.1.6.2 for a detailed treatment.] We may then proceed with ĝð0Þ1 jS in place of
g
ð0Þ
1
� ¼ g

ð0Þ
1 jV

�
in (8.3.13)–(8.3.16), above, to show reciprocity for the surface Green’s

functions.

Although reciprocity in (linear) inhomogeneousmedia holds for the Green’s functions

for such media, cf. Eq. (8.3.13) et. seq., this property is no longer strictly true when a

distributed source GOT R0; t0ð Þ is employed, which as a result has a directional “beam” (or

“beams”), (cf. Section 2.5, Section 2.5.1.1). Thus, interchanging source location and

observation point, using the now directional source GOT and directing it at the original

source location, in the manner of Figure 8.10, shows that some radiated energy at least

escapes the main beam, apart from additional energy scattered outside the overall beam

pattern. On the other hand, the beam pattern of a Green’s function is uniform (in the

appropriate number of dimensions) and thus completely encloses the point of observation

and all point scatterers.
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8.3.4 The GHP for Inhomogeneous Deterministic Media including Backscatter

Weproceed next to consider in detail the structure of the field in these now inhomogeneous

cases. We begin with the GHP for this case and observe first that the linear operators L̂
ð0Þ

and L̂
ð1Þ
, from Eqs. (8.3.1) and (8.3.2) above, consist of a linear combination of two or

more of the following components42

L̂
ð0Þ ¼ L̂

ð0Þ r2;
@r2

@t
;
@

@t
;
@2

@t2

� �
; L̂
ð1Þ ¼ L̂

ð1Þ r2;
@r2

@t
;
@

@t
;
@

@t2
; Q̂

� �
¼ L̂

ð0Þ � Q̂;

ð8:3:18Þ

constituting the equations of propagation here (namely, Table 8.4 above):

L̂
ð1Þ
gðQÞ1 ¼ �dR0Rdt0t; L̂

ð1Þ
aðQÞ1 ¼ �GT; 6¼ 0;R«VT; ¼ 0 elsewhere ð8:3:18aÞ

Again [cf. (8.1.39)–(8.1.42)], forwardmultiplying the first relation in (8.3.18a) bya
ðQÞ
1 and

the second by g
ðQÞ
1 subtracting the first from the second, and integrating over the source

volume VTð Þ and time (t) from initiation of the field a
ðQÞ
1 to the present (t), gives43

ðtþ

t�
0

dt0
ð

VT

dR0 gðQÞ1 L̂
ð1Þ0

aðQÞ
0

1 � aðQÞ1 L̂
ð1Þ0

gðQÞ
0

1
� �

¼ �
ðtþ

t�
0

dt0
ð

VT

dR0gðQÞ1 GT þ aðQÞ1 ; ð8:3:19aÞ

42 Since @
@t ;

@2

@t2 ; r2, and so on, are bounded linear operators, and L̂
ð0Þ
; L̂
ð1Þ

are linear combinations of these

operators in a linear sum, they are also bounded.Rectangular coordinates also are used throughout, unless otherwise

indicated.
43 The tþ and t�0 indicate that entire delta functions about t (>0) and t0 (>0) are included.
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∞

∞

∞
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{

FIGURE 8.10 Partial reciprocity of identical directional sources OT versus OR. T and R are

reciprocal points of observation, as are transmitter and receiver location. [Two-dimensional section.]
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with dR0 ¼ dx0dy0dz0 � dVT as before. From (8.3.18) this becomes explicitly for the

field a
ðQÞ
1

a
ðQÞ
1 R; tð Þ ¼

ðt0

t0

dt0
ð

VT

dR0gðQÞ1 GT R0; t0ð Þ þ
ðtþ

t0

dt0
ð

VT

dR0 gðQÞ1 L̂
ð0Þ0

aðQÞ
0

1 � aðQÞ1 L̂
ð0Þ0

gðQÞ1
� �

�
ðtþ

t0

dt0
ð

VT

dR0 gðQÞ1 Q̂
0
aðQÞ

0
1 � aðQÞ1 Q̂

0
gðQÞ

0
1

� �
: ð8:3:19bÞ

From the treatment in Section 8.1.6 we note that the second and third terms of (8.3.19b)

can be converted respectively with the help of Green’s theorem [24] and time integrations.

These become in turn surface integrals, which embody the boundary condition, and initial

conditions for the latter.We see this directly from the specific character of L̂
ð0Þ
, which allows

us to write (8.3.19b), for the moment in abbreviated form:

aðQÞ ¼
ðtþ

t0

dt0
ð

VT

dR0 gðQÞ1 GT þ L1 gðQÞ;aðQÞ
0

1 ;r02; â R0; t0ð Þ @
@t0
r02

� �

þ L2 gðQÞ1 ;aðQÞ
0

1 ;
@

@t0
;
@2

@t02

� �
� L3 gðQÞ1 ;aðQÞ

0
1 ; Q̂

0� ��
: ð8:3:19cÞ

The second term in (8.3.19c) is transformed into a combined surface–time integral (because

of terms like t̂ @=@tð Þr2) and thus includes the boundary conditions for any (primary) source

distribution on the surface of VT. The third and fourth terms in @=@tð Þ @2=@t2ð Þð Þ represent
the initial conditions. Note that Q̂

0 ¼ 0 in the last termof (8.3.19c), for the initial condition at

R0 ¼ R0; t
0 ¼ t0ð Þ so that L3 ¼ 0. This is because the field a

ðQÞ
1 ¼ a

ð0Þ
1

� �
has not at this

instant reached the inhomogeneities, which are in the volume V, external to VT . Similarly,

for theGreen’s functionhere,wehave since t > t0 � t�0 ; g
ðQÞ R; tjR0; t0ð Þ! g

ð0Þ
1 R; tjR0; t0ð Þ,

that is, k ¼ 0; R0 ¼ R0; t
0 ¼ t0ð Þ for the initial conditions explicit in the third term

of (8.3.19c). From the results of Section 8.1.6, (8.1.41b)–(8.1.41d), (8.1.42) we see that

(8.3.19c) becomes finally

 L1 !

a
ðQÞ
1 R; tð Þ ¼

ðtþ

t�
0

dt0
ð

VT

dR0gðQÞ1 R; tjR0; t0ð ÞGT R0; t0ð ÞF
S0

gðQÞ1 1þ a0ð Þn̂0 � r0aðQÞ01
h

0

@

� aðQÞ1 1þ a0ð Þn̂0 � r0gðQÞ01
i
dS00

1

A

 L2 !  L3 !
ð

VT

dR0 gðQÞa R0; t0ð Þr20aðQÞ
0

1 � aðQÞ1 r20g 1ð Þ1 a R0; t0ð Þ
h i

0

@

1

A

R0;t0

�
ð

VT

dR0
@g
ðQÞ
1
@t

aðQÞ
0

1

 !

R0;t0

2

4

8
><

>:

� gðQÞ1
@a
ðQÞ0
1
@t

 !

R0;t0

3

5

9
=

;
ð8:3:20Þ
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The factor 1þ a0ð Þ in theL1 term represents the constant part of â ¼ a0 þ a R; tð Þ, if any, cf.
(3) in (8.1.45), for example,a0 ¼ t̂0.Wenote, in addition, that the third term in (8.3.20) is the

portion of the second term in (8.3.19b) for which Green’s theorem does not convert to a

surface integral, for example, in those cases where L̂
ð0Þ

contains the term a R0; t0ð Þ @=@tð Þr2.

It is instead a component of the initial conditions as designated by the subscripts R0; t0ð Þ.
Physically, the various terms of (8.3.20) represent the following behavior:

ð8:3:21Þ

ð1Þ The first term includes an unscattered or homogeneous outward field
ðk ¼ 0Þ; plus most of the energy of all the scattered components
ðk � 1Þ; because of the directionality of the aperture ðor arrayÞ
included in GT: Most of this energy is directed away from the
source in VT and constitutes forward scatter:

ð2Þ Some of the total radiation is scattered “out of the beam;” that is;
out of the main beam:

ð3Þ A small amount of the total radiation constitutes backscatter L1;
from all the multiple scatter components ðk � 1Þ;which is added to
any original source on the surface ðS0Þ of GT: Backscatter is from a
secondary source; wholly dependent on the original source in VT

and possibly sources on S0: It is; of course; reflected from S0 and
eventually dissipated in the unbounded medium surrounding VT:
The second term in ð8:3-20Þ represents the ðpossiblyÞ original ðk ¼ 0Þ
and secondary scatter sources ðk � 1Þ:

ð4Þ The two L2 terms embody the initial conditions and are usually;
zero ðsee belowÞ:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Observe that when the medium contains no inhomogeneities, Q̂V ¼ 0, and g
ðQÞ
1 ! g

ð0Þ
1 ,

a
ðQÞ
1 ¼ a

ð0Þ
1 ¼ aH in (8.3.20): the result, as expected, reduces to the homogeneous case

discussed in Section 8.1.6 above. Figure 8.11 illustrates the remarks in (8.3.21).

The explicit GHPs listed in (1)–(6) of Section 8.1.6 apply specifically for these

deterministic inhomogeneous media on replacing g1 by g
ðQÞ
1 and aH by a

ðQÞ
1 in the four

terms of (8.3.20). The last two terms embody the initial conditions (I.C.s) and accordingly

∞
∞

∞

∞

∞

y

z

0

TO

TV

0S

Directional beam

FIGURE8.11 Radiating volumeVT containing sourceT, in an unbounded inhomogeneousmedium,

which produces scattering, some of which is backscattered from the bounding surface or outward S0 of

VT, as well as primarily forward scattered by a directional aperture or array (in GT).

486 THECANONICALCHANNEL I: SCALARFIELDPROPAGATIONINADETERMINISTICMEDIUM



requires only g
ð0Þ
1 and a

ð0Þ
1 at R0; t0ð Þ ¼ R0; t0ð Þ. Usually, we have aðQÞ1 ¼ 0; @a

ðQÞ
1 =@t ¼ 0,

with no primary sources on the surface S0 of VT. Then just the first two terms contribute in

these examples, with the surface integral now producing only secondary signals, that is,

backscatter from S0. Without restricting the generality of (8.3.20) noticeably, we may

employ these initial conditions and write finally for the deterministic field here

a
ðQÞ
1 R; tð Þ ¼

ðtþ

t�
0

dt0
ð

VT

dR0gðQÞ R; tjR0; t0ð ÞGT R0; t0ð Þ þ
ðtþ

t�
0

dt0
þ

S0

gðQÞ1 � 1þ a0ð Þn̂0 � r0aðQÞ01
h

�aðQÞ01 � 1þ a0ð Þn̂0 � r0gðQÞ01 �S0
0
dS00 ð8:3:22Þ

witha
ð0Þ
1 ¼ @a

ð0Þ
1 =@t ¼ 0 at R0; t0ð Þ and no primary source on S0, just the secondary sources

of backscatter. (In many applications, cf. (1), (2), (5), (6), Eqs. (8.1.43), (8.1.44), (8.1.47),

(8.1.48), a0 above can also be set equal to zero.)

8.3.4.1 Integral Equations44 Formally more compact and offering an alternative

solution to the series solutions discussed in Section 8.2.1, Equation (8.3.20) is an

inhomogeneous Fredholm integral equation of the second kind,44 here over the semi-

infinite regime V, cf. Fig. 8.11. (If we assume nonvanishing initial conditions, we have in

place of (8.3.22), (8.3.20).) In any case from (8.3.7a) and (8.3.7b), we have at once the

resulting integral equation

1̂ � ĥ1
� �

aðQÞ1 ¼ aH ) aðQÞ1 ¼ aH þ ĥ1a
ðQÞ
1 : ð8:3:23Þ

The integral equation (8.3.23) is equivalent to the integral equation (8.3.22) represented by

the GHP described above in Section 8.3.4. It is, however, formally much simpler than

Eq. (8.3.22), with only the first power of themass operator ĥ1. Furthermore ĥ1 for volumes

and surfaces is given explicitly by Eqs. (8.3.9a) and (8.3.9b), where ĥ1 ¼ M̂
ðQÞ
1 Q̂, with

M̂
ðQÞ
1 ; Q̂ represented by (8.3.8) with the total resulting field aðQÞ appearing now in the

brackets ð ÞR0;t0 instead of the homogeneous field aH of the source GTð Þ. Note the coupling
to the medium is embodied in the source density GT and is given explicitly by the results

of Section 8.3.1 in Eqs. (8.3.2), (8.3.6), (8.3.7) and in Section 8.3.4. See also Section 8.1.7

Eqs. (8.1.52) and (8.1.53) for continuous source distribution (i.e., apertures) and

Eqs. (8.1.54)–(8.1.56) for arrays. For the surface integrals one has M̂S, Eq. (8.3.9), and

the results of Section 8.3.2 to facilitate the calculations.

The relation (8.3.23), however, does not explicitly reveal the backscatter from S0, which

appears here as the second term of (8.3.22). This feature is exhibited if we analyze the

anatomy of the operator ĥV in more detail: the scattering process in this case has two

components a
ðQV Þ1 and a

ðQVþS0 Þ1 , represented by

1̂ � ĥV

� �
aðQV Þ1 ¼ aH and 1� ĥS0

� �
a
ðQVþS0 Þ1 ¼ aðQV Þ1 ð8:3:23aÞ

44 For a treatment of integral equations see Ref. [1], Chapter 8, also pp. 904, 959, 991–999, Lovitt [36], and in even

more detail, Chew [6]. Useful and extensive tables of solutions and methods are also given in Polyanin and

Manzhirov [7]. Actually, this integral equation is usually an integral-differential equation, depending on the

structure of the propagation equation, cf. Q̂ in Table 8.4.

INHOMOGENEOUS MEDIA AND CHANNELS 487



and

; 1̂ � ĥS0

� �
1� ĥVð ÞaðQVþS0 Þ ¼ aH ; QV ;QVþS0 � Q!1ð Þ: ð8:3:23bÞ

Note that a QVþS0ð Þ ¼ aðQÞ represents the total scattered field in V and from S0, because the

total number of scattering elements remains constant since this is an inherent property of

the medium. In addition, reflection is a continuation of the same field, modified by the

interface. Only the apportionment of the total (constant) energy among them is altered by

the mixing process between surface and volume scatter. (This applies even if the reflectivity

of the surface S0 is less than unity SoR < 1ð Þ, and some energy is transmitted into the second

medium, namely that bounding the primary source of aH.) This gives us directly

aðQÞ � aðQVþS0 Þ ¼ 1� ĥS0

� ��1
1� ĥVð Þ�1aH ¼ 1� ĥS0

þ ĥV

� �þ ĥS0
ĥV

� ��1
aH;

ð8:3:24Þ

where ĥS; ĥV do not ordinarily commute, that is, ĥSĥV 6¼ ĥV ĥS, in as much as the operator

factors of ĥV ¼ M̂
ð0Þ
V Q̂V 6¼ Q̂VM̂

ð0Þ
V , and so on, do not themselves commute.45 Thus, the

operator ĥ1 in (8.3.23) is explicitly for the mixed scatter and backscatter in the volume V,

ĥ1 ¼ ĥS0
þ ĥV � ĥS0

ĥV ¼: ĥS0
þ ĥV þ O jjĥV ĥS0

jj � jjĥV0
jj jjĥS0

jj� �
: ð8:3:24aÞ

Usually, the interactive component ĥS0
ĥV is negligible compared to ĥS0

and ĥV . The relative

strength of the surface and volume scatter depends on the inhomogeneous natures of these

two media, that is, on their “roughness” or departure from homogeneity.

The integral equation (8.3.23) can nowbe expressed in detail, on using the approximation

ĥ1 ¼: ĥV þ ĥS. We have for the volume component

ĥV ¼ M̂
ð0Þ
V Q̂V ¼

ðt

tþ
0

dt0
ð

VT

dR0gð0Þ1 R; tjR0; t0ð ÞQV R0; t0ð Þð ÞR0;t0 ð8:3:25aÞ

with QV obtained from L̂
ð1Þ
(8.3.2). Also, the surface contribution to the backscatter is

ĥS0
¼ M̂S0Q̂S0 ¼

ðt

tþ
0

dt0F
S0
0

gð0Þ1
@

@n0
� @

@n0
gð0Þ

 �
 �
Q̂
0
S0 ð Þ0R0 ; t0 �dS0; with Q̂S0

0
¼ R01̂

h

ð8:3:25bÞ
whereR0 ¼ R0 R0; t0ð Þð Þ is the planewave reflection coefficient for each pointR0 (at time t0)
on the surface S0, cf. Fig. 8.11. Accordingly, the integral equation (8.3.23) becomes

compactly:

aðQÞ1 R; tð Þ¼: aH þ ĥV þ ĥSð ÞaðQÞ ¼ aH R; tð Þ þ M̂
ð0Þ
V Q̂V þ M̂S0Q̂S0

� �
aðQÞ1 R0; t0ð Þ:

ð8:3:26Þ

45 They and ĥ00;S; ĥ00;V , however, do commute in their convolutional form. See also Sections 8.3.1, 8.3.2, and 8.4.2.
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The homogeneous component aH, if any, is given by the first term in (8.3.20), (8.3.22). It is

assumed that there are noprimary sources onS0, only those produced by the backscatter from

the (deterministic) inhomogeneities in the medium V itself, which in turn reradiate on

reflection from S0. Figure 8.12 provides a schematic illustration of the phenomenon.

Equation (8.3.26) as stated above, with (8.3.25a) and (8.3.25b), is an approximate

solution where the surface � volume interactions are omitted on the usual observation that

they are physically ignorable. If this is not the case, Eq. (8.3.26) is, from (8.3.24a), modified

to the “exact” form46

aðQÞ1 R; tð Þ¼: aH R; tð Þ þ M̂VQ̂V þ M̂S0Q̂S0 � ĥS0
ĥV

� �
aðQÞ1 R0; t0ð Þ; ð8:3:26aÞ

in which ĥS0
ĥV ¼ M̂

ð0Þ
S0
Q̂S0M̂

ð0Þ
V Q̂V requires now a double set of integrations based on

(8.3.25a) and (8.3.25b) to quantify the contributions of the surface–volume interactions.

We emphasize again the fact that here Q ¼ QVþS0 , that is, a
ðQÞ
1 ¼ a

QVþS01 cf. (8.3.23b)

represents the total scattered field in V, due to scatterers in V and to the backscatter from

the interface S0, in addition to any contribution from the unscattered field aH, in V.

Equation (8.3.26a), in addition, includes the “interaction field” ĥS0
ĥV0

a
ðQÞ
1 when it becomes

significant. We determine the general level of complexity of the scattered field aðQÞ directly
by noting the number of different surface and volume global operations hS0 ;hV 0 and their

combinations in the integral equation foraðQÞ. Thus, in the example (8.3.26)we have a “2-0”

complexity, while for (8.3.26a) the complexity number is “2-1”, including the interactive

terms. For additional examples, see Sections 8.5.1.1and 8.5.1.2.

8.3.4.2 Example: The Time-Dependent Helmholtz Equation A useful illustration of

the general results above is provided by the time-dependent Helmholtz equation, whose

GF g1 ¼ g
ð0Þ
1 is given specifically by (8.1.30c). Let as assume again the common situation

where the initial conditions vanish, that is, aðQÞ ¼ @aðQÞ=@tjR0;t0
¼ 0, and the

inhomogeneous (densities) associated with V and S0 are respectively from (8.3.25b)

Q̂V ¼
« R0; t0ð Þ

c20

@2

@t2
and Q̂S ¼ R0 R0; t0ð Þ1̂: ð8:3:27Þ

∞

∞

∞

0S

V

TV

0S

FIGURE 8.12 Section of VT and its boundary surface S0, with backscatter into V from S0 due to

scatter from inhomogeneities in V.

46 The approximation sign ð¼: Þ occurs because of the inherent approximation in replacing the truly exact

relation (8.3.24) by the approximate “exact” Eq. (8.3.24a).
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The quantity R0 is the plane-wave reflection coefficient. A common set of boundary

conditions (between gas and liquid, or liquid and solid in acoustical and certain

electromagnetic applications) ([33]; also [11] and [17], is here (for complete reflections

at the boundary)

aðQVþSÞ1 ¼ R0a
ðQV Þ;

@

@n
aðQVþSÞ1 ¼ �@

@n
R0a

ðQV Þ ð8:3:28Þ

or equivalently in detail

aðQVþSÞ1
reflect:
backscat

¼ R0a
ðQV Þ1

incident
scat:

;
@

@n
aðQVþSÞ1

reflect:
backscat

¼ � @

@n
R0a

ðQV Þ1
� �

incident:
scat:

ð8:3:28aÞ

Inserting (8.3.27) into the general conditions (8.3.28) and (8.3.28a) gives the reflected,

scatteredfield47 in terms of the incident fieldaðQV Þ,whichmayormaynot be itself a scattered

field. Then we have here a
ðQVþSÞ1 ¼ R0a

ðQV Þ1 ¼ R0a
ðQÞ
1 . In this case the Green’s function is

explicitly from (8.1.30c)

gð0Þ1 R; tjR0; t0ð Þ ¼ d t0 � t� r=c0½ �ð Þ
4pr

; r � R� R0j j: ð8:3:29Þ

The integrand of the surface integral in (8.3.25b) now yields the following results when

we reverse the order of integration. For applications when volume� surface scatter can be

neglected, we can now employ (8.3.26). Here S0 refers to the interface between

two different media in general. Using the boundary conditions [(8.3.28) and (8.3.28a)]

we obtain

ĥS0
a
ðQÞ
1
		
Helm:

¼ �
ðtþ

t�
0

dt0F
S0
0

@

@n0
gð0Þ1 R00aðQÞ

0
1

� � �

S0
0

dS00

¼ �F
S0
0

@

@n0
R0 R0; t� r=c0ð ÞaðQÞ1 R0; t� r=c0ð Þ

4pr

" #

S0
0

dS00:

ð8:3:30Þ

Similarly, for (8.3.25a) we also obtain from (8.3.27)

ĥVa
ðQÞ
1
		
Helm:

¼ 1

c20

ðtþ

t�
0

dt0
ð

V

gð0Þ1 « R0; t0ð Þ @
2a
ðQÞ
1

@t02
dR0

¼ 1

c20

ð

V

« R0; t� r=c0ð Þ
4pr

@2

@t02
aðQÞ1 R0; t0ð Þ

 �
dR0:

t0¼t�r=c0

ð8:3:31Þ

47 We shall usually designate themedium containing inhomogeneities specifically, namely,aðQV Þ oraðQVþSÞ, and so
on, or aðVÞ;aðV0þS0Þ, and so on, cf. Section (8.5.1).
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with dR0 ¼ dx0dy0dz0, the volume element here for the semi-infinite space V. We com-

bine (8.3.30) and (8.3.31), nowspecialized to the deterministic inhomogeneousHelmholtz

medium, given in (8.3.26) explicitly. Here the Green’s function g
ð0Þ
1 is still given by

[(8.1.30b) and (8.1.30c)]. We see directly that the total field in V is given by the “exact”

relations.

aðQÞ1 R; tð Þ		
Helmholtz

 aH R; tð Þ !

¼:
ð

VT

GT R0; t� r=c0ð Þ
4pr

dR0 þ 1

c20

ð

V

« R0; t�r=c0ð Þ
8pr

@

@t0
aðQÞ1 R0; t0ð Þ

 �
dR0

t0¼t�r=c0

�F
S0
0

@

@n0
R0 R0; t�r=c0ð ÞaðQÞ1 R0; t�r=c0ð Þ
n o �

S0
0

dS00; ð8:3:32Þ

where, as before, we have postulated that the initial conditions vanish, that is, a
ðQÞ
1 ¼

@a
ðQÞ
1 =@t¼ 0; t¼ t�0 , (cf. (iv), footnote

48). Here the surface integral in (8.3.32) can be

pressed more fully if we use the results (8.1.42 f) and (8.1.42 g). These give us explicitly

F
S0
0

zx0 R
0; t0ð Þ @

@x0
þ zy0 R

0; t0ð Þ @
@y0
þ @

@z0

 �
R0 R0; t0ð ÞaðQVþSÞ R0; t0ð Þ

( )

dr0

R0 ¼ r0 þ z; t0 ¼ t�r0=c0; r0 ¼R� r0 þ z0ð Þ;
¼: R� r0 ¼R�R0ð Þ ð8:3:32aÞ

where r0 ¼ îxx
0 þ îyy

0; dr0 ¼ dx0dy0; z¼ z R; tð Þ ¼ î2z; see Fig. 8.7. In addition, the cou-

plings to the (here) deterministic inhomogeneous Helmholtz medium (namely, (1) in

Table 8.4) are embodied in the source density function GT. For continuous apertures and

48 The second term of (8.3.32), which represents scattering in the infinite volume (V), can be reduced to a simpler

result under the zero initial conditions assumed here. Writing u � gð0Þ1 «;a � aðQÞ1 in general, we begin with

the identity

@ uað Þ
@t
� a

@u

@t
þ u

@a

@t
;

@

@t
a
@u

@t

� �
þ @

@t
u
@a

@t

� �
� @

@t
a
@u

@t

� �
þ @u

@t

@a

@t
þ u

@2a

@t2
ðiÞ

; u
@2a

@t2
¼ @2 uað Þ

@t2
� @

@t
a
@u

@t

� �
� @u

@t

@a

@t
; with

ðt

t0

@u

@t

@a

@t
dt ¼ 1

2

u@a

@t
þ a@u

@t

 �
¼ 1

2

@

@t
uað Þ
�t

t0

; ðiiÞ

since

ðt

t0

@u

@t

@a

@t
dt ¼ u

@a

@t
or a

@u

@t

 �t

t0

¼ 1

2

@

@t
uað Þ
			 t
t0
. Consequently, we obtain

ðt

t0

u
@2a

@t2
dt ¼ @

@t
uað Þ � a

@u

@t
� 1

2
u
@a

@t
� 1

2
a
@u

@t

 �t

t0

¼ 1

2
u
@a

@t
� a

@u

@t

 �t

t0

: ðiiiÞ

This reduces (because a ¼ @a=@t ¼ 0), in the case of the Helmholtz medium, cf. (8.3.31), (8.3.32) with u¼ 1

here, to

1

4p
«
@2

@t02
aðQÞ1 ¼

« R0; t� r=c0ð Þ
8pr

@

@t0
aðQÞ R0; t0ð Þ

 �

t0¼t�r=c0
: ðivÞ
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discrete arrays these are

½Eq:8:1:50Þ�: GT R0; t0ð Þaperture¼
ð1

�1
YT R0; f 0ð ÞSin R0; f 0ð ÞDeiv

0t0df 0

½Eq:8:1:54aÞ�: GT R0;L0ð Þarray¼
XM

m¼1

ð1

�1
h
ðmÞ
T jm; t� tð ÞSðmÞin jm;tð ÞDdt

9
>>>>>>>=

>>>>>>>;

; ð8:3:33Þ

Our result (8.3.32), (8.3.32a) includes backscatter from the surface S00 (third term), as well

as scatter from the inhomogeneities inVT (second term). In the far-field ofVT (and hence of

S00) this backscatter will be negligible compared to that produced in VT by the primary

source inVT. The unperturbed fieldaH from the distributed source is given by the first term

of (8.3.32).

In addition, we have assumed that the mutual scattering between volume and surface

scatter is negligible vis-à-vis the volume and surface scatter considered separately, that is,

ĥV ĥSa
ðQÞ
1

			
			� ĥVa

ðQÞ
1

			
			 ĥSa

ðQÞ
1

			
			, cf. (8.3.25). It is also assumed that there are no primary

sources on S00, just the effect of the backscatter from elements in the medium V .49 Of

course, if it is expected that there is significant interaction between volume and surface

scatter, we must use 8.3.26a. Note that when there are no inhomogeneities in V, that is,

Q̂V ¼ 0 and ; Q̂S ¼ 0—there is no backscatter—only the first term aHð Þ of (8.3.32)

remains. The “exact” analytic evaluation of (8.3.32) depends on (1), the far-field condition

(2) the specific form of « (3) the simplicity of the surface geometry S00
� �

and (4) on the

complexity of a
ðQÞ
1 , (8.3.26), which in most cases with irregular geometries as it stands is

usually intractable. Other means such as numerical methods (see Section 8.5.3, following)

must be employed.

8.3.4.3 Dispersion II In a preceding Section 8.1.5.1, we observed that for a

homogeneous medium which is absorbent, that is, dissipates energy, the resulting wave

numbers k (or n ¼ k=2p) is a nonlinear function of frequency, cf. Eq. (8.1.38), namely,

ð8:1-38Þ: k ¼ F vð Þ=c0 6¼ v=c0; n ¼ k=2p: ð8:3:34Þ
The accompanying partial differential equation of space–time propagation has a dissipative

term containing the operator @=@t responsible for the dissipative contribution. This effect is
called frequency dispersion and is the result of intrinsic mechanisms in the molecular

structure of the medium. For this reason it is also called intrinsic dispersion. Here the

constant c0 represents the phase velocity of propagation of each frequency component of

the propagated wave. The governing PDE in these cases obey the operational equation for

homogeneous media Eq. (8.1.39)

Lð0ÞaH ¼ �GT; R 2 VT;¼ 0;R =2VTð Þ; t > t�0 ð8:3:35Þ

and inmore detail, theGHP, cf. Section 8.1.6,which include boundary and initial conditions.

49 Observe again that VT refers to the volume occupied by the primary or original source. This includes the

transmitting aperture or array, and V =2VTð Þ is here (the infinite) volume containing the deterministic (i.e., fixed)

inhomogeneities.
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There are also other types of dispersion. For example, when the phase velocity c0 is

inhomogeneous, that is, becomes

c0! cm ¼ v=km vð Þ or c Rð Þ ¼ v=k Rð Þ ¼ c0 þ c1 Rð Þ ð8:3:36Þ

(with v (¼2pf) a specified angular frequency component of the signal).

The first relation represents the phase velocity cm of discrete modes in a wave guide,

(m¼ 0,1,2, . . .). The second represents a phase velocity that depends on position in space.
Both of these exhibit spatial or geometric dispersion. For instance, models of acoustic

propagation in the ocean often use the approximation c0 ¼ c0 þ c1 zð Þ for a depth (z)-

dependent variation in phase velocity. More extreme cases of spatial dispersion can include

refraction or reflection at interfaces, which can result from range-dependent propagation

speeds. In fact,when inhomogeneity of themedium is described by the spatial dependence of

the parameters u of the propagation equation, cf. Eq. (8.3.2),

L̂
ð0Þ � Q̂ uð Þ

h i
aðQÞ R; tð Þ ¼ 0; R =2VT; u ¼ a1; a2;. . . ; anð Þ ¼ u Rð Þ; ð8:3:37Þ

we may expect spatial dispersion, along with frequency dispersion if there is a dissipative

term in the PDE of propagation. Similar remarks apply for propagation in the atmosphere.

Media that support spatial dispersion are obviously inhomogeneous. In fact, this includes

(deterministic) scatter, as well, as shown in Section 8.3.4 and generally in Section 8.3

itself.

8.3.5 Generalizations and Remarks

There is a variety of extensions for the above analyses.We list a number of them here, which

the reader can easily obtain. We note specifically:

(1) Preset sources on the closed surface S0 bounding the volume VT, for example, the

second term of (8.3.20).

(2) Initial conditions other than the usual a ¼ @a=@t ¼ 0.

(3) Other media, which are described by Green’s functions of the type (2)–(6), cf.

(8.1.31) and (8.1.33). These are considerably more complex than the GF for the

Helmholtz medium.

(4) The explicit role of the (continuous) aperture or (discrete) array, contained in the

source density GT R0; t0ð Þ, cf. (8.1.49) et. seq. and the unscattered component

aH, (8.1.49a) et. seq., and Section 8.1.6 in detail. Section 8.4 also gives these

desired forms in the treatment of the GHP results in the Fourier transform domain.

(5) For the channel, as defined in the present volume,wemust include the receiver, in the

manner of Section 8.2.

We have so far discussed the space–time field generated by the primary sources and the

scattering by and on the deterministic inhomogeneities in the infinite medium (contained in

V, cf. Fig. 8.11, and by the bounding surface S00 of VT, cf. Fig. 8.12). The backscatter by the

surface S00 is primarily noticeable in the relative proximity of this surface and then falls off to

anegligible intensity a fewmean-free path lengths of the scatter from the surface, as shown in
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Fig. 8.13 (cf. remarks following Eq. (8.3.32)). The unscattered, that is, coherent component

aH, however, is specularly reflected in several directions, depending on the roughness of the

surface and the directionality of the aperture or array. These unscattered specular com-

ponents represent “resolvable multipath,” a familiar phenomenon in telecommunications,

sonar, and radar. In the next section (8.4), we examine the wave number–frequency

equivalents of the space–time field, and include reception, whose output is the data sample

X(R, t), which is then subject to the optimal and near-optimal process of signal extraction,

the elements of which have been treated in Chapters 1–7.

8.4 THE DETERMINISTIC SCATTERED FIELD IN WAVE NUMBER–

FREQUENCY SPACE: INNOVATIONS

It is instructive and sometimes analytically simpler to represent the space–time fields

a
ð0Þ
1 ;a

ðQÞ
1 in terms of their Fourier and Laplace transforms. In part, this can occur because

the components M̂
ð0Þ
1 ; Q̂ of the mass operator ĥ1 ¼ M̂

ð0Þ
1 Q̂

� �
commute in wave number–

frequency space, although they clearly do not commute in the space–time domain cf.

Section 8.3.3.1. This is particularly true when the general aperture/array coupling of the

input signal to the medium is included cf. (Eqs. (8.1.49), (8.1.54a), and (8.1.54b)).

For this purpose, we begin with a variety of transform equivalents, some represented in

Sections 8.1–8.3. Thus, for the integral Green’s functions operator M̂
ð0Þ
1 , (8.1.9b) and,

(8.1.10), we may write

M̂
ð0Þ
1 R; tjR0; t0ð Þ ¼ FkFs M̂

ð0Þn o
¼ Fs

ð
dZ0

 �
Y0 R; sjR0ð Þe�st0 ð ÞR0;t0


 �
;Fsfg �

ð

Br1

est
ds

2pi
ð Þs

ð8:4:1aÞ

¼ FkFs

ð
dZ0

 �
Y0 k; sð Þeik �R0�st0 ð ÞR;t

( )

; FkFsf g �
ð

Br1

est
ds

2pi

ð1

�1

dk

2pð Þ3 ð Þk;s: ð8:4:1bÞ

Here, we have

Y0 R; sjR0ð Þ ¼ Y0 r; sð Þ;r� R�R0j j; ðwith different explicit values; vide;

Section 8:1:5; ð1Þ--ð6ÞÞ ð8:4:2aÞ

)( 00 saVα +

0t

t ′ t 0cR T=

1t 2t 3t 4t
5t 6t

( )610 Tttt < <<<.. .<

FIGURE 8.13 Sketch of transient response of the Green’s function of a typical medium, with

changes in time t1; t2; :::; t5 � T , the effective duration of the response, showing the evolving scatter

interactions as time progressed during the response time (T).
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and

Y0 k; sð Þ ¼ �L0 k; sð Þ�1; Eqs: ð8:1:15Þ and ð8:1:17Þ; and
ð
dZ0

 �
�
ðtþ

t�
0

dt0
ð

VT

dR0ð ÞR0;t0 :

ð8:4:2bÞ
Similarly, we find that the space–time transforms of the integral Green’s function operator

M̂
ð0Þ
1 are

M̂
ð0Þ
1 ¼ FRFt M̂

ð0Þn o
¼�FRFt

ð
dZ0

 �
gð0Þ R; tjR0; t0ð Þð ÞR0;t0


 �¼
ð
dZ0e�ik �R

0þst0Y0 k; sð Þ�k;s

� Ŷ0 � ð Þk;s

9
=

;

ð8:4:3aÞ
with the single time transform for M̂

ð0Þ
1 given by

Ŷ0 ¼ Ft M̂
ð0Þ
1

n o
¼ Ft

ð
dZ0

 �
gð0Þ R; tjR0; t0ð Þð ÞR0;t0


 �¼
ð
dZ0

 �
Y0 R; sjR0ð Þeþst0 ð ÞR;s

� Ŷ0 R; sð Þ�

9
=

;
:

ð8:4:3bÞ

For the inhomogeneity operator Q̂ R; tð Þ (cf. (8.3.1) et seq.), we have

Q̂ R; tð Þ ¼ Fs Q̂0 R; sð Þ� � ¼ FkFs Q̂00 k; sð Þ� �
; ð8:4:4aÞ

with the inverses

Q̂0 R; sð Þ ¼ Ft Q R; tð Þf g; Q00 k; sð Þ ¼ FRFt Q R; tð Þf g: ð8:4:4bÞ

The mass or field renormalization operator ĥ1 (cf. Eq. (8.3.4) et seq.) is the separable

product of the global operator M̂
ð0Þ
1 , namely, the integral Green’s function operator, and

the local inhomogeneity operator Q̂, that is,

ĥ1 ¼ M̂
ð0Þ
1 Q̂ ¼ M̂1 � Q̂ 6¼ Q̂M̂

ð0Þ
1

� �
: M̂

ð0Þ
1 and Q̂ do not commute: ð8:4:5Þ

As before and throughout, M̂
ð0Þ
1 is represented for volumes by

M̂
ð0Þ
1 ) M̂

ð0Þ
V R; tjR0; t0ð Þ ¼

ðtþ

t�
0

dt0
ð1

�1
gð0Þ1 R; tjR0; t0ð Þð ÞR0;t0dR0; ðEq: 8:1:10Þ; ð8:4:5aÞ

and for surfaces by

M̂
ð0Þ
1 ) M̂

ð0Þ
S ¼

ðtþ

t�
0

dt0F
S0
0

gð0Þ1 1; 1þ a1
@

@t0
; and so on


 �
@

@n0
ð ÞR0;t0



�ð ÞR0;t0 1; 1þ a1
@

@t0
; and so on


 �
@g
ð0Þ
1

@n0

#

on S0
0

dS00; ð8:4:5bÞ
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refer to Section 8.1.6.3, (1)–(6). The local inhomogeneity operator generally is Q̂ R; tð Þ,
which with the field a

ðQÞ
1 appears in ð ÞR0;t0 along with M̂

ð0Þ
V and M̂

ð0Þ
S for ĥ1 ¼ M̂1Q̂

� �
V or S

,

as shown typically by (8.3.25a) and (8.3.25b).

8.4.1 Transform Operator Solutions

Let us consider the integral equation (8.3.23) first and determine its Fourier-Laplace

transforms. We have, on representing each quantity by its various transforms,

Ft aðQÞ1 ¼ aH þ ĥ1a
ðQÞ
1

n o
: a

ðQÞ
0 ¼ a0H þ Ft M̂

ð0Þ
1 Q̂aðQÞ1

n o

¼ a0H þ Ft Fs ĥ0ð Þ � Fs aðQÞ1
� �n o

ð8:4:6aÞ

; a
ðQÞ
0 ¼ a0H þ ĥ0 � a

ðQÞ
0 ; ð8:4:6bÞ

where � denotes convolution of one variable (here in frequency) and FtFs ¼ 1, with

ĥ0� ¼ M̂0 � Q̂0�. Note that here M̂
ð0Þ ¼ Ft M̂

ð0Þ
1

n o
¼ Ŷ

0
0, where

M̂
ð0Þ
0 ¼ Ŷ

0
0 ¼ Ŷ0 R; sjR0ð Þeþst0 ð ÞR;t with

ĥ0 ¼ ĥ0 R; sjR0; s0ð Þ :Ft ĥ1 � aðQÞ1
n o

¼ Ŷ
0
0 � Q̂� a

ðQÞ
0 ; ð8:4:6cÞ

and the subscripts (0) indicate the transform variable s here, that is, a
ðQÞ
0 ¼ aðQÞ R; sð Þ;

a0H ¼ a0H R; sð Þ and so on. Consequently, the integral equation in (8.3.23) becomes in its

space–frequency form.

(I) Space–Frequency (S–F):

a0H þ Ŷ
0
0 � Q̂0 � a

ðQÞ
0 ¼ a

ðQÞ
0 ; a0H ¼ Ŷ

0
0 � G0T

� �

¼
ð

VT

dR0
ð

Br1

es
0 t�t0ð Þ ds

0

2pi
Y0 R; s0 R0j ÞG0 R0; s� s0ð ÞT:
� ð8:4:7Þ

Exhibiting the role of backscatter, this result becomes inmore detail (Eq. (8.3.26), Figs. 8.10

and 8.11):

(II) Space-Frequency with Backscatter:

a0H R; sð Þ þ Ŷ
0
0V � Q̂0V � aðQÞ1 R; sð Þ þ Ŷ

0
0S � Q̂0S � aðQÞ1 R; sð Þ

h i

¼: aðQÞ0 R; sð Þ; a0H R; sð Þ ¼ Ŷ
0
0 � G0T

� �
; ð8:4:7aÞ
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where a0H is explicitly given by (8.4.7), above. For example, Eqs. (8.3.6) and (8.3.7b) are

now represented by

a
ðQÞ
0 ¼ 1̂ � ĥ0

� ��1 � a0H ¼ a0H þ
X1

R¼1
ĥ
ðkÞ
0 � a0H ¼ a0H þ

X1

R¼1
Ŷ
0
0 � Q̂0

h iðkÞ
� a0H ;

ð8:4:8Þ

subject, to the appropriate convergence conditions (Eq. (8.3.7)).

In a similar fashion to the above for the space–frequency formsof (8.3.23),wehave for the

wave number–frequency representation:

(III) Wave Number–Frequency

FRFt a
ðQÞ
1 ¼ a0H þ ĥa

ðQÞ
1

n o
:a
ðQÞ
00 ¼ a00H þ FRFt M̂

ð0Þ
Q̂a
ðQÞ
1

n o

¼ a00H þ FRFt FkFs ĥ00ð Þ � FkFs a
ðQÞ
00

� �n o
;
ð8:4:9aÞ

where� is the double convolution involving the functions of (k, s). Here,a
ðQÞ
00 � a

ðQÞ
1 k; sð Þ,

a00H � a1 k; sð ÞH and so on are the double Fourier transforms indicated by FRFt a
ðQÞ
1

n o
,

and so on. Equation (8.4.9a) reduces finally to

a
ðQÞ
00 ¼ a00;H þ ĥ00 � a

ðQÞ
00 ; ð8:4:9bÞ

now with

FRFt M̂
ð0Þ
Q̂a
ðQÞ
1

n o
¼ ĥ00 � a

ðQÞ
00 ¼ Ŷ

0
00 � Q̂00 � a

ðQÞ
00 ; where

Ŷ
0
00�¼

ð
dZ0Y0 k; sð Þ1e�ik �R

0þst0 � ð Þk;s; Q̂00 � Q̂00 k; sð Þ; etc:

9
>>=

>>;
;

ð8:4:9cÞ

with dZ0 � dt0dR0, refer to Eq. (8.4.2b) above. Furthermore, the double Fourier transform

of the undisturbed field (discussed as before, in Section 8.1.6) explicitly becomes

a00;H k; sð Þ ¼ Ŷ
0
00 � G00;T ¼

ð1

�1

dk0

2pð Þ3
ð

Br1

ds0

2p
Y0 k0; sð ÞG00 k� k0; s� s0ð ÞT ð8:4:10Þ

from ð8:4:9cÞ; with Ŷ00 � Y0; ð8:4:10aÞ

The full spectral, that is, wave number–frequency, results in the case of backscatter,

(cf. (8.4.7a)), and is now obtained directly from (8.3.26) with the help of (8.4.9b)

and (8.4.10).
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(IV) Full Spectrum with Backscatter:

a00;H k; fð Þ þ Ŷ
0
00 � Q̂00 � aðQÞðk; sÞþ

h i

V
þ Ŷ

0
00 � Q̂00 � a

ðQÞ
00 ðk; sÞ

h i

S

¼ a
ðQÞ
00 k; sð Þ; a00;H ¼ Ŷ

0
00 � G00T

h i

VT

: ð8:4:11aÞ

Here again, the subscript V and S refer to the infinite domain of the deterministic

inhomogeneous media and the (here) purely reflective surface bounding the source

volume VT. The series solution analogous to (8.4.8)

a
ðQÞ
00 k; fð Þ ¼ 1̂ � ĥ00�

� ��1
a00jH k; fð Þ ¼ a00;H k; fð Þ

þ
X1

k¼1
Ŷ
0
00 � Q̂00�

� �ðkÞ
a00;H k; fð Þ with ĥ00k k < 1: ð8:4:11bÞ

from (8.4.9c)–(8.4.11a).

8.4.2 Commutation and Convolution

Although the space–time operators M̂
ð0Þ
1 and Q̂ do not commute (Section 8.3.4.1), their

Fourier transforms do, sinceFRFt M̂
ð0Þn o
¼ � Ŷ00� andFRFt Q̂

� � ¼ Q̂00�, so that ĥ00�,
(8.4.9c) and (8.4.11b), represent a pair of convolutions, for example,

ĥ00� ¼ Ŷ00 � Q̂00 � � ¼ Q̂00 � Ŷ00� ¼ M̂
ð0Þ � Q̂00; and so on: ð8:4:12Þ

These do commute, since generally

Â k; sð Þ � B̂ k; sð Þ� ¼
ð1

�1

dk0

2pð Þ3
ð

Br1

ds0

2pi
A k0; s0ð ÞB k� k0; s� s0ð Þð Þk0;s0

¼
ð1

�1

dk0

2pð Þ3
ð

Br1

ds0

2pi
B k0; s0ð ÞA k� k0; s� s0ð Þð Þk0;s0 ¼ B̂ k; sð Þ � Â k; sð Þ�;

ð8:4:12aÞ

on change of variables: s� s0 ¼ s00; k� k0 ¼ k00ð Þ, then with s00 ! s0; k00 ! k0ð Þ. Accord-
ingly, we see from (8.4.12a) that ĥ

ðkÞ
00 �; k ¼ 2, is

ĥ
ð2Þ
00 � ¼ ĥ00;1 � ĥ00;2 ¼ ĥ00;2 � ĥ00;1 ¼ Ŷ

0ð1Þ
00 � Ŷ

0ð2Þ
00 � Q̂

ð1Þ
00 � Q̂

ð2Þ
00 � and so on:

ð8:4:13Þ
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The general result for k� 2 is

ĥðkÞ�
� �

¼
Yk

l¼1
M̂
ð0Þ
00;l � Q̂

ðlÞ
00�

h i
¼ ĥ00;1 � ĥ00;2 � � � � ĥ00;k� ¼

Yk

l¼1
Ŷ
ðlÞ
00 � Q

ðlÞ
00�

¼ Ŷ00 � Ŷ00 � � � � Ŷ00

� �

k
� Q̂00 � Q̂00 � � � � Q̂00�
� �

k
;

¼ ĥ
ðkÞ
00 � Ŷ

ðkÞ
00 � Q̂

ðkÞ
00 �;

9
>>>>>=

>>>>>;

ð8:4:14Þ
in various combinations of factors, which all commute with one another. More compactly,

from the alternative results (8.3.20) and (8.3.22), we can replace the series representation

(8.4.11b) by

a
ðQÞ
00 k; fð Þ ¼ a00;H k; fð Þ þ ĥ

ðQÞ
00 � a

ðQÞ
00 k; fð Þ; where ĥ

ðQÞ
00 � �

X1

k¼1
ĥðkÞ�; ð8:4:15Þ

with a00;H given by (8.4.10), where the kernel of ĥ
ðQÞ
00 is g

ðQÞ
00 ¼ FRFt g

ðQÞ
1

n o
, from (8.3.16).

In this way, a variety of equivalent expressions for a
ðQÞ
00 can be derived.

Thus, we have the frequently encountered case of commutation in transform space (k, s),

which when further transformed from this transform space, results once more in non-

commuting factors in space–time (R, t). Operating in the transform space (k, s) may often

lead to simpler results or approximations than direct efforts in the (R, t) domain.

8.5 EXTENSIONS AND INNOVATIONS, MULTIMEDIA INTERACTIONS

This section contains a number of extensions of the analysis Sections 8.3 and 8.4. The

emphasis, as before, is on operational forms andmethods. These in turn can be used as basic

structures for computational results, as well as for the limited detailed analytic results

directly obtainable in these complex situations. The presence of inhomogeneities in the

physical medium, in addition to absorption (dispersion) along with complex boundaries,

creates major technical problems, which though functionally solvable present considerable

analytic difficulties (Chapters 8 and 9 of Ref. [6]). Here the channel and its components are

deterministic—that is, these are no randomelements and everything is knownapriori except

the field itself, which is then uniquely determined by the propagation model and the

associated coupling to the medium in question. Equivalently, the deterministic case is an

ensemble of a single representation of probability unity.

Topics examined here are also prelude to the random treatment required in Chapter 9

following.

(I) Boundaries as Distributed Inhomogeneities

(II) Multimedia Interactions: The Deterministic Mass Operator or ĥ-form

(III) The Feedback Formulation

(IV) The Engineering Approach, II.

For I, we have already quantitatively described the role of the surface effects for homo-

geneous media in Section 8.1.6, Eqs. (8.1.38)–(8.1.46), for inhomogeneous media in
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Section 8.3.1 and 8.3.3, cf. Eqs. (8.3.17)–(8.3.22), and the Helmholtz example in Section

8.3.3. In general, the role of the boundary conditions is revealed in the surface component of

the resulting field, as illustrated here by Figs. 8.11 and 8.12. The initial conditions are

embodied in the driving elements of the signal source in the volume VT, cf. Fig. 8.11.

8.5.1 The ĥ-Form: Multimedia Interactions

For II above,wehavealreadypresented apreview inSection8.3.3.1of how tohandle the case

where two contiguous media are involved and one is perfectly reflecting. We give here

additional examples of the multimedia treatment, or ĥ-form, where two or three media

are considered. Typical physical situations are as follows:

(1) Atmosphere/ocean/bottom, in the case of underwater acoustics (sonar, commu-

nications, etc.)

(2) Atmosphere/ground (radar, communications, etc.) and water/bottom and water/

atmosphere (acoustics)

Variations of these with different source positions may also occur. One purpose of this

material is to demonstrate the various interactions between the (here deterministic) media

that can occur in the process of signal propagation. The ĥ-form allows us to account

qualitatively (and ultimately quantitatively) for possible couplings between different scat-

tering mechanisms, in realistically complex situations. It also provides a convenient way to

identify and discuss those interactions that are not significant, thus allowing the usuallymuch

needed simplifications in the solutions. Figures 8.12 and 8.14a illustrate the twomedia cases

discussed in Section 8.3.4.1, while Figs. 8.14b and 8.15 illustrate the more general three

media configurations. The general situation when both reflection and transmission occur at

and through media boundaries can be quite complex, as the following examples show.

8.5.1.1 Example: Radar and Telecommunications—One- and Two-Media Models
We begin with several two-medium cases, mostly appropriate to radar and tele-

communications. The former operates usually in a “monostatic” regime, that is, where

transmitters (T) and receivers (R) are located on the same platform (R¼ T). The latter

requires a “bistatic” regime by definition, where receiver and transmitter are located at

different places (R 6¼ T).The radar configuration is really a combinationof the two if there is a

target (Tg) present (T ! Tg! R). Figure 8.14a and b illustrate schematically a typical

radar situation, as well as T and R in the telecommunication case.

The scattering analysis for Fig. 8.14a is given in operator form by the following50:

1� ĥV0

� �
a V0ð Þ ¼ aH: scattered field in volume V0; due to scatterers in

V0 only;

1� ĥS0R

� �
a V0þR0=0ð Þ ¼ a V0ð Þ: scattered field in V0; due to scatterers on S0 and in

V0; with ðperfectÞ reflection at S0:

9
>>>=

>>>;

ð8:5:1Þ

50 Here,R0=T represents the portion of the scattered field inV0 impinging on the interface S0 betweenV0 andV1 and

then being perfectly reflected (R) back intoV0 by S0. Similarly,R0=T represents that portion of the scattering fromV0

that is transmitted (T) through the interface into V1, and so on.
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Note that aðV0þR0=RÞ includes all scatterers on S0 and in V0, and the multiple interactions

between the multiple reflected scatter from S0. (The multiple backscatter from the first

backscatter are not included in the figures.) However, as discussed in Section 8.3.4.1, after

Eq. (8.3.23b), the number of scattering elements remaining on the surface S0 and in the

volume V0 increases the number of coupled, that is, interacting, scatterers, creating a more

complex scattering environment, mainly in the neighborhood of the interface. In this first

case, only reflection takes place, that is, R0=S ¼ 1. In the second case R0=S < 1
� �

, with some

transmission through the interface S0, the same sort of scenario in V0 and on S0, now with a

few additional scatterers in V1, contributes to those in V0, but with a loss of energy in V0,

due to scattering out of V0 R0=T > 0
� �

and the scattering from V0 mostly remaining in V1.

The number of scatterers in V0;V1 and on S0 remains constant.

Returning to (8.5.2), we easily see that51

aðV0Þ ¼ aðV0þR0=0Þ ¼ 1� ĥs0=0

� ��1
1� ĥV0

� �
aH ¼: 1� ĥs0R

þ ĥV0

� �h i�1
aH; 0 � s0R � 1ð Þ;

ð8:5:2Þ
where ĥS0

ĥV0

�� �� << ĥS0
þ ĥV0

�� ��, by our usual assumption that interactions between types

of scatter are generally negligible vis-à-vis the primary effects themselves. The series

solution for (8.5.2) becomes (cf. 8.3.8) et seq.)

a V0ð Þ ¼ a V0þR0=Rð Þ¼: aH þ
XQ!1

k¼1
ĥR0=R

þ ĥV0

� �ðkÞ
a
ðkÞ
H

¼: aH þ
X1

k¼1
ĥ
ðkÞ
R0=R
þ
X1

k¼1
ĥ
ðkÞ
V0

( )

aH; 0 � R0=S � 1
� �

; ð8:5:3Þ

which is the approximate result, neglecting all interactions between surface and volume

scatter of the second and higher orders. Equation (8.5.3) is one form of the solution to the

integral equation (8.3.23).

If the boundary S0 allows transmission R0=T > 0
� �

as well as reflection 0 < R0=R < 1,

cf. Fig. 8.14b, a third relation for (8.5.1) giving the transmitted field through S0 and

51 See the remarks regarding commutability in footnote 45.

0V

1V

∞

−∞

0S

Hα

Ground

(a) (b)

)( RT )(~ Hα ( ), RTg

0V

1V

∞

−∞

0S

Hα

Air

Ground

( )RT ( )~ Hα ( ),RTg

FIGURE 8.14 (a) Schematic of a radar monostatic configuration T ! Tg ! R(¼T) and commu-

nication link T ! R, with scattering and backscatter¼ total scatter in V0, when S0 is perfectly

reflecting R0=S ¼ 1
� �

. (b) Same as (a), but with S0 partially reflecting and transmitting into V1.

Total scatter in V0 unchanged, but at lower energy than in Fig. 8.14a. Some energy lost in V1.

Here R0=S < 1, T0=S > 0.
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into V1 becomes51

a V1ð Þ � a V0þR0=TþV1ð Þ ¼ 1� ĥV1

� ��1
1� ĥR0=T

� ��1
1� ĥV0

� ��1
aH: ð8:5:4Þ

This reduces to

a V1ð Þ¼ 1� ĥMð Þ�1aH

¼ 1� ĥV1
þ ĥR0=T

þ ĥV0

� �
þ ĥV1

þ ĥR0=T
þ ĥV1

ĥV0
þ ĥR0=T

ĥV0

� �
� ĥV1

ĥR0=T
ĥV1

h i�1
aH;

ð8:5:5Þ

where ĥM is the composite operator described in full in the second equation of (8.5.4).

Making the usual approximations, namely, neglecting all higher orders of scattering

interactions
�
ĥV1

ĥR0=T
; etc:

�
, we obtain the extension of (8.5.3):

a V1ð Þ ¼ a V0þR0=TþV1ð Þ¼: aHþ
X1

k¼1
ĥ
ðkÞ
V1
þ ĥ

ðkÞ
R0=T
þ ĥ

ðkÞ
V0

( )

aH ¼ aðQÞ
� �

; 0< R0=T < 1
� �

;

ð8:5:6Þ

with (8.5.3) representing the field, including reflections, in V0. Of course, when scattering

interactions cannot be neglected—not a usual situation in the types of communication

treated here—we must use part or all of ĥM . In many cases, the mass operators for the

different media and their interfaces are additive to a satisfactory approximation.

8.5.1.2 Example:OceanEnvironments—ThreeMedia Here,we extendour discussion

to the important casewhere threemedia are involved andwhere the primary source is located

in the middle one V1ð Þ, in the manner of Fig. 8.15a and b.

The scattering analysis for these examples may be established in the sameway. Now we

have besides medium V1, possible reflections from and transmission through the interfaces

S0 and S1, Fig. 8.15a. The various fields associated with the different media are given by

V0:a
ðV0Þ ¼ aðV1þR0=TþV0Þ ¼ 1� ĥV0

� ��1
1� ĥR0=T

� ��1
1� ĥV1

� ��1
aH ; ð8:5:7aÞ

V1:a
V1ð Þ ¼ a V1þS1RþS0Rð Þ ¼ 1� ĥR1=R

� ��1
1� ĥV1

� ��1
aH þ 1� ĥR0=R

� ��1
1� ĥV1

� ��1
aH;

¼ 1� ĥR1=R

� ��1
þ 1� ĥR0=R

� ��1 �
1� ĥV1

� ��1
aH;

ð8:5:7bÞ

V2:a
V2ð Þ ¼ a V1þR1=TþV2ð Þ ¼ 1� ĥV2

� ��1
1� ĥR2=T

� ��1
1� ĥV1

� ��1
aH: ð8:5:7cÞ

These relations formally apply also for the inhomogeneous case of Fig. 8.15b, where

the particular inhomogeneity occurs in the speed of propagation c(z) (or more generally,

c(R, t0)), which can cause a very nonhomogeneous spatial concentration of the source
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energy and the scattering produced in the medium by the source. Note from Eqs. (8.3.9a)

and (8.3.9b) that ĥV ; ĥS throughout contains Q̂V , Table 8.4, and Q̂S ¼ R01̂ or T01̂, the

(plane wave) reflection or transmission operators at the various interfaces in Figs. 8.14a,

8.14b, 8.15a and 8.15b.

The unscattered component of the original field aH from the primary source, if any, is

reduced in energy by the amount created in the scattered fields. Thus, aH represents the

unscattered component at any time after its initiation and subject to the scattering elements in

the various media in Figs. 8.14 and 8.15. For example, a deterministic pulse of energy

injected into themediumwill have its energy progressively reduced by scattering, until after

enough time it has become essentially all scattered energy. Any of the original structural

waves, at various ranges (i.e., times R=c0), will obey the geometry of the medium, that is,

reflection and transmission at interfaces and in the medium itself. The reflections constitute

“multipath,” that is, resolvable and organized “scatter,” and transmission is regular outward

propagation from the sources.

Finally, from the above multiple boundary effects and the argument given earlier

(Eq. (8.3.7c)), it is evident that because of the boundaries the fields in the various regions

of propagation are no longer linear, in the sense that superposition holds. This can be seen

directly by application of (8.3.7c) to the fields in each region of the examples in (8.5.1)–

(8.5.6). We leave the proof to the reader.

8.5.2 The Feedback Operational Representation and Solution

The form of Eqs. (8.3.7a), (8.3.7b), and (8.3.23a), and other similar expressions (Sec-

tion 8.5.1) suggest that these representations and their series solutions for the present linear

deterministicmedia may be interpreted as a generalization of the familiar one-dimensional

feedback loop of engineering practice. Its output is the feedback (operational) solutions,

(FOS) for the scattered field. Thus, from (8.3.23) we have

aðQÞ ¼ 1̂ � M̂
ð0Þ
1 Q̂

� ��1
aH; with ĥ ¼ M̂

ð0Þ
1 Q̂

aH ¼ M̂
ð0Þ
1 �GTð Þ; GT ¼ GT R0; t0ð Þ 2 VT ; ¼ O;GT 6¼ VT ;

ð8:5:8Þ

where aH is the unscattered or unperturbed source field. Again, ĥ is analogous to the “mass

operator” or “field renormalization” operator of quantum field theory. The composite

1VWater

Bottom

Air(a) (b)

2V

∞

−∞ −∞

0S

Hα
)( RT ( )~ Hα ( ),RTg

0V

1S

0cc = 2 0c =
0cR → →

1 0c =

( )0 0c

∆

∆

∆

∆

∆

∆

=

1V

2V

∞

Hα
( )RT ( )~ Hα )( ,RTg

0V

( )zc 2 0c ≠
0cR

1 0c ≠

0 0c ≠

FIGURE 8.15 (a) Schematic of a monostatic sonar in a gradient-free (i.e.,!c(z)¼ 0) environment

c ¼ c0ð Þ and a communication link (T ! R), with scattering, backscatter, and penetration of other

media, and scattering therein, 0 � S0R1
; S0R2

< 1ð Þ. (b) Same as (a), except for the presence of velocity

gradients in all three media.

EXTENSIONS AND INNOVATIONS, MULTIMEDIA INTERACTIONS 503



operator ĥ ¼ M̂
ð0Þ
1 Q̂ is global and embodies the rescaling of the original field required as a

result of the scattering produced in the medium and its boundaries. Here again, M̂
ð0Þ
1 is the

integral Green’s function operator, refer to Eq. (8.1.10), and Q̂ represents any (local)

inhomogeneity in themedium.52 Also note again that M̂
ð0Þ
1 is a global operator, whereas Q̂ is

local: the former is also a projection operator, propagating the nonlocal source density

GT ; R0 2 VTð Þ, to all permitted points R; tð Þ =2VT outside the sourceVT ,where Q̂ ¼ Q̂ R0; t0ð Þ
is defined at a point R0; t0ð Þ. Other equivalent forms of (8.3.23) are the solutions:

aðQÞ ¼ aH þ ĥ1
1̂ � ĥ1

aH ¼
X1

k¼0
M̂
ð0Þ
1 Q̂

� �ðkÞ
aH ¼ aH þ a

ðQÞ
1 ð8:5:9aÞ

; a
ðQÞ
1 ¼

X1

k¼1
M̂
ð0Þ
1 Q̂

� �ðkÞ
aH ¼ ĥ1

1̂ � ĥ1
aH: inhomogeneous field component of aðQÞ

ð8:5:9bÞ

These series are often called the perturbation series solutions (PSS) to the dynamical

equation (8.3.23). As before (Section 8.3), the superscript (k) denotes the kth iteration of the

operator(s) in question. Note that the kth order mass operator ĥðkÞaH contains all the kth

order, and no other interactions of the set of k scattering elements, illuminated by

the incident field aH. Clearly, all the kth order interactions or “k-tuples” are physically

independent of all other orders of coupled scatters. (This critically important observation

assits in construction of the probability distributions of the scattered field in the random

environments encountered in most practical applications.)

The feedback operational representation (FOR)53 of (8.5.9a) and (8.5.9b) is illustrated

in Fig. 8.16.

If in Fig. 8.16 we regard a1 as the input field toM
ð0Þ
1 , with a2 the field input to Q̂ and aF

the “feedback”field toGT, then Fig. 8.16 represents a “field circuit” diagram, fromwhich the

functional equations relating the various fields a;a1;a2;aFð Þ can be immediately written:

a1 ¼ �GT þ aF; a2 ¼ a; a ¼ M̂1a1; aF ¼ Q̂a2; ð8:5:10Þ

These are then directly solved for a to give us the resulting integral equation:

a ¼ M̂1 �GT þ Q̂a
� �

; that is a� M̂
ð0Þ
1 Q̂a ¼ �M̂ð0Þ1 GT ¼ aH; ð8:5:10aÞ

52 Exclusive of boundaries, which are considered separately as defining a limitation on themedium in question. As

noted in I. (beginning of Section 8.4.1), boundaries are a continuously limiting formof distributed inhomogeneities.
53 This “loop formulation” (or FOR here) is usually called the “classical approach” in modern control theory. The

more modern approach is based on “state variables,” which in turn are differential equations derived from the

optimization of the Lagrange, Hamilton, and Euler equations of classical mechanisms, based on the energy of the

system in question. The resultingEuler or dynamical equations, here space–time (partial) differential equations, are

the equations of propagation, which we have already seen in this chapter, for both Hom-Stat and non-Hom-Stat

media. For random fields, the ensemble, with its associated probability measures of such dynamical equations,

constitutes the Langevin equation (cf. Chapter 9). For an extension treatment of dynamical equations of the

resulting fields, see in particular Chapters 2 and 3 of Ref. [1] in addition to Ref. [37–40]. Examples of both the direct

approach based on calculation of the energies from the equation of propagation and a concise outline of the more

general Lagrange–Hamiltonian–Euler approach are given in Section 8.6.
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or

a ¼ aH þ M̂
ð0Þ
1 Q̂a ¼ aH þ ĥ1a; a ¼ aðQÞ; ð8:5:10bÞ

the latter being just the original propagation equation (8.5.9) where we have written

a ¼ aðQÞ, to emphasize the inhomogeneous character of the resultant field. Accordingly,

the closed loop, feedback diagram Fig. 8.16 also embodies the equivalent (8.5.9).

The interpretation of the FOS, Eq. (8.5.9), is straightforward in terms of a simulated

iteration process. Conceptually, we start the loop operating by injecting the signal �GT,

which givesa ¼ að0Þ at A in Fig. 8.16. This, in turn, is fed back through Q̂ and then forward

through M̂1 to giveað1Þ at A (hence the terms “feedback” operator for Q̂ and “feedforward”

operator for M̂1). The sequence is clearly as follows:

0th iteration: að0Þ ¼ �M̂ð0Þ1 GT ¼ aH; Q̂ ¼ 0
� �

: ð8:5:11aÞ

1st iteration: að1Þ ¼ að0Þ þ M̂
ð0Þ
1 Q̂að0Þ ¼ 1þ M̂

ð0Þ
1 Q̂

� �
aH: ð8:5:11bÞ

2nd iteration: að2Þ ¼ að0Þ þ M̂
ð0Þ
1 Q̂að1Þ ¼ 1þ M̂

ð0Þ
1 Q̂þ M̂

ð0Þ
1 Q̂

� �ð2Þ� �
aH: ð8:5:11cÞ

..

. ..
. ..

. ..
.

kth iteration: aðkÞ ¼ að0Þ þ M̂
ð0Þ
1 Q̂aðk�1Þ ¼

Xk

m¼ 0

M̂
ð0Þ
1 Q̂

� �ðmÞ
aH; m � 0; að�1Þ � 0

� �

ð8:5:11dÞ

Thus, as k ! 1, we obtain the same series, (8.5.9a),which is moreover termwise identical

to the PSS or, equivalently, to the FOS. The series in (8.5.9a) as k ! 1 is precisely the

summed series of partial solutions (8.5.11) obtained “classically” by iteration of succeeding

approximations in the dynamical (integral) equationa
ðkÞ
1 � M̂

ð0Þ
1 Q̂a

ðk�1Þ
1 ¼ a

ð0Þ
1 , namely the

PSS (8.5.9). This establishes the equivalence of FOS, FOR, and PSS (also we shall see

in Chapter 9 ff., the associated Feynman diagram series.

A

TG− 1α

Fα

(0) ˆˆˆ M Qη ∞=

)((0)ˆ : HM α∞

Q̂ 2α

α+

FIGURE 8.16 Feedback operational representation, Eq. (8.5.9a) and (8.5.9b) for the deterministic

propagation equation (8.5.8), whose solution (FOS) is expressed in the various equivalent

forms (8.5.9a) and (8.5.9b).
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The integral Green’s function operator M̂
ð0Þ
1 (8.1.42h) for volume and surface are

explicitly (cf. (8.3.8))

M̂
ð0Þ
1 jV ¼

ð
dt0
ð

VT

gð0Þ1 R; tjR0; t0ð Þð ÞR0;t0dR0; M̂
ð0Þ
1 jS

¼
ð
dt0F

S0
0

gð0Þ1 n̂0 �50ð Þ � n̂0 �50gð0Þ1
h i
 �

ð Þ R0;t0ð Þ2S0dS
0
0: ð8:5:12Þ

As noted in Section 8.3.1.1, the local operator Q̂ R0; t0ð ÞV or S is a property of the scattering

medium, for example, the kernels

QV ¼ Q R; tð ÞV ; QS ¼ R0 R0; t0ð Þ;T0 R0; t0ð Þ; ð8:5:12aÞ

the reflection and transmission coefficient of the reflecting or transmitting interface.

From (8.3.9a) and (8.3.9b) QV ;S is to be inserted into the last brackets ð ÞR0;t of (8.5.12);
see remarks after Eq. (8.3.9).)

In all cases, the two factors of the mass operator ĥ1 are the “feedforward” operators,

which are always the global or integral operator M̂
ð0Þ
1 and the local inhomogeneity operator

Q̂. These two operators are always distinct, that is, separate factors of ĥ1, not only for

volumes but also for surfaces as well, as indicated by (8.5.11a) and (8.5.11b) in these

deterministic cases.54 (In the terminologyof control theory, thefield renormalizationormass

operator ĥ1 � M̂
ð0Þ
1 Q̂

� �
, refer to Eq. (8.5.3), is called the loop cycle- or loop-iteration,

operator.54) As examples of FOS/FOR representations (Fig. 8.17), we may apply them to

the cases illustrated in Section 8.5.1, as shown in Fig. 8.14a and b (and by extension to 8.15a

and b).

The loop iterations of (8.5.11) indicate one potentially exact method of actually

evaluating the FOS and hence the PSS. The purely computational effort is expected to be

very large: at each iteration the entire (k� 1)st iterated field is required in order to obtain the

kth-order iteration at any one field point P(R, t). However, as k is made larger, the output

aðkÞ approaches the true or “equilibrium” value55 (for all (R, t), even though we may be

interested only in aðkÞ at a single, preselected point P(R, t)). This simulation is nontrivial

fromanother viewpoint: physical boundary, initial, and radiation conditions (cf. Sections 8.1

and 8.3.) must also be suitably imposed to ensure physically meaningful solutions. In

addition, we must be alert to possible local and distributed “pathologies”.

Rather than attempting to work with a continuum of field values, we employ multidi-

mensional sampling theory and related techniques, some of them already discussed in

previous chapters (see also Refs. [41–43]). Discrete sampling is needed for the required

54 For example, see Refs. [37–40]. During the late 1950s through the 1970s control theory was being developed to

include statistical phenomena.
55 It should be emphasized that the numerical steps in the iteration process (8.5.11) involved in this simulation are

not generally isomorphic with the physical propagation events that are being modeled by the mathematical

iteration (8.5.11). They are instead an artificial decomposition into sequence of interactions, which do not

necessarily coincide with the temporal and spatial progress of the actual propagation and scattering processes that

occur in the medium and at the interfaces. It is only the final “equilibrium” values (as k ! 1) that represent the

field at specified points P Rm; tnð Þ.
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digital data and for data reduction tomanageable proportions. The numerical problem is the

order of that demanded for modern weather analysis and prediction. Modern methods

here should yield FOS results on acceptable timescales once the “macroalgorithms” of the

physical formulating, for instance, described in this chapter, have been translated

into suitable software. One such approach is suggested here by again using control theory

methods, conceptually outlined in Section 8.5.3.

8.5.3 An Estimation Procedure for the Deterministic Mass Operators Q̂ and ĥ

When the elements �GT ; M̂
ð0Þ� �

of the “input–output” structure of Fig. 8.16 are available,

estimates of the mass operator Q̂may be made, in principle to any degree of accuracy from

the deterministic empirical or a priorifieldaðQÞ, in a controlledwaywith determinable error.

This is a form of “system identification” problem, typical of control theory.56 Here, in

essence, one introduces a “black box” or system with a controllable input and observes the

resulting output(s).One then attempts to infer the operations of the system that relate the two.

One key feature here is that the system in question is known to be linear, so that unique

relations are established.

For Eq. (8.5.8) to be a physically useful device, as opposed to amathematical relation, we

must be able to indicate a physical procedure for determining Q̂. One way is according

to the scheme shown in Fig. 8.18. This approach produces a converging series of estimates

Q̂est of Q̂ by iteration, when a and GT are known empirically and when M̂
ð0Þ
1 is either

56 See, for example, Refs [37,40], which are discussed briefly in footnote 52.

TG−

0
ˆVη

0

(0)ˆ
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0
ˆ
VQ

0R

(0)ˆ
Sη
)(

0
Vα

0
ˆ

TSη

0

(0)ˆ
SM

0R
ˆ
SQ

0

(0)ˆ
SM

0T
ˆ
SQ

( )0R0 , Eq. 8.5.2

: Fig. 8.14a

: Fig. 8.14b

SVα +

( )0T0 SVα +

1
ˆVη

1

(0)ˆ
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1
ˆ
VQ

( )10T0 VSVα ++

+

1V

0S

0S

1V

0V

0V
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( )0R0 svα +

Hα ( )0vα
( )0R0 svα +
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FIGURE 8.17 FOR (and FOS) for the examples of Section 8.5.1.1, Fig. 8.14a and b,

Eqs. (8.5.1), (8.5.2), (8.5.4), and (8.5.5).

TG− (0)M̂∞
(Q)α

Q̂

(0)
M̂∞

(Q)
estα

(Q) (Q)(Q)
est ∆ααα ≡−

ˆ
estQ

ˆadjust Qest

FIGURE 8.18 Feedback operational method for obtaining an estimate of the (deterministic)

medium’s inhomogeneity operator Q̂, refer to Fig. 8.16.
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experimentally or analytically given. The basic approach is conceptually quite simple:

with a starting estimate Q̂est of Q̂, one runs through the second loop, using the (experi-

mentally) observed aest, the given source �GT, and the known global descriptions of the

homogeneous component of the medium (M̂
ð0Þ
1 here). The result is then a

ðQÞ
est , which is then

subtracted from the observed aðQÞ from the first loop, which in turn leads to an adjustment

of Q̂est, following a second comparison, with a further reduction in the error

DaðQÞ ¼ aðQÞ � a
ðQÞ
est , resulting in DQ̂

ðQÞ � Q̂� Q̂est. Various optimum and suboptimum

schemes from control theory (e.g., Wiener filtering and gradient climbing, now extended

to four dimensions)may be used to drive the errorsDaðQÞ;DQ̂
ðQÞ

essentially to zero, so that

Q̂est! Q̂. This technique may also suggest acceptable approximations in experimental

situations. For example, in the deterministic case of scattering volume that has a complex

surface boundary (in the manner of Fig. 8.12), the easiest way to estimate its scattering

effect may be to obtain Q̂S0 by experiment, using the technique suggested by Fig. 8.18.

This approach may also be extended to the more general situations of Fig. 8.17 by

successive determinations of a V0ð Þ and Q̂V0
, a V0;þR0=Sð Þ and Q̂V0þR0=S

, and so on, where we

also use the information embodied in ĥV0þR0=R
¼ ĥR0=R

þ ĥV0
� ĥS0

ĥV0
¼: ĥS0

þ ĥV0
, and

so on. Here, estimating Q̂ is of course equivalent to estimating ĥ � M̂Q̂
� �

since M̂ is

known. The exploitation of these methods, however, is outside the scope of this book.

In any case, because of the dimensionality (i.e., iterated space–time values), these

methods will be computationally very large. See Chapters 8 and 9 of Ref. [6]. For other

specific applications, see Refs [8,37–40].

8.5.4 The Engineering Approach II: Inhomogeneous Deterministic Media57

The “engineering approach” to the field representation in case of homogeneous media,

outside the finite region VT of the source, has been shown to be equivalent to the physically

derived result from basic principles (i.e., propagation equations, boundary and initial

conditions, etc.), as discussed in Section 8.2.1. This gives a rather general result, provided

the conditions (8.2.8) and (8.2.10) hold for the field and its reception in the full situation of

the channel. The latter requires an additional (linear) filter hR tð Þ, or more generally, a time-

variable filter hR t; tð Þ, when relative motion of source, medium, and receiver occurs. When

we have to deal with an inhomogeneousmedium of propagation, as we have observed from

Section 8.3, although themedium in question is still linear, it is characterized by an additive,

deterministic, source-dependent scatter or “noise.” This “noise” has largely lost its coherent

structure, but the original signal and field are still assumed to be deterministic. The received

field is, for example, given by (8.3.8), (8.5.9a) and (8.5.9b):

aðQÞ R; tð Þ ¼ aH R; tð Þ þ 1� ĥð Þ�1ĥaH R0; t0ð Þ ¼
X1

k¼ 0

ĥðkÞaH R0; t0ð Þ; ð8:5:13Þ

where the conditions (8.2.8) and (8.2.10) apply fork¼ 0. Fork� 1, the result is noise, that is,

aðQÞ ¼
X1

k¼ 1

M̂
ð0Þ
1 Q̂

� �ðkÞ
aH; with M̂

ð0Þ
V Q̂V ¼ M̂

ð0Þ
S QS: ð8:5:13aÞ

57 See Section 8.2 for a treatment of the homogeneous cases.
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respectively, for volume or surface, refer to Eqs. (8.3.25a) and (8.3.25b). In more detail,

expressed in (k, s) space, we have for the unscattered, that is signal, portion of the field

a00 k; sð ÞH ¼
ð1

�1

dk0

2pð Þ3
ð

Br1

ds0

2pi
Y0 k0; s0ð ÞG00 k� k0; s� s0ð ÞT ; refer to Eq: ð8:4:10Þ;

ð8:5:13bÞ
where Y0 k; sð Þ � �L0 k; sð Þ, from (8.1.17b). Here M̂

ð0Þ
00 ; Q̂00 commute, whereas in (R, t)

space they do not (Section 8.4.2).

For the ambient and scatter noise component aN of the received field, we can write an ad

hoc linear filter equivalent

aN R; tð Þ ¼
ð1

�1
hN tjRð ÞFFSin t� tð ÞDdt or

ð1

�1
hN t; t Rj ÞFFSin t� tð ÞDdt
� ð8:5:14Þ

generally, to take account of any Doppler. The presence of the range (R) is to indicate a

change inmagnitude due to the spreading effect of the noise field as it becomes more distant

from its primary source inVT.Accordingly, the presence of the inhomogeneitieswhen a field

aH is generated produces the sum field aðQÞ ¼ aH þ aN, both of which can be described by

linear (generally time-variable) filters representing the scatteringmedium, ambient sources,

and the coherent (signal) components, when they are present and not entirely reduced to

scatter. In effect, conditions I–IVof (8.2.14) apply automatically for the ambient and scatter

noise fields aHð Þ, with the far-field requirement (II) usually dominant. The rôle of aamb:

versusascat: is decided by the geometry of the signal source and the particular distribution of

the ambient sources. The causality (realizability) conditions (Section 8.2.2) for the equiva-

lent channel filters hN, and so on, remain basically unchanged.

Finally, we note that the energy in the unscattered and scattered components is not

explicitly indicated or quantified in these relations and, in fact, in any of our analysis above.

We shall discuss energy relations in Section 8.6. We note, however, that a calculation of

the energy expended in the scattering component at the expense of the energy originally

in the unscattering field depends on the following:

(1) The nature of the medium itself, that is, whether or not it is dissipative, elastic,

viscous, and so on, or air, water, earth, sand or rock, and so on.

(2) The type of propagation, that is, longitudinal (pressure) waves, transversewaves, for

example, electromagnetic as well as mechanical, elastic, and so on.

(3) Quantum mechanical, and so on.

We shall present below a brief treatment of energy calculations for the various types of

wave equations treated in the preceding sections of this chapter.

8.6 ENERGY CONSIDERATIONS

Herewe are concerned with the energy in the propagated wave a(R, t), or more specifically,

with the energy density. The nature of the propagationwill, of course, depend on the physical
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characteristic of the medium in question, whether gas, liquid, or solid, or even vacuum.

Gases and liquids do not support a shear, while solids do. These last are deformable: two

points in suchmedia undergo a change in their separation on the application of a force such

as a change in pressure, and remain deformed when the force is removed. This is in

contrast to an elastic medium that regains its original shape when the force is removed.

Thus, it is deformable and elastic. A continuous elastic medium is one in which the

(temporary) deformation (i.e., strain) is not localized and supports propagation through-

out the medium. The result is “elastic or mechanical radiation.” The force acting to

produce the deformation, usually a pressure (force per unit volume or area), is called a

stress and the resulting deformation a strain. Accordingly, we may say in these instances

that stress produces strain or deformation, temporary or permanent, depending on the

nature of the body to which the stress is applied. In case of an applied pulse, the strain is

propagated in the gas, liquid, or solid. An important exception is the nonmechanical,

electrodynamical situation where the medium can be a vacuum. The propagating

phenomenon is solely an (EM) field, which, unlike the example above, needs no physical

medium for its initiation and maintenance, although such fields can still propagate—

however, weakly in some instances—in material media.

The above allowsus to summarize the differentmedia supporting propagation in a limited

hierarchy of increasing density:

ð8:6:1Þ

ð1Þ Vacuum: Empty space; no matter present: only EM propagation possible

ð2ÞGas: Low-density continuous media ðfor our range of frequency

most employed in this bookÞ Such environments do not

support a shear; that is; r
 d ¼ 0; d ¼ a displacement field:

Here d is said to be irrotational:

ð3Þ Liquid: Usually of much greater density than gas; for example; water:

Such media also does not support a shear

ð4Þ Solids: These are sufficiently denser to maintain shape or at most

to undergo minor distortion ðshearÞ from the resting state;

which is restored when the applied force ðstressÞ is removed:

Such bodies do support a shear; that is; r
 d 6¼ 0:

We distinguish elastic and nonelastic media as they lead to

different classes of propagation:

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

8.6.1 Outline of the Variation Method

We now distinguish the two main classes of radiation, which depend on how they are

produced. One class is the so-called “mechanical radiation,” which is generated by the

medium itself when subjected to a deformation. The second does not depend on a physical

medium for resulting field, although such media can modify its properties. Examples of the

latter class are the electromagnetic field and the gravitational field associated with matter.

Both classes have vector and scalar manifestation. We shall present examples of both in the

following section.

There are two principal methods of evaluating the energy flux of these two classes of

fields. One approach is the direct calculation from the appropriate field itself. The second
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is the more general variational method: The latter procedure begins with canonical

expressions for the energy, and (usually) the energy density, in several forms. These start

with the basic relations

Lagrangian function: L ¼ K þ V

Hamiltonian function: H ¼ 2K � L;when the total energy is

E ¼ K þ V ¼ 2K � L;

9
>=

>;
ð8:6:2Þ

where E ¼ Kþ V ¼ H is the corresponding total energy density and E¼H. Here K and V

represent the kinetic and potential energy, respectively, in the relations (8.6.2) andK,V, and

so on are densities. Applications of the variational procedure

d

ð

t

2K � Hð Þdt ¼ d

ð

t

Ldt or S2
ð

t

Ldt ¼ 0

� �
: ð8:6:3Þ

thus yields theEuler equation,which is just the equation of propagation fora. (SeeChapter 3
of Ref. [1], which provides an extensive discussion of this variational principal. A brief

outline of the variation method is provided in Section 8.6.4.)

Thus, the Lagrange density L here is a function of the field variables a(g), (i¼ 1, . . ., n)
and the associated gradients, that is, raij ¼ @ai=@gj . In our present treatment, we limit j

to the canonical coordinate, in particular to the z1; z2; z3ð Þ spatial coordinates, and to z4 ¼ t

time. The Lagrange integral L is invariant and is in this case

L ¼
ðk1

a1

� � �
ðk4

a4

L a zð Þ; raf g½ �dz: ð8:6:3Þ

We next seek an extremism that vanishes, namely, dL¼ 0, or

dL ¼
X4

j¼ 1

@

@zj

@L
@aij

� �
� @L
@ai

¼ 0; i ¼ 1;. . . ; 4ð Þ ð8:6:4Þ

for the field variable aif g, all i. (If dL¼ 0 and this results in a (multidimensional) point of

inflexion, we proceed formally by determiningwhether d2L> 0—aminimum, or d2L< 0—

a maximum in the usual way.)

The dependence of L onai4 i ¼ 1; 2; 3ð Þ can be shown to lead to two principal cases: (I) L
is linear in ai4 (II) L is quadratic in ai4. We have for the linear case

I:L linear in ai4:

pi ¼ dL=@ai4: pi and the Hamiltonian H; Eq: ð8:6:2Þ; are independent of ai4g:
ð8:6:5Þ

In addition, the stress energy tensor (or dyadic) B has the components

B ¼ B mj

� � ¼
X4

i

aim

@L
@aij

� dmj

" #

; ð8:6:6Þ
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where the Hamiltonian (density) is H ¼ 2K� L, Eq. (8.6.2). The (4, 4) component here is

the energy density

B44 ¼ H ¼
Xn

i¼1
piai4 � L: ð8:6:7Þ

Furthermore, if the momenta pif g depend on ai4, it is then possible to remove the term a14

fromB44, thus obtaining theHamiltonian energy densityH, refer to Eq. (8.6.2). This in turn
depends on the canonical momentum density a14, refer to Eq. (8.6.5), and their spatial

dimensions (z).Accordingly,we see that the equationsofmotion canbe alternativelywritten

in the canonical form

a ¼ a14 ¼ @H
@pi

; pi ¼ @p

2t
¼
X3

j¼ 1

@

@zj

@Hi

@aij

� �
� @H
@ai

: ð8:6:7aÞ

The following equation applies onlywhenL contains a quadratic function ofai4’s. Thus, we

note that

II:L quadratic in ai4: ; pi ¼ @Li

@a14

; ð8:6:8Þ

refer to Eq. (8.6.5), is also a linear function of a14. For a full treatment, see chapter 3, with

examples in Sections 3.1 and 3.3, with scalar and vector fields, respectively, in Sections 3.3

and 3.4.

8.6.2 Preliminary Remarks

In Section 8.6, we consider the role of energy and energy flux in two fundamentally

different classes of media. Class I supports only “mechanical” radiation (the central

theme of Lindsay’s book [2]). Class II, on the other hand, can itself exist as a radiation

field, in a vacuum and in material media. This can in turn modify the radiation according

to their specific characteristics as a gas, a liquid, or a solid. Class I media directly

produces and alters the propagation that they themselves generate in response to a

deformation. Class II is represented by the electromagnetic field, although alternated by

material media, and is essentially undistorted, as long as the medium is not ferromag-

netic or in the more extreme state of plasma. (For an extended treatment of electro-

magnetic theory, see also Ref. [3].)

We begin with a (comparatively) simple ideal non-Gaussian isotropic class I material

medium, which supports a shear. For class I cases, the generic field equations for propaga-

tions are shown to be in Section 6.3 of Ref. [2], for nondissipative media,

r €ad ¼ BM þ 4m=3ð Þrr �ad � mr
r
 ad ¼ BM þ m=3ð Þrr �ad þ mr �rad

ð8:6:9Þ
(cf. (8.6.37a) ff.)Here thedisplacement fieldad ¼ adðR; tÞ is the elastic elementd (¼a) and
d ¼ ad ¼ v R; tð Þ is the element (or “positive”) velocity. Similarly, €d ¼ _v ¼ €ad represents

the element’s acceleration (where as before �ð Þ � @=@t). The parameters BM ;m (and

s ¼ �r � d ¼ �D0) are respectively the bulk modulus and the shear modulus. The
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condensation s and the dilation strain D0i will be included presently in our treatment of

more complex but still nondissipative media. This example considers a deformable elastic

medium that is fully restored to its undistorted equilibrium state when the stresses are

removed.

Two special cases of interest can occur here:

(i) r
 d ¼ r
 adð Þ ¼ 0:d is an irrotational vector displacement, resulting in

propagation of a longitudinal wave with a vertical deformation of the medium

and its release to equilibrium, in the direction of propagation. There are no shear

stresses and therefore no shear strains. Equation (8.6.3) reduces here to

r €ad ¼ BM þ 4m=3ð Þr2ad ; or equivalently; r2ad ¼ 1

c2p
€ad ; with

cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BM þ m=3ð Þ=p

p
: ð8:6:10Þ

We may call the resulting waves from (8.6.4) P- or longitudinal waves.

(ii) r � d ¼ r �a ¼ 0: d ¼ dy is a solenoidal vector displacement, representing a

vertical deformation and its release, now transversal to the wave’s direction of

propagation. Equation (8.6.3) reduces to

r €ad ¼ mr2ad or r2ad ¼ 1

c2s
€ad ; with cs �

ffiffiffiffiffiffiffiffiffi
m=p

p
: ð8:6:11Þ

Clearly, from (8.6.10) and (8.6.11), we have

cp=cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BM þ m=3ð Þ=p

p
> 1; m > 0: ð8:6:12Þ

This type of medium is accordingly seen to support two types of wave: a pressure or

P-wave and a S-wave or shear wave. These travel with different speeds cp 6¼ cs
� �

. In fact,

we can separate the two Helmholtz equations that govern the respective propagations

at the two different speeds cp and cs, refer to Eqs. (8.6.10) and (8.6.11), by observing that

the equation of motion (8.6.10) is an additive combination of the two. Thus, we have

Thus, P-waves travel faster than S-waves, as is well known, for example, in case of

earthquakes.

Case II Electromagnetic Radiation: Waves of this type are always transverse, both

E- and H-field propagations, and both E and H waves travel with the same velocity (see

Section 8.6.3.2, and in particular Chapter 1 of Ref. [3].58 With these two classes, we shall

obtain the desired energy flow relations, which is the principal aim of Section 8.6.2.

Here, however,we shall use the directmethodof calculating the energy in thefielda(R, t).
This begins with the propagation equation itself for a(R, t). This is the approach used for a
variety of examples of the fielda(R, t), refer to (8.1.45) and Sections 8.3 and 8.4, associated
with the last 3 media in (8.6.1). The important case of the vector electromagnetic field (1) is

provided here also.

58 Case I media and propagation therein are treated in muchmore detail in [2], Sections 6.3, pp. 149–153; 9.11, pp.

261–266; 10.2 (Moving, Compressive, Viscous, Thermally Conducting Fluid), pp. 303–310; see Eqs. (5), (10), et

seq. And finally, refer to Section 12.5, pp. 354–360, for the Navier–Stokes equation and its perturbation solutions.
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8.6.3 Energy Density and Density Flux: Direct Models—A Brief Introduction

For a simple case of the direct method here, let us determine the energy density associated

with the field a(R, t) in a given volume external to the region VT of a source (or sources),

in the manner of Fig. 8.6. In particular, we also need to determine the energy flux through

a surface element in a section of the surfaces S bounding VT, as shown in Fig. 8.9.

Webeginwith the assumption of a scalar field in an idealmedium,which is homogeneous

and stationary (Hom-Stat), typical of those discussed in Section 8.1. After this, we shall

discuss a number of examples of increasing complexity, including anisotropic and dissipa-

tive media.

8.6.3.1 The Ideal Incompressible Fluid Medium Here the fluid in question (including

gas obeying the conditions here) is incompressible and irrotational, that is, has no vortices.

Using avelocity potentialCv (of dimensions L2=T½ �),weobserve that thevelocity of thefluid
is represented by v, where now

v ¼ rCv; so that the kinetic energy density is K ¼ 1

2
r0v� v; or equivalently;

ð8:6:13aÞ

K ¼ 1

2
r0 rCvj jf g2 ¼ 1

2
r0

@Cv

@x

� �2

þ @Cv

@y

� �2

þ @Cv

@z

� �2
( )

;

with r
 v ¼ r
rCv ¼ 0 ð8:6:13bÞ

Here, r0 is the density of the fluid of gas that is inmotion. The potential energy (density)P is

an (adjustable) constant, because of the incompressibility of the medium, that is, P¼C0

(�0), so that the total energy density is therefore

E ¼ Kþ P ¼ 1

2
r0 rCvð Þ2 þ C0 ¼ 1

2
r0rCv � rCv þ C0: ð8:6:14Þ

Becauseof incompressibility, no energy is stored or released in thefluid, so thatwe regard the

constant potential energy C0 as zero here.

The energy flux, or more precisely, the energy density fluid, in E, through a unit surface

element DS boundary the volume V ¼ V � VTð Þ (Fig. 8.19), namely,

_E ¼ _K ¼ r0v � _v ¼ r0rC _v � r _Fv; where v ¼ rCv: ð8:6:15Þ

The Euler or propagation operation is found to be the Laplacian from the following argu-

ment. Start with the equation of continuity here, which is in this case

@r

@t
¼ r � rv; with v ¼ rCv ð8:6:15aÞ

Since here the fluid (or gas) density is constant, that is, r¼ r0, no fluid is added or subtracted
from an element dV as a consequence of the “distortion” in the medium.59 Consequently,

59 In Section 8.6, we make a number of simplifying assumptions (unless otherwise stated), for example, r¼: r0, a
constant. For a much fuller account of the actual combinations (in the ocean, for example), see Chapter 1 of

Ref. [18].
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@r

@t
¼ @r0

@t

� �
¼ 0 ; 0 ¼ r � rv ¼ r0r � v ¼ r0r �rFv

or

; r2Fv � r2av ¼ 0;Cv ¼ av

9
>>>=

>>>;

; ð8:6:16Þ

whereFv is the propagating velocity potential of the velocity field itself, for this example of

an ideal incompressible fluid or gas. In general, Fv is a nonvanishing scalar. Its velocity

potential represents, for example, the propagation of an impulse of energy from a series of

contiguous elements, without disturbing each element. This is analogous to a light ball

impacting a series of heavy balls hanging side by side, throughwhich the impact energy now

travelswithoutmoving the heavyballs themselves.Themedium (theheavyballs here) donot

move, while the energy impulse travels through them.

8.6.3.2 The Ideal Compressible Nonviscous Fluid: Helmholtz Field We begin our

analysis of the energy and its flux by first establishing the associated fields. Here, the fluid

or gas is shear but nonviscous and compressible, to which comparatively weak pressure

source is applied, producing a small change in an otherwise constant pressure that then

occurs

p ¼ �r _vj j ¼ �r0
@Fv

@t
¼ �r0

@2Fd

@t2
ð8:6:17Þ

(Theminus sign (�) represents the (slight) expansion of the associated volume element dV

from equilibrium that results.) Here, as above, v ¼ _d is a velocity, where d is the

consequent small displacement of the fluid element dV. Applying Hooke’s law next,

we can write

p ¼ �BM5 � d ¼ �BM5 �5Fd ð8:6:18Þ

z

y

x

V

x

y

∞∞

Σ

∞

V ′

TV

TO

FIGURE 8.19 A volume V containing a source VT, where V 0 � V � VT is source-free region,

bounded by an infinitely distant closed surface S !1ð Þ. An energy density is shown flux from a

surface element dS of S (i.e., dS !1), of the volume V 0 !1ð Þ.
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Combining (8.6.7) and (8.6.8), we obtain the desired relation for the propagation of the

perturbed displacement field in terms of its displacement potential Fd :

BMr2Fd ¼ r0
@2Fd

@t2
or r2Fd ¼ 1

c2F

@2Fd

@t2
; with BM > 0; ð8:6:19Þ

where, in V, the speed of propagation of a wavefront is given by

eF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
BM=r0

p
: ð8:6:19aÞ

Here,BM is the compressibility or bulkmodulus of the fluid (or gas), which depends on the

particular medium.

It is easily seen that the pressure p and the displacementd also obeyaHelmholtz equation.

We begin with @2=dt2 ofFd and write from (8.6.8) the approximate relations (e.g., r¼: r0):

€p¼: � r0
@2Fd

@t2
and r2p!r�r @2Fd

@t2
; ð8:6:20aÞ

so that

r2p� 1

c2p
€p

 !

¼ BM

@2

@t2
r2Fd � €Fd=c

2
F

� � ¼ 0; from ð8:6:9Þ ð8:6:20bÞ

and

;r2p� 1

c2p
€p ¼ 0 or L̂

ð0Þ
p ¼ 0; where L̂

ð0Þ � r2p� 1

c2p

@2

@t2
ð8:6:20cÞ

and the pressure p is here a scalar. In a similar fashion, we also observe that for the vector

displacement d,

r2ad � 1

c2d

@2ad

@t2
¼ 0; with ad � d;ad ¼ ad R; tð Þ; d ¼ d R; tð Þ; ð8:6:21Þ

which now represents a vector field a(R, t), also obeying a Helmholtz equation of

propagation. We remark that the respective speeds of these propagating fields are all equal,

namely, c0:

c0 � cd ¼ cp ¼ cF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
BM=r0

p
or BM ¼ r0c

2
F;d;pð Þ ¼ r0c

2
0: ð8:6:22Þ

Their equality stems from the fact that each represents different aspects of the same

phenomenon.

8.6.4 Equal Nonviscous Elastic Media

Our aim, as stated at the beginning of this section, is now to obtain relations that represent the

energy, ormoreprecisely, the energy density and energyflux in the radiationfield represented

by the above propagation equations. To achieve this, we recall that these relations are
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essentially dynamical or force equations, expressing a dynamic equilibrium between

impressed forces (stresses) and the resulting local strains (or deformations) produced in

the media. It is the energy in the field that completes the physical description of the

propagation process. We accordingly begin with the following.

8.6.4.1 Ideal Shearless Media (m ¼ 0) We start by first postulating an ideal, that is,

lossless, homogeneousand isotropic elasticmedium,whichdoesnot support a shear (m¼ 0),

where m is the shear modulus. Such media are gases or liquids, which are accordingly

irrotational, so that “particle displacement” obeysr
 ad ¼ 0 and the familiar Helmholtz

relation (8.6.21), with (8.6.22), outrides the region of sources.

Wewish now to obtain a relation for the energy and its transfer, that is, flux. Accordingly,

if we determine the scalar product of both sides of Eq. (8.6.11) multiplied by the particle

velocity _ad, the result is recognized as the time rate of change of quantities that have the

dimensions of energy per unit volume or energy density. Since rr �ad ¼ r2ad here (in

view of r
 ad ¼ 0), we can write

r0 _ad � €ad ¼ BM _ad � r r �adð Þ: ð8:6:23Þ

Using the relation between the dilation D and the condensation that is specifically

D ¼ r �a and s � �D0 ¼ �r �ad ; ð8:6:23aÞ

namely, the fractional change in density associated with the resulting volume deformation

(strain), we get

ad � r r �adð Þ ¼ �ad � rs; and ; r0 _ad � €ad ¼ �BM _ad �rs: ð8:6:24Þ

From the identityA � rB ¼ r � ABð Þ � Br �A applied to the second relation in (8.6.24), we

next obtain

r0 _ad � €ad ¼ �BMr � s _adð Þ þ sr �ad ð8:6:25aÞ

and equivalently the derivation of flux density

@

@t

1

2
r0 _ad � _adð Þ

 �
þ @

@t

1

2
BMs

2

� �
¼ �BMr � s _adð Þ: ð8:6:25bÞ

We observe from the above relations involving s, D, BM, and ad that

r � _ad ¼ @

@t
r �adð Þ ¼ � @s

@t
¼ �_s: ð8:6:25cÞ

It is at this point thatwe integrate (8.6.25b) over avolumeV � VT � V0 enclosed bya surface

S0, refer to Fig. 8.19, excluding any sources (or sinks, that is, “receivers”). For this we shall
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also need Gauss’s theorem, and for later applications, Stokes’ theorem. We have altogether

the well-known relations:

(I) Gauss’s Theorem:

ð

V0

r �AdV0 ¼
ð

S
A � n̂dS; ð8:6:26Þ

and the extension, which is known as Green’s theorem, refer to Eq. (8.1.41a):

(II) Green’s Theorem:

ð

V0

Ar �rB� Br �rAð ÞdV0 ¼
ð

S
ArB� BrAð Þ � n̂dS:

ð8:6:27Þ

(III) Stokes’ Theorem:

ð

S
r
 Að Þ � n̂dS ¼ G

C
A � l̂dl ¼ 0ð Þ; ð8:6:28Þ

where C is the closed boundary line.

In the above, n̂ is an outward drawn, that is positive, unit normal vector andG is the border

of a segment of a closed surface, in the counter-clockwise direction, with a unit fragment l̂

along the line segment in the positive direction. From (8.6.26) with A¼ rv, we see the

following:

(IV) Equation of Continuity:

ð

V0

r � rvdV0 ¼ �
ð

t

@r

@t
dt or

r � rv ¼ � @r

@t
¼ r � r _d ¼: r0r � _d

� �
: ð8:6:29Þ

Now applying Gauss’s theorem to (8.6.25b), we can write for the rate of change of the total

energy E in the volume V:

_E �
ð

V

@

@t

1

2
r0 _ad � _ad þ 1

2
BMs

2

 �
dV ¼ �

ð

V

BMr � _adsð Þ dV : ð8:6:30Þ

UsingGauss’s theorem (8.6.26), we can directly convert the volume integral for the outword

energy flux to the more explicit form:

_E ¼
ð

V

@

@t

r0
2

_ad � _ad þ 1

2
BMs

2

 �
dV ¼ �

ð

S
BM _asð Þ � n̂ð Þ dS ð8:6:30aÞ

The left-hand members of (8.6.30) are identified respectively as the time rate of changes of

the kinetic and potential energies stored in the field ad , which is in the volume V. The right-

hand member of (8.6.30) is the total energy flux out of the volume V, through the bounding

surface S. The surface integral in (8.6.30) represents the rate at which work is done by the
fluid medium simile V enclosed by S. This is the rate at which energy is instantaneously

leaving V through the surface S.
Accordingly, we may express the integrands of (8.6.30) similarly as the kinetic energy

densityUk, the potential energy densityUp, and the energyflux densitySp per unit volume of

the field ad . These relations are specifically

Uk � 1

2
r0 _ad � _adð Þ;Up � 1

2
BMs

2 ¼ 1

2
BM r � _adð Þ2 ¼ 1

2
r0c

2
0D0; ð8:6:31Þ
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where the energy density flux is

Sp � BMs _ad ¼ �BM _adr � _ad : ð8:6:31aÞ

Thus, (8.6.30) can be written compactly

_E ¼
ð

V

_E dV ¼
ð

V

_UK þ _UP

� �
dV ¼ �

ð

S
SPy � n̂dS; with _E � _UK þ _UPy ð8:6:32Þ

as the temporal rate of changeof the total energydensityE. (Weuse thenotationSpy to remind

us thatweare dealingwith a vectorfieldad here.Moreover, aswe shall observe inmoredetail

in an example below, Spy is an acoustic poynting vector representing the energy flux density

out of the (virtual) surface S.

8.6.4.2 Acoustic Waves We can use the results of Section 8.6.3 above specifically for

propagation of acoustic waves in media similar to those discussed there [2]. In particular,

these media are specifically the atmosphere and the fluid portions of the ocean. We

summarize these results below, refer to Section 8.6.3.2, and begin with the ambient

pressure p(R, t), which is specifically

p R; tð Þ ¼ r0c
2
0s R; tð Þ ¼ �r0c20r �ad ; with BM ¼ r0c

2
0; ð8:6:33Þ

as an expression of Hooke’s law for small amplitudes. Using the displacement potentialFd

(8.6.18)–(8.6.20b), rFd ¼ d ¼ ad , we can alternatively express (8.6.17) as

p R; tð Þ ¼ �r0 €Fd ¼ �r0c20r2Fd ; ð8:6:34Þ

and note that, as expected, both p and Fd obey scalar wave equations.

In terms of displacement potential Fd , we can alternatively and equivalently write the

associated energy and flux densities in this case as

UK � 1

2
r0 r _Fd � r _Fd

� �
; UP ¼ 1

2
r0c

2
0 r2 _Fd

� �2
; and SPy ¼ �r0c20 €Fdr _Fd :

ð8:6:35aÞ

TVTO

dS

.

)(V ∞<

dS

ΣΣ.
1

n̂

FIGURE 8.20 A (virtual) surface S ¼ S0 þ S1ð Þ enclosing both a source, centered at OT and

designated in VT , and the (finite) volume V ¼ V 0 � VT containing the (displacement) field ad and

radiating energy, with the flux Sd , (8.6.30). (There are no source and sinks in V.)
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This yields the energy flux density

_E ¼ @

@t

1

2
r0 _ad � _ad þ 1

2
r0c

2
0 r � _adð Þ2

 �
¼ r0 €ad � _ad þ c20 r � _adð Þ r � _adð Þ� �

; ð8:6:36aÞ

or

_E ¼ r0 r €Fd � r _Fd þ r _Fd

� �
€Fd

� � ¼ r0r � €Fdr _Fd

� �
: ð8:6:36bÞ

These equivalent forms are also useful, aswe shall see later [ ] in determiningfield intensities

when the medium is not homogeneous. The present results are useful for the comparatively

simple models commonly used [33].

8.6.4.3 Elastic Wave Propagation in an Ideal Solid or Elastic Fluid Medium with
Shear m � 0ð Þ This is the case of propagation in a medium, like that already considered

above, which is nondissipative but can now support a shear, that is, has a positive shear

modulusm> 0. This situation applies to radiation in solids and elastic fluids, which here are

still homogeneous and isotropic, and still “ideal,” in the sense that there are no physical

mechanisms for energy dissipation. The fundamental dynamical equation for the field

propagated in such media is (from Section 6.4, of Ref. [2]), apart from sources and sinks,

refer to Fig. 8.19:

r0 €ad ¼ BM þ 4m=3ð Þrr �ad � mr
r
 ad ¼ BM þ m=3ð Þrr �ad � mr �rad ;

ð8:6:37Þ

where we have employed the vector identity and other vector relations, namely:

r
 r
 Að Þ ¼ rr �A�r �rA; and

r �rA ¼ îxr2Ax þ îyr2Ay þ îzr2Az; with r �rð Þ � r2 ð8:6:37aÞ

(in rectangular co€ordinates). These elastic solids are deformable and return to their

equilibrium shape where the impressed stress is removed. For example, some ocean

bottoms as well as land surfaces to a good approximation begin in this fashion.

To obtain an energy equation from the propagation equation (8.6.31) above, we proceed

as in (8.6.13) et seq. in Section 8.6.3. Using the relation for the condensation s ¼ �r �ad

(8.6.23) and the following vector and tensor (dyadic) identities,

r � ABð Þ ¼ A � rBþ Br �A; r � A � rCð Þ ¼ A r �rCð Þ þ rA:rC; ð8:6:37bÞ

refer toEq. 4 inSection 6.4, ofRef. [2], and fromEq. (5) [2],we have the (2nd rank covariant)

tensor, that is, dyadic

rA:rC �
X

k;l

@Ak

@xl

@Cl

@xk
; with xlf g ¼ x; y; z as l ¼ 1; 2; 3;

Ak ¼ îk �A and so on: ð8:6:37cÞ
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This allows us to rewrite the scalar product of _ad and Eq. (8.6.31) explicitly as

r0 _ad €ad¼�G r � s _adð Þ� sr � _ad½ � þ m r � _ad � radð Þ�r _ad :rad½ �; with G � BM þ m=3:

ð8:6:38Þ

Integrating over a finite volume of this elastic (solid) medium, combining terms, and using

Gauss’s theorem (8.6.26) once more, we now obtain the more general version of (8.6.30a),

namely:

_E ¼
ð

V

_EdV ¼
ð

V

@

@t

r0
2

_ad � _adð Þ þ 1

2
BM þ m=3ð Þs2 þ m

2
r _ad :rad


 � �
dV

¼ �
ð

S
BM þ m=3ð Þs _ad � m _ad � rad½ � � n̂ dS

9
>>>=

>>>;

: ð8:6:39Þ

The component m=2ð Þrad :rad in the potential energy is the contribution to elastic strain

potential energy from the shear strains. Similarly, the component
Ð
S m _ad � radð Þ � n̂ dS

contributes to the flow of elastic energy across S for this medium, which is subject to

shear as well as compressibility.

The kinetic and potential energydensities of the field in this type of solid are from (8.6.34)

directly, since mr _ad :rad ¼ ð@=@tÞ ðm=2Þrad :radð Þ:

Uk ¼ r0 €ad � _ad ¼ r0 _ad � _adð Þ2; Up ¼ 1

2
BM þ m=3ð Þs2 þ mrad :rad

� �
; ð8:6:40aÞ

with the total density flux Sd is given by

Sd ¼ �
ð

S
BM þ m

3

� �
s _ad � m _ad � rð Þad

h i
� n̂ dS ¼ �

ð
Sry � n̂ dS >0ð Þ; s ¼ �r �ad :

ð8:6:40bÞ

More compactly, we have again for the total energy flux out of the volume

_E ¼
ð

V

_Uk þ _Up

� �
dV ¼ �

ð

n

Sry � n̂ dS: ð8:6:40cÞ

At this point it is instructive to interpret the various components here in some detail:

(1) Uk ¼ The kinetic energy density stored in the volume V at time t;Up ¼ the potential

density, similarly stored at time t.

(2) The integral
Ð
V
ð ÞdV ¼ total energy per unit volume, at any instant t; @=@tð Þ ¼ rate

of change of (1) in V.

(3)
Ð
Sð ÞdV ¼ rate at which work is done by the fluid (or solid) in V, bounded by the

surface S, namely, the rate at which energy is instantaneously leaving the volume,

through the surface S.
(4) The elastic dyadic stress ðm=2Þrad :rad ¼ contribution to the elastic stress

potential energy, via the shear strains. Thus,
Ð
S m _ad � radð Þ � n̂ is the contribution
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to the rate of flow of elastic energy across S, of themedium here that is shearable and

compressible.

(5) Sd ¼ �
Ð
SSp � n̂ dS (Eq. 8.6.40b)¼ Total flow of instantaneous energy per unit area

in the elastic radiation field; Sp � n̂ represents the total instantaneous rate of flow

per unit area in the elastic radiation field.

Furthermore, we observe that Sd , is here the expression of the acoustic

poynting’s theorem for this type of liquid (or solid). The integrand of Sd is the

corresponding acoustic poynting vector Sp, namely,

Sp ¼ BM þ m=3ð Þ _ads� m _ad � rad > 0ð Þ: ð8:6:41aÞ

[Elastic medium (fluid or solid), with shear (m> 0)].

Acoustic poynting vector reduces to Sp ¼ BM _ads; ð8:6:41bÞ

where s ¼ �r �ad again, and m¼ 0 [Elastic medium, no shear (m¼ 0)].

Thus, we see that the overall potential energy density in the solid medium is

augmented by the contribution to the elastic strain (potential) energy derived

from the shear strains produced in the solid medium. Similarly, the second term

in the flux vector Sd is the modification to the energy density flux vector in

the elastic radiation field attributable to the shear strains. The relations yield E

explicitly, by inspection (See Section 6.4 of Ref. [2], which extends this analysis

to anisotropic media).

8.6.5 Energy Densities and Flux Densities in the Dissipative Media

In Section 8.6.1, we have provided examples for ideal media, which are characteristically

Non-Lossy, that is, nondissipative. Here, we extend the discussion to the more complex

physical caseswhere energy is lost in heat in the process of propagation in dissipativemedia.

We begin our discussion by extension to gases and liquids that are viscous, through which

compressional waves are transmitted. This generalization (particularly of the results in (5)

above) to include fluid frictional (e.g., viscosity) effects requires a number of essential

modifications of the relation (8.6.41).

8.6.5.1 Elastic Wave Propagation in Viscous Media: An Introduction to the Navier–
Stokes Equation60 Using a generalization of the propagation equation for an ideal

elastic fluid (in gas), we can show that it is possible to extend the connection between

stress and strain in such media (refer to (5) above) in the following manner60,

(Section 12.5, of Ref. [2]. The generalization in question requires that the fluid

displacement d in the statement of Hooke’s law, Eq. (8.6.18), be replaced by the

flow velocity v (¼d) and that the elastic constant (m and BM) be replaced by coefficient of

viscosity b1;b2ð Þ, that is, m!b2 and BM!b2ð Þ.
Thus, the elastic constant as for shear becomes the shear viscosity b2, and the bulk

modulus BM is replaced by the bulk viscosity b1. In addition, since the fluid motion obeys a

60 See Ref. [2], Section 9.11, pp. 261–269; Section 12.4, pp. 351–354, and in particular, Section 12.5, pp. 354–360.

(i) of Section 8.6.2 is back for the most part in Section 2.5 of Ref. [2]. See also Chapter 2 of Ref. [1].
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pressure gradient, a term �rp is included. Accordingly, (8.6.41) is now replaced by the

general elastic equation of propagation:

r €ad þ _ad � rð Þ _adf g ¼ b1 þ 4b2=3ð Þrr � _ad � b1r
r
 _a�rp; ad ¼ d:

ð8:6:42Þ

Note that we are dealing only with a fluid (i.e., gas or liquid), not with solids. The physical

interpretation of the bulk viscosity b1 is seen to be the ratio of the stress b1r � _d to the time

rate of change of the total dilation, r � _d.
Setting _d ¼ n in the above relation (8.6.42) and using the equation of continuity (8.6.29)

r � rn ¼ _r ¼ �@r=@t, we see that Eq. (8.6.36a) is a formofNavier–Stokes equation offluid

flow in a viscous, that is, frictional, fluid flow. The result is specifically

@ rnð Þ
@t
þ r n � rn½ � þ nr � rnð Þ ¼ b1 þ 4b2=3ð Þrr � n� b1r
r
 n�rp:

ð8:6:43aÞ

Note that unlike the energy relations of nondissipative media in (1)–(5) of Section 8.6.4

above, this equation is nonlinear, which is characteristic of the various forms of the

Navier–Stokes equation. The left member of (8.6.43a) can be shown to represent a

normalized form U0k=r of the kinetic energy. The right member is the complete

acceleration, with dissipative (i.e., friction) associated with this viscous fluid flow.

Remembering that the displacement field ad ¼ d and ; _ad ¼ n, we can write (8.6.43a)

alternatively:

@ r _adð Þ
@t

þ r _ad � rð Þ _ad þ _adr � r _adð Þ ¼ b1 þ 4b2=3ð Þrr � _ad � b1r
r
 _ad �rp:
ð8:6:43bÞ

Next, to determine the corresponding energy relations in the usual way, we multiply

by � _adð Þ from the right-hand side of both left and right members of (8.6.43b) and

observe that

@ r _adð Þ
@t

� _ad ¼ 2€r
U0K
r

� �
þ 2r

@

@t

U0K
r

� �
; r _ad � r _adð Þ � _ad ¼ 2r _a � rð Þ U0K

r

� �
:

_adr � r _adð Þ � _ad ¼ 2 r � r _adð Þ U0K
r

� �
; with

U0K � r
_ad � _ad

2

 �
6¼ UKð Þ

9
>>>>>>>>=

>>>>>>>>;

ð8:6:44Þ

For the right member of (8.6.43a), we obtain for the accelerated energy

� b1 þ b2=3½ �r_s � _ad þ b2 _adr22d � _a � rp; _s ¼ �r � _ad ; refer to Eq: ð8:6:25cÞ:
ð8:6:45Þ
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Combining (8.6.44) and (8.6.45) in (8.6.43b) gives us finally the desired result in terms of

kinetic energy and acceleration:

2€r þ 2r
@

@t
þ 2r _ad � rð Þ þ 2 r � r _adð Þ

 �
U0K
r

� �

¼ b1 þ b2=3ð Þr_s � _ad þ b2 _ad � r2 _ad � _ad � rp: ð8:6:46Þ

This general result can be expressed alternatively in terms of kinetic energy density,

energy flux from the bounding surface S, and the fluid energy acceleration (i.e., the right-

hand member of (8.6.46). Again, we note the nonlinear terms O _a3
� �

; 2r _ad � r þ 2r �½
r _adð Þ� r ð _a � _aÞ=2rð Þf g. This nonlinearity greatly complicates the solution for _ad, from

the propagation equation (8.6.43b) of the displacement field _ad (or specifically here

_ad ¼ _d ¼ n, for the fluid velocity). Thus, an alternative form is

2r
@

@t
UK þ 2€r ¼ _ad �rUKþ 2r�r _ad

� �
UK ¼ b1þb2=3ð Þ _ad �r_sþb2 _ad �r2 _ad � _ad �rp;

ð8:6:47aÞ
where UK �U0K=r, or more compactly,

H1 pð Þ _UKþH0 r; _adð ÞUK ¼ J12 b1;b2; _ad ;r_sð Þ ð8:6:47bÞ

H1 rð Þ ¼ 2r; H0 r; _adð Þ ¼ 2 €rþ r _a �rþr�r _ad½ �: ð8:6:47cÞ

Finally, we point out a perturbational approach to solutions for _a � nð Þ, Eqs. (8.6.42)
and (8.6.43). This is usually effective in most instances because of the comparatively

small deviations from linearity (and ideality) vis-à-vis the idealized media considered first

in (1)–(5), of Section 8.6.4. The procedure begins by using a series of first- and higher-order

terms for various quantities of interest, namely,

pe ¼ p1 þ p2 þ � � � ; re ¼ r1 þ r2 þ � � � ; v ¼ _a ¼ _a1 þ _a2 þ � � � : ð8:6:48Þ

The method is described in detail in Ref. [2], pp. 356–360, and leads to such features as

acoustic streaming and the appropriately modified equations of continuity, the dynamic

equation of state, the relaxationmechanism, and so on.We shall not pursue these topics here,

however, leaving them to the reader’s choice. Rather, we shall consider the other energies

involved in other types of propagation, namely, electromagnetic regimes, which can

propagate in vacuum as well as in physically defined “mechanical” media, for example,

gases, liquids, and solids.

8.6.5.2 Electromagnetic Energy Considerations Another important example is that

provided by the calculation of the energy, and in particular, the energy density in an

electromagnetic field,where there is also dissipation. “Energy” equations can be constructed

similar to those for the particle or element displacement field ad discussed in Section 8.6.1

for material media and the induced “mechanical” radiation therein. As we shall see, the

familiar Poynting relation (Sec. 2.10 of Ref. [3]) is obtained for the flux intensity density of

the radiation out of the bounding surface of closed volume V, refer to Fig. 8.20. Here, we
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consider a homogeneous and isotropic medium (which need not be a vacuum) that is also

stationary and nonferromagnetic. The medium is, therefore, free of hysteresis effects and is

also free of deformable bodies.61

Accordingly, we begin with the EM field equations for this (stationary) medium (Section

A.9 of Ref. [3]). Physical examples of such media, as mentioned earlier, are provided by the

atmosphere, ocean and solids, as well as the comparative vacuum of space, under appro-

priate conditions of the type mentioned above. The field equations are specifically

ð1Þ r 
 Eþ @B

@t
¼ O; ð2Þ r 
H� @D

@t
¼ J

ð3Þ r �B ¼ O; ð4Þ r �D ¼ r

9
=

;
: ð8:6:49Þ

HereE andD are respectively the electric field strength and the electric displacement vector.

Analogously, H and B are the magnetic field strength and magnetic indication vector.

The quantitiesJ andr are likewise the (vector) current density and the (scalar) charge density
(Chapter 1 of Ref. [3]). (Note that the dimensions of E � J and H �B are [power/volume]¼
[energy E/time volume]¼ [W/m3]¼ [E/sm3]¼ _«), refer to Eqs. (8.6.31) and (8.6.31a). We

next multiply (1) by H and (2) by E and subtract the latter from the former to obtain

H � r 
 EþH � _B� E � r 
Hþ E � _Dþ E � _J ¼ 0: ð8:6:50aÞ

Using the vector identity r � E
Hð Þ ¼ H � r 
 Eþ E � r 
H, we can write (8.6.50a)

(8.6.43a) in the form

E � _DþH � _Bþ E � J ¼ �r � E
Hð Þ: ð8:6:50bÞ
When this is integrated over a finite volume, as before, where the boundary is abstract (not a

reflecting or scattering surface), it becomes with the help of Gauss theorem (8.6.26) the

desired total energy flux _E:

_E ¼
ð

V

E � _DþH � _Bþ E � J� �
dV ¼ �

ð

S
Spy � n̂dS; with Spy � E
H; W=m3

� �
;

ð8:6:51Þ
which reduces to

_E ¼
ð

V

@

@t

«E �E
2
þ mH �H

2
�
ð t

J t0ð Þdt0
 �

dV ¼ �
ð

S
Spy � n̂ dS; ð8:6:51aÞ

for a Hom-Stat and isotropic EM field. (Here, of course, �ð Þ ¼ @=@t.) The first two terms of

the volume integral represent the time sets of change of the electric and magnetic energy

stored in the electromagnetic field in the volume V. The third term, E � J, is the power

dissipated in heat (J/s) in the volume, which is an irreversible transformation. The surface

integral
Ð
S

� �
is the total net EMenergy flux out of the (virtual) boundary surfaceS. (We have

rewritten the dissipated power in the volume (V) as the time derivative of the dissipated

energy density, at time t.)

61 Deformable bodies would permit the transformation of electromagnetic energy into elastic energy of the

resulting stressed medium (m> 0).
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From Poynting’s theory, the quantity SE ¼ E
Hð Þ is called the electromagnetic

poynting’s vector, as derived by him in 1884.62 This is represented by the integral over

the surfaceS, as noted above, and represents the total effectiveenergyfluxout of this (virtual)
surface S.

For isotropic media and in the absence of ferromagnetic materials in V, we can also

write D¼ «E and B¼mH, where («, m)63 are the respective electric and magnetic

inductive capacities of the medium. Moreover, it is usually the case that the vector

density63 is given by J¼sE, where s is the medium’s conductivity. The electromagnetic

energy flux (Eq. (8.6.51) takes a more familiar form (8.6.51a) where SE
� � Spy

�
is the

electromagnetic poynting vector, which measures the energy flux density leaving the

volume V through the virtual surface S. (Harmonic fields are assumed for the moment and

the factor (1/2) accounts for one complete cycle of E andH). At any instant _E, the factors
1/2 are removed.). In any case, the first two terms in the integrand represent _« for the

electric and magnetic energy flux. The third integral is once more the Julian heat loss, per

unit time in the volume V.

Finally, we note that the field equations (8.6.49) can also be expressed in terms of the

Hertz vector potentials Pð1Þ and Pð2Þ, here for a general homogeneous isotropic and

conducting medium V, where the free change r is always zero in V because of the extreme

density of the relaxation time. If this medium is free of fixed polarization P0;M0ð Þ,
then (8.6.49) becomes generally

E ¼ r
r
Pð1Þ � mr
 @

@t
Pð2Þ; H ¼ r
 «

@

@t
Pð1Þ þ sPð1Þ

 �
þr
r
Pð2Þ

D ¼ «E; B ¼ mH

9
=

;

ð8:6:52aÞ

where Pð1Þ and Pð2Þ obey

r
r
Pð1Þ � rr �Pð1Þ þ m«
@2

@t2
Pð1Þ þ m«

@

@t
Pð1Þ ¼ 0

and

r
r
Pð2Þ � rr �Pð2Þ þ m«
@2

@t2
Pð2Þ þ m«

@

@t
Pð1Þ ¼ 0

9
>>>>=

>>>>;

ð8:6:52bÞ

62 This also dates from Oliver Heavyside, who derived it later the same year ([3], p. 132).
63 We have m ¼ MLQ�2½ �, magnetic inductive capacity, in henry/m; c0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
m0«0
p ¼ 2:998


108 ¼: 3
 108
� �

m=s; m0; «0 ¼ in free spaceð Þ; s0 ¼ 0, Q ¼ Coulomb; « ¼ M�1L�3T2Q2½ � electric conductive

capacity, in farads/m; s ¼ M�1L�3TQ�2, mho/m in vacuum, and s 	 O 107
� �

mho/m for most metals, with

s ¼ O 10�7 � 10�15
� �

for most dielectrics. The values of « are expressed by Ke ¼ «=«0 ¼ O 10�20
� �

, where

sO ¼ 8:85
 10�12 farad/m andm0 ¼ 1:257
 10�6 henry/m, and so on (see pp. 19–23; Appendix I, pp. 601–603;

Appendix III, pp. 605–607, of Ref. [3] for details. These dimensions are given in terms ofmass [M], length [L], time

[T], and charge [Q].
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In addition, when the medium has no conduction currents and no free charges,

energy solution of the vector Hertzian propagationPð1Þ, establishes an EMfield according

to

B ¼ m«r
 @

@t
Pð1Þ; and ;H ¼ «

@

@t
Pð1Þ ¼ B=m

E ¼ rr �Pð1Þ � m«
@2

@t2
Pð1Þ; with D ¼ «E

9
>>=

>>;
: ð8:6:53Þ

The rectangular coordinates reduce here to

r2Pð1Þ;ð2Þ � m«
@2

@t2
Pð1Þ;ð2Þ ¼ 0: ð8:6:53aÞ

For details, see Ref. [3]. Section 1.1.

8.6.5.3 Other Equations of Propagation: Energy, Energy Flux, in V and Through S
As in Sections 8.6.2 and 8.6.3, we calculate the energy and energy flux for other basic

equations of propagation. These equations are listed in Table 8.1 and the corresponding

energies and fluxes are summarized in Table 8.5. One scalar and one vector identity will

prove useful here. These are as follows:

(I) Scalar ad :r � _ad � radð Þ ¼ _ad � r �rad þr _ad :rad : ð8:6:54aÞ

Here, ad ¼ d½ � ¼ scalar displacement of the moving element from equilibrium (Eq. 8.6.11

et seq.).

(II) Vector ad :r � _ad � radð Þ ¼ _ad � r �rad þr _ad :rad : ð8:6:54bÞ

We have as examples the six field equations of ____ and their associated energies shown in

Table 8.5.

It should be emphasized that the above equations of propagation are strictly approx-

imates only, but nevertheless still acceptably accurate in many applications. Chapter 2 of

Ref. [1] treats fluids (and gases), as well as solids in much more detail than Section 8.6

of this book. Section 8.6 is intended simply to be introductory.

8.6.6 Extensions: Arrays and Finite Duration Sources and Summary Remarks

In the preceding development of examples of energy and energy flux densities, we have

assumed that the vector and scalar fields a R; tð Þ;a R; tð Þ½ � are already “on” in themedium in

question. Here, we extend our results (Sections 8.6.1–8.6.5) to include explicitly the role of

the source of a general signal of finite duration for the two basic classes of radiation noted in

Section 8.6.2, namely, “mechanical radiation” and radiation that does not depend on the

medium for its generation, that is, EM in particular. We limit our discussion of scalar fields

to the ideal, unbounded medium of Section 8.1 and to the (deterministic) scattering cases

of Section 8.3. We then extend these results to vector fields.
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8.6.6.1 Scalar Fields For scalar fields, continuous apertures, and signals of finite

duration D, (0� t� T), we have from Eqs. (8.1.53) and (8.1.55) the field

Signal

 “window”! singnal source! medium!

aH R; tð Þ ¼
ð

Br1ðsÞ
esi

1� e�sT

2pi

� �
ds

ð

VT

YT j; s=2pið ÞDY0 r; s0=2pið Þdj

 �

;

ð8:6:55aÞ

where Y0 is the double Fourier transform of the Green’s function G0 r;Dtð Þ, (8.1.36a)–
(8.1.36c); (8.1.37a)–(8.1.37c) and YT represents the Fourier transform of the (continuous)

source GT R; tð Þ in VT, that is, YT ¼
Ð
G R; tð Þe�ivtdt. In operator language, aH is the

solution of

L̂
ð0Þ
aH ¼ �GTjC;Eq: ð8:1:5Þ; ð8:6:55bÞ

where C represents the boundary (here the surface S ! 1) and initial conditions, for

example, aH ¼ @aH=@t ¼ 0). In the case of discrete (“point”) emitting sensors of the

source,GT; j! jm;m ¼ 1;. . . ;M. The volume integral
Ð
VT
ð Þdj in (8.6.55a) is replaced by

the sum:

ð

VT

ð Þdj!
XM

m¼ 1

YT jm; s=2pið ÞSin j; s=2pið ÞDY0 rm; s=2pið Þ; rm ¼ R� jmj j: ð8:6:56Þ

For both (8.6.55a) and (8.6.55b)Y0 is specifically

Y0 ¼
ð1

�1

Y0 k; sð Þeik R�jðmÞj j kdk
R� jmj j 2pð Þ2 : ð8:6:57Þ

In the important case of inhomogeneous (and unbounded) media, with scattering (cf.

Section8.3,Eqs. (8.3.6), (8.3.7a), (8.3.7b), (8.3.8), etc.) the extensionof (8.6.55) and (8.6.56)

become

Lð1aÞaðQÞð1Þ � �GT ; L̂
ð1Þ � L̂

ð0Þ ¼Q and ;a
ðQÞ
ð1Þ¼ aH þ ĥð1Þa

ðQÞ
ð1Þ; with ĥð1ÞM̂

ðQÞ
ð1ÞQ

a
ðQÞ
ð1Þ ¼ aH þ

X1

n¼ 1

ĥ
ðnÞ
ð1Þ ¼ aH; ĥð1Þ

���
��� < 1

9
>>=

>>;
:

ð8:6:58Þ

Here, as before, M̂ð1Þ ¼ M̂
ð0Þ
ð1Þ R; t R

0; t0j Þð represents the integral Green’s function

operator, (8.3.8), for surface or volumes. The operator Q̂ ¼ Q̂ R; tð Þ embodies the local

inhomogeneity, here the scattering element, refer to Eq. (8.3.8) for volumes and surfaces.

ĥð1Þ is the “mass operator” or field renormalization operator. See the discussion in

Section 8.3.2 and examples. Similar, more complex expressions result when there are

boundaries (Section 8.5).
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8.6.6.2 Vector Fields The extension to vector fields a(R, t) is readily made. In place of

scalar operators, for example ĥð1Þ; M̂ð1Þ; Q̂, we have instead the (free space) integral

dyadic, Green’s function M̂
ðDÞ
ð1Þ, namely:

M̂
ðDÞ
ð1Þ � îxM̂

ðxÞ
ð1Þ þ îyM̂

ðyÞ
ð1Þ þ îzM̂

ðzÞ
ð1Þ; or î1M̂

ð1Þ
ð1Þ þ î2M̂

ð2Þ
ð1Þ þ î3M̂

ð3Þ
ð1Þ ð8:6:59Þ

with its components

M̂
ðkÞðR; tjR0; t0Þ ¼ îkM̂

ð0Þ
ð1Þ R; t R

0; t0j Þ; k ¼ ð1; 2; 3Þ or ðx; y; zÞ:ð ð8:6:59aÞ

The M̂
ðkÞ ¼ M̂

ðx;y;zÞ
R; t R0; t0j Þð represent a source pointed in x, y, or z direction, that is,

L̂
ðkÞ
gðkÞ1 ¼ �îkd R� R0ð Þd t� t0ð Þ or

M̂
ðkÞ
ð1Þ ¼ îkM̂

ðkÞ
ð1Þ ¼ îk

ð

D
dt0
ð

VT

dRgðkÞ1 R; t R0; t0j Þð ÞR0;t0 :
�

ð8:6:59bÞ

Since M̂
ðkÞ
ð1Þ ¼ L̂

ðkÞ�1
ð1Þ , we have, accordingly for the source-free integral Green’s function

dyadic:

M̂
ðDÞ
ð1Þ ¼ IðDÞ

ð

D
dt0
ð

VT

dR0gð0Þ1 R; tjR0; t0ð Þð ÞR0;t0 ; with IðDÞ ¼ dkj
� � ¼

1 0 0

0 1 0

0 0 1

2

4

3

5;

ð8:6:60Þ
the familiarity idem factor.

Since aH now is given by aH ¼ M̂
ðDÞ

GT, we have from the extension of (8.6.58) to the

vector field case:

aðQÞ1 ¼ aH þ
X1

n¼ 1

ĥðDÞ1 �
� �ðnÞ

aH; with

ĥðDÞ1 �
h in

¼ M̂
ðDÞ
ð1ÞQ�

h in
¼ ĥðDÞ1 � ĥðDÞ1 � � � � ĥðDÞ1 �
h i

; ð8:6:61Þ

which is the direct result.

We note, finally, that the radiation condition here becomes

lim
R!1

R r
 gðDÞ � îR

c0

@

@t
gðDÞ

 !

¼ 0; ð8:6:62Þ

which is the vector extension of the scalar case. The energy and energy flux densities

for both the scalar and vector fields follow directly from the results for aH ¼ ad and

aH;a
ðQÞ
ð1Þ;a

ðQÞ
ð1Þ in Section 8.6.1–8.6.5.

Summarizing the principal results of this Section 8.6, we have provided here a rather

condensed set of relations, for determining the energetic measure for scalar and vector field

ad ¼ aH;a
ðQÞ
ð1Þ

� �
;ad ¼ aH;a

ðQÞ
ð1Þ. This has been done for a variety of physical media,

including a vacuum, as well as gases, liquids, and solids, which in turn support mechanical

as well as electrodynamic radiation (Table 8.6).
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ĥ
1
;ĥ
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8.7 SUMMARY: RESULTS AND CONCLUSIONS

Our general aim in Chapter 8 has been to provide an overall framework in which to describe

the propagation field and in turn the channel, which includes the reception process. This has

been done here for the deterministic or nonrandom situation of a given single, typical

member of a set or ensemble of such members. As such, it is the precursor to a probabilistic

treatment of the ensemble itself, on whose random properties a statistical communication

theory is based (see, for example, Ref. [25]). The vehicle of our analysis is the linear

operator, which enable us to consider multimedia models and deterministic scattering

phenomena easily in a formal fashion. This operator formulation gives us a qualitative

picture of the various interactions within and between media and provides the analytic

“macroalgorithms” to guide their ultimate quantification by computer. Although the

computational tasks may be great, often on the scale of weather prediction, they are now

in practicewell within the speed and capacity ofmodernmachines. An additional advantage

of the operational approach is its comparative compactness and formal simplicity, allowing

us a ready overview of the often complex interactions encountered in the physically more

realistic communication environments, that is, telecommunications, radar, and sonar.

A brief review of the table of contents provides a concise and self-explanatory account of

the material in Chapter 8. A few observations are noted here for added emphasis. In the case

of homogeneous (unbounded)mediawehavedetermined theGreen’s function (i.e., the four-

dimensional filter response or weighting function of the medium) for a variety of different

media, including dissipative, that is, dispersive cases. These media are also isotropic as well

as homogeneous. When the media are inhomogeneous, as we discussed in Sections 8.3

and 8.4, isotropy is destroyed. However, the reciprocity (of the Green’s function) still holds

(Section 8.3.3) in such cases. The presence of directional beams and the presence of

inhomogeneously distributed sources destroys the overall reciprocity in these cases,

except for a partial effect most evident in the direction of the main beam (Fig. 8.10).

Inhomogeneity of the medium also causes scattering of the signal source, both in the

medium and at and through boundaries (Sections 8.3, 8.3.4 and 8.5.1). The scattering, of

course, is deterministic, since the inhomogeneities of themedium and so on are postulated

to be fixed here in Chapter 8.

The often used “engineering approach” of replacing the channel (in the general case) by a

linear timevariable temporal filter is shownhere tobe avalid equivalent to the actual physical

channel only if a number of important conditions are obeyed:

(1) The received field must be in the transmitter’s far-field or Fraunhofer region.

(2) The transmitted signal must be the same, applied to each element of the transmitting

aperture or array.

(3) The time-variable filter’s scale or amplitude parametrically depends on range (R).

(4) The receiver portion of the coupling of field to aperture (or array) must be essentially

an all-pass network (for details, see Section 8.2.1).

One innovation here is the use of the feedback concept (Section 8.5.2) in these four-

dimensional “circuits,” suggesting a possible method for evaluating the effects of the

distributed inhomogeneities, embodied in the mass operator Q̂. Here, M̂
ð0Þ
1 is the “feed

forward” and Q̂ is the “feedback” operation. Another innovation is the ĥ1-operator form,

which allows us to describe operator interactions between boundaries, volumes, andmultiple
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media systematically. We note that M̂
ð0Þ

and Q̂
ð0Þ

are separable factors for both volumes and

surfaces in these deterministic cases. In addition, they can be shown to commute in

frequency–wave number space, with the possibility of simplified evaluation (cf. Sec-

tion 8.4.2), although they do not commute ordinarily in the usual space–time formulation.

In Chapter 9, we shall examine the extension of the deterministic propagation results of

this chapter to the random cases. Here our task is to predict, on the average, from suitable

statistical models the future behavior of random propagation phenomena. Perhaps the most

important of these, from the viewpoint of communication through the channel, is scatter

noise, when it occurs. In addition is the omnipresent ambient noise field that accompanies

and that sets ultimate limits to all communication. This kind of noise is also an important

limiting factor on our ability to extract weak signals, when scatter noise is sufficiently weak

or absent (i.e. a posteriori models, vide the introduction to Section 8.1).
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9
THE CANONICAL CHANNEL II:
SCATTERING IN RANDOM MEDIA;1

“CLASSICAL” OPERATOR SOLUTIONS

In Chapter 8 we have presented elements of the classical theory of propagation in a

deterministic medium, with and without boundaries and with and without inhomogeneities.

For deterministic inhomogeneous media, this includes deterministic scatter (Section 8.3).

Our treatment is based on linear operators (Section 8.3.2.1), which provide formally exact

results in terms of a “mass operator” Q̂ and its generalizations, a global mass operator,

ĥ ¼ M̂Q̂ (Section 8.3.1). We now extend this approach directly to the more complex and

important case of random media. The key concept here, of course, is the ensemble of

representative members, subject to an appropriate probability measure, which are the

stochastic solutions of this set of dynamical propagation equations. These equations are

governed by appropriated boundary and initial conditions, which describe the possible

propagation trajectories and scattering events associated with the ensemble. The set itself

thus forms a stochastic equation, called a Langevin equation.

1 The literature on this subject is vast and growing, not only because of scientific interest but also because of the

many practical areas where scattering is a significant problem, especially in communications. A selection of

references, mostly books, can provide a rich background on the subject.We cite again thework of Chew [1], Felsen

and Marcuvitz [2] for nonrandom inhomogeneous media, cf. Chapter 8 of this book. For the random inhomoge-

neousmedia considered here note the papers and books of Frisch [3], Tatarskii [4], Ishimaru [5], Bass and Fuks [6],

Rytov et al. [7], Twersky [8], Dence and Spense, [9], Klayatskin, [10], Flatt�e, [11], Furutsu [12], Oglivy [13],

Uscinski [14], and more recently, Tatarskii et al. [15], andWheelon [16]. This list is by means exhaustive, but it is

suggestive of the intense interest over the last 50 years and up to and including the present in general scattering

problems that occur in variety of physical situations, especially in acoustic and electromagnetic applications.

Non-Gaussian Statistical Communication Theory, David Middleton.
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This ensemble of (partial) differential equations is the extension of the Langevin

equations for the ensemble of ordinary differential equations describing simple dynamical

systems, cf. Chapter 10 of Ref. [1]. Thus, the deterministic inhomogeneity operator Q̂ of

Chapter 8, cf. Eq. 8.3.2 et seq. now becomes the stochastic inhomogeneity operator Q̂. The

field “solution” of the Langevin equation is likewise a set of statistical results based on the

ensembles. Consequently, it is the statistics of this random field that constitutes the desired

solutions in these cases. These solutions are specifically the various moments and the

probability distributions (or probability densities) of the random field. (See, for instance,

the examples of theFokker–Planck equationand themoregeneral equations of Smoluchoroski

and Boltzmann, of Chapter 10 of Ref. [1].) Because of this formulation, we call the standard

treatment the “classical” statistical-physics (S-P) approach to the problem of scattering in

random media.

Thus, the main purpose in this chapter is not to obtain explicit quantitative solutions

in “classical” terms. It is rather to provide an operational structure that can be used (1) to

present an initial framework for computational methods for numerical results, (2) to

offer physical insights, and (3) to present quantitative results in probabilistic terms, that

is, moments and pdfs. Classical solutions and approximations are amply discussed in

many of the references, cf. [2–18]. For example, RKT [7], Parts 3 and 4, is particularly

recommended.

Unfortunately, from the viewpoint of statistical communication theory (SCT), classical

approaches, even including those based here on an operator formulation, do not in most

cases yield analytical results for the probability densities required by SCT. This is

particularly true for the non-Gaussian statistics that physically represent most scatter

phenomena. Even so, an operator formulation is still useful in a number of ways. Besides

simplifying the formal analysis, making it more compact and thereby helping to classify

the interactive mechanisms involved, the operator formulation in the classical regime does

provide us with some useful quantitative results. These include here the first- and second-

order moments of the scatter process (i.e., Dyson’s equation and a form of Bethe–

Salpeter’s equation), as well as guidance to a variety of useful approximations. Moreover,

we introduce these, classical methods, (i) not only because of their historical importance

but also (ii) because they are currently being pursued, and finally (iii) we employ them

because their description is needed here to understand the place of new approaches and in

what important ways they differs from classical methods. It provides a framework in the

form of “macroalgorithms” for direct computation solutions in real-time (i.e., “on-line”).

This “mini-weather prediction” task appears to be well within the capability of modern

computing.

Accordingly, the organization of this chapter consists of the following principal

topics. (1) After a brief description of the principal channel components in Section 9.1.1,

including the random inhomogeneities and ambient noise, Section 9.1 introduces the

first-order and feedback representation moments (Dyson’s equation). Section 9.2 the

second-order moments (Bethe–Salpeter equation), as well as higher order moments and

the Transport equation. Section 9.3 follows with diagram equivalents (i.e., Feynman

diagrams). The principal results are then summarized in Section 9.4, leading in turn to

the new methods. Finally, our treatment is presented in terms of general signals and

aperture or arrays, so that propagation and reception are represented by general wave-

forms in the medium and in the receiver.
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9.1 RANDOM MEDIA: OPERATIONAL SOLUTIONS—FIRST- AND

SECOND-ORDER MOMENTS

Before we begin the evaluation of the first- and second-order moments of general scatter,

namely, scatter from rough or random boundaries and from local inhomogeneities in the

volume, let us again consider an overview of the channel, as we have defined it throughout.

It is the medium with its array or aperture couplings. The anatomy of the canonical channel

is indicated by the schematics of Figs. 9.1 and 9.2 below.

FromEq. (8.5.13), we canwrite at once the generic relations for the inhomogeneous field

in its various operator forms. This Langevin equation in differential form that seems in

integral form, is accordingly represented by

L̂
ð0Þ � Q̂

� �
aðQÞ ¼ �GTþC; ð9:1:1Þ

aðQÞ R; tð Þ ¼ 1̂�ĥ1
� ��1

aH R; tð Þ ¼
X1

k¼0
ĥðkÞ1 aH ¼ aH R; tð Þþ 1̂�ĥ1

� ��1
ĥ1aH R; tð Þ;

ð9:1:2Þ

The mass operator ĥ1 ¼ M̂1Q̂ is now a random operator, because of the random local

inhomogeneity operator Q̂. We can describe this mass operator in more detail for volumes

and surfaces by the general random forms

ˆ
TG−inS ⊕ ⊕
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inT Sh

Ambient noise
ˆ
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)()( ˆˆ ,, MM T
thth ≠ ∂R

( ) )(
1(0))( (Q)ˆˆˆ ,N

MM tQLT α
−

=−≡ R

(0) ,; ,ˆ g t
n

η∞ }{ ∂
∂

R,t′R

Deterministic space–time
filter

(0)(1) ,;,,ˆ g tt
n

η ∞
∂ ′ ′
∂

RR

Inhomogeneous medium

ˆˆ
SAR TT ⊗
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FIGURE 9.1 Schematic anatomy of the canonical channel, with ambient and receiver noise

mechanism. The deterministic and random space–time filters ĥ1; ĥ
ð1Þ
1

� �
are the Green’s functions

for the volume and surface of the random medium, cf. Sections 8.3.2 and 9.1.1. Here aðQÞ is the
(ensemble of the) received field, with possible detection (D) and estimation (E) coupling �.
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ĥ1 ¼ M̂
ð0Þ
V Q̂V ¼ Ĥ1

�
g
ð0Þ
1 ;

q
qn

: R0; t0
�
Q̂
�
R0; t0

�jv or s

¼ ĥ1jv ¼ �
ð
dt0
ð

V

gð0Þ1
�
R; t R0; t0

�
QV

�
R0; t0

�� �
R0;t0dR

0; or
���

ð9:1:3aÞ

¼ ĥ1jS ¼ M̂
ð0Þ
S Q̂S ¼

ð
dt0
þ

S

gð0Þ1
q
qn
ð Þ�ð Þ q

qn
gð0Þ1

� 	
Q̂S

�
R0; t0

�� �
R0;t0dS

�
R0 or S0

�

ð9:1:3bÞ

Here the now random surface dS is specified by the results of Section 8.1.6.2, where the

surface variations are regarded as statistical. Here also g
ð0Þ
1 (and its derivatives) are still

deterministic, whereas the integral Green’s function operator M̂1, is not for random

surfaces, since in (9.1.4b) q=qn ¼ n̂ � r; Q̂V or S, and dS are all now random quantities.

The scattered field aðQÞ, of course, is also random, as is ĥ1.
Figure 9.3 illustrates the various scattering surfaces and the volume domains involved in

the basic scenarios whereV is finite and infinite, that is S is the outer bounding surface. In the

case of V�VT!1; S1!1. The inhomogeneities lie in V�VT and possibly on the

surfaces S0 and S1, which can produce backscatter. Note again that g
ð0Þ
1 is the kernel of

the nonlocal propagator M̂
ð0Þ
1 , which is applied to each inhomogeneous element in the

volume V 6¼ VTð Þ and on the surfaces S0; S.
Finally, we must note also here that the so-called Engineering Approach above, (9.1.1),

requires that certain conditions on such filters must be observed [cf. (8.2.8) and (8.2.14)],

the principal ones now being “same signal” applied to all elements of the transmitting

array (aperture) and far-field operation, along with all-pass reception. In addition, the

filters must obey the realizability (i.e., causality) conditions2 of Section 8.2.2.

)(in tS ˆ ),(S th τ ( )X

Temporal processing D.

Det./Est.

E.

t

),( Sd th τ

ˆ ),( Sr th τ

⊕ ⊕

)()()( 0A,AAN dGttht τ ττ ][ −= ∫

RecN

Deterministic

FIGURE 9.2 Temporal channel equivalent of the space–time generalized channel of Fig. 9.1 (valid

under the conditions (8.2.8), (8.2.14), extended to random fields).

2 Of course, for noncasual filters,wemustwait for all the received data in the observation interval to be accumulated

before processing.
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9.1.1 Operator Forms: Moment Solutions and Dyson’s Equation

We start with the generic ensemble represented formally here by the feedback operational

solution (FOS), namely, the random, that is, Langevin equivalent of Eq. (8.5.8) et. seq.

ðFOSÞ:aðQÞ ¼ 1̂�ĥ1
� ��1

aH¼
X1

k¼0
ĥðkÞ1 aH;withaH¼M̂1 �GTð Þandĥ1�M̂1Q̂; ĥ1k k<1;

ð9:1:4Þ

where ĥ1 and aðQÞ are random quantities. This can be equivalently interpreted as an

ensemble of feedback loops whose output isaðQÞ andwhere the global scattering operator is
equivalently the feedback operator ĥ1. This is shown in Fig. 8.16, now extended to each

member of the random field aðQÞ in the defining relations (9.1.3). The relation (9.1.4)

between the random aðQÞ and the usually not originally random input field aH is also called

the feedback operation relation (FOR) between the FOS aðQÞ
� �

and aH, which may be

deterministic or random. We remark that (9.1.3a) may apply for both surfaces and volume

scattering, however with different structures: hV 6¼hS, and in detail MV 6¼MS;QV 6¼QS as

Eqs. (8.3.8) and (8.3.9a–c) now extended to the random situation, shows. The feedback

diagram of Fig. 8.16 is typical here, as well, but as we shall see presently the precise form of

the FOS depends on whether or not the integral Green’s function operator M̂1 and the local

inhomogeneity or scattering operator Q̂ are statistically independent. The relations (9.1.4)

also lead naturally to equivalent FOR representations, which can act as a first step in the

former evaluation of the scattered field. Finally, because of the convergence condition

ĥ0k k<1 on the expansion it is also called the perturbation series solution (PSS), where

some form of stochastic convergence is required for the random series, for example

x

y

z

–x

–y

–z

V

V

SdSQ

VdVQ

0S

1S

VdVQ

0SdSQ

SdSQ

TV

B

B

FIGURE 9.3 Binary sources in VT and sources (scatterers) on the surfaces S0; S1, with sources and/
or scatterers) in the volume V, between S0 and S1. The QSds0;QSds1;QVdv represent scattering

elements on S0; S1, and in V, with B indicating backscatter from irradiated inhomogeneities on S0; S1.
See also Fig. 8.9.

RANDOM MEDIA: OPERATIONAL SOLUTIONS—FIRST- AND SECOND-ORDER MOMENTS 543



convergence in the mean-square (CMS) or the more restrictive almost certain or strong

convergence (ACC); see Ref. [1], Section 2.1.1.

The FOR (and FOS) are also another way of expressing the governing Langevin equation

(9.1.2) in the form of the (ensemble) of integral equations3, from (9.1.5a):

aðQÞ R; tð Þ ¼ aH R; tð Þþ ĥ1a
ðQÞ R; tð Þ; ĥ1jv; ĥ1jS; ð9:1:5Þ

where the only restrictions on ĥ1 are that its kernel h1 be positive definite, bounded,

and not “intrinsically singular”. Equations (9.1.5a) and (9.1.5b) apply for both scattering

in volumes and from surfaces, cf. Sections 8.3.1, 8.3.4, and so on. There are two

principal problems to be treated, which are associated with these stochastic Langevin

equations. One is the direct problem, given ĥ1, to obtain the scattered field aðQÞ. The
other is the inverse problem4, of determining the nature of the scattering inhomogenei-

ties from the scattered field. This is more difficult because the scattered field is

nonlinearly related to the scattering elements in question, and because solutions of

inverse problems are notoriously nonunique. These two features considerably compli-

cate the task of obtaining closed form results, which lead us to iteration methods

exemplified by the alternative perturbation techniques (PSS) of the FOS (9.1.5a). In the

random or “predictive” cases, one therefore has to confront both the direct problem of

determining the statistics of the scattered field aðQÞ and the indirect task of inferring

the statistical properties of the scatterers, represented by Q̂ (in the mass operator

ĥ1) (9.1.3a). For the latter, one possibility is the extension of the measurement

procedures outlined earlier in Section 8.5.3 for the deterministic cases. This approach

now includes an empirical ensemble, from which an estimate of an average scattering

kernel QðdÞ
� �

can be obtained.

Before we go on to consider specific solutions to the Langevin equation namely,

moments of aðQÞ, let us consider the FOS, (9.1.4), again. The critical feature to note here
is that ĥðkÞ1 aH represents the ensemble or set of all the kth-order “quasiparticles” in

scatter theory (see Ref. [18]). It is at once evident that all interactions of different orders

k 6¼ k0ð Þ are statistically independent at any given instant, since a kth-order quasiparticle
is always different from a k0-order quasiparticle, and any non- kth-order ones. (We shall

can use this property to construct probability distributions of the scattered field, as

distinct from the moment calculations of classical theory here.) More immediate to the

present treatment is the observation that the global massoperators ĥV and ĥS for volumes

and surfaces are not only different, as we would expect, but the different local mass

operators Q̂V ; Q̂S, and projection operators M̂V ; M̂S may be statistically related, with

different consequences for the moment solutions of the Langevin equations.

3 Equation (9.1.3b) is usually a Voltera integral equation of the second kind. See Chapter 8 of Ref. [19]; also

Lovitt [20].
4 See Chew [1] for a treatment of the inverse scattering problem, for a representative member of the ensemble, that

is, the deterministic case wherein the ensemble contains only one member function. For the random situation

considered here, the ensemble is extended to an infinite number of similarly but randomly generated numbers, with

an appropriate probability measure or measures, as required.
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9.1.1.1 Dyson’s Equation and the Equivalent Deterministic Mass Operator Let us

develop a (formal) solution directly from the FOS by averaging (9.1.3a) termwise: we

have at once for the first moment

aðQÞ
D E

¼ 1̂�ĥ1
� ��1D E

aH

¼
X1

k¼0
ĥðkÞ1
D E

aH

X1

k¼0
M̂1Q̂

 �ðkÞ

aH ð9:1:6aÞ

where ĥðkÞ1 ¼ M̂
ð0Þ
1 Q̂

� �ðkÞ
can take on a number of different average forms. These depend on

how the integral Green’s function M̂
ð0Þ
1

� �
and the inhomogeneities Q̂

� �
in the medium (V)

and on the boundaries (S) are activated. Specifically, we note that, for k � 1:

Volumes: ĥðkÞ1 jV
D E

¼ M̂
ð0ÞðkÞ
V Q

ðkÞ
V

D E
: the integral Green’s function M̂

ð0Þ
V is

deterministic as is its kernel; gð0Þ1 while the

local inhomogeneities QVð Þ are random in

the volume: cf: ð8:1:42aÞ; ð8:3:9a; 25aÞ:
We may usually expect the scatterers to

reradiate independently of their orientation

in the medium;

Surfaces: ĥðkÞ1 jS
D E

¼ M̂
ð0ÞðkÞ
S QS

� �ðkÞ* +

:

q00js remains nonrandom; but the integral

surface Green’s function M̂
ð0Þ
S is

stochastic; because of the random nature of

the surface here ðcf: ð8:1:42Þ and Section 8:1:4;
½ð8:3:9aÞ and ð8:3:25bÞ�: In general; we expect that

M̂S and Q̂S are statistically dependent because the

scattering of radiation from the random surface

will be affected by the aspect of the surface

vis-�a-vis the illuminating sources:

ð9:1:6bÞ

Therefore, we must adjust the averages, specifically in Section 9.1.1.4 following.

a
ðQÞ
1 a

ðQÞ
2

D E
¼ a R1; t1ð Þa R2; t2ð Þh i, and so on. Now, however, we encounter multiple

series and multiple order moments of the mass operator ĥ1, with an increasing difficulty of
obtaining convergence conditions.

For these reasons, including the comparative complexity of the results of the direct

expansion (9.1.6a), we use the second equivalent relation (9.1.3b). This replaces the FOS

(andPSS) and the ensuing averages (9.1.6a) by equivalentdeterministicmass operators ĥ
ðdÞ
1

and ĥðdÞ
D E

, defined by the relations for volumes and surfaces: for volumes M̂1 Vj is

nonrandom, for surfaces M̂1 Sj is random:

) ĥ
ðdÞ
1=V aðQÞ

 �� ĥVa

ðQÞ
 �¼ M̂1=VQ̂1=Va
ðQÞ
 �

) ĥ
ðdÞ
1=S aðQÞ

 �� ĥSa

ðQÞ
 �¼ M̂1=S


 �
Q̂1=S aðQÞ


 �

9
=

;
; M̂1=V nonrandom:

; )ĥS¼M̂1=SQ̂1=S; both factors random:

9
=

;

ð9:1:7aÞ

with ĥ1 subject to the various statistical operations on M̂1 and Q̂ implied by (9.1.6b) above.

We now obtain the mean field aðQÞ

 �

, using (9.1.7a)
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aðQÞ
D E

¼aHþ ĥ1a
ðQÞ

D E
¼aHþ ĥ

ðdÞ
1=V or ĥðdÞ

D E

1=S

� �
ah iðQÞ ¼aHþ

X1

n¼1
M̂
ð0Þ
Q̂

� �ðnÞ� 

V orS

aH;

ð9:1:7bÞ

cf. 8.5.11d,m!1, with the appropriate averages, Eq. (9.1.7a) and convergence conditions

for these deterministic results.5 The second equality in (9.1.7b) is a form of the (first-order)

Dyson equation, and ĥ
ðdÞ
1 is the equivalent deterministic (global) mass operator (DMO).

In terms of the PSS, (9.1.7b) becomes alternatively the deterministic PSS

aðQÞ
D E

¼aHþ
X1

n¼1
ĥ
ðdÞ
1

h iðnÞ
aH;

���ĥðdÞ1

���<1 ð9:1:7cÞ

equivalent to (9.1.7b), but subject to stricter convergence conditions.5 In linewith the DMO

we call the medium supporting the average field aðQÞ

 �

the (first-order) equivalent

deterministic medium (EDM1). Figure 9.4 shows the FOR (and at the same time the FOS),

on replacing the Q̂ in Fig. 8.16 by Q̂
ðdÞ
1 . We note that the integral equation in ĥ

ðdÞ
1 , (9.1.7b),

is a canonical expression: it applies for all media and surfaces (interfaces) for which the

localmass operator Q̂ 6¼ Q̂
ðdÞ
1

� �
is a random function, statistically related or not to the global

Green’s function M̂1, cf. (9.1.6b).

9.1.1.2 TheEquivalentMassOperator for Volumes Q̂
ðdÞ
1=V When Q̂1 is random (and M̂1

is not), it is necessary to obtain Q̂
ðdÞ
1 to put (9.1.7b) into a form more convenient for

calculation and in some cases to obtain a closed analytic form for the solution.Webeginwith

the identity Eq. (9.1.7a) and since we are dealing with volume scatter here, M̂
ð0Þ
1 is not a

random function, (9.1.6b), as it is for surfaces. With the definitions

ĥ1 � M̂
ð0Þ
1 Q̂; ĥ

ðdÞ
1 � M̂

ð0Þ
1 Q̂

ðdÞ
1 ; ð9:1:8Þ

we obtain directly from (9.1.6a) the following identity

Q̂
ðdÞ
1 1̂�ĥ1

� ��1D E
� Q̂ 1̂�ĥ1

� ��1D E
; ð9:1:8aÞ

Q̂
ðdÞ
1 ¼ M̂

�1
1 xh i= 1þ xh ið Þ ¼ M̂

�1
1
X1

m¼0
�1ð Þm xh imþ 1; with xh i �

X1

k¼1
ĥðkÞ
D E

; xh ik k < 1:

ð9:1:8bÞ

)( TG− (Q)α

)(
1

ˆ dη ( ))((0)
1

ˆˆ dQM∞=

⊕ (0)M̂∞

)(
1

ˆ dQ

FIGURE 9.4 The FOR aðQÞ

 �

for the deterministic integral for volumes Eq. (9.1.7b), where the

FOR is given in the Figure. See Eqs. (8.5.10a) and (8.5.11a–d) for the derivations of the FOS.

5 See Chapter 8 of Ref. [19]. Note that on a term-by-term basis, Eq. (9.1.7b) and Eq. (9.1.6a) are not equal.
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It is clear that since ĥ1 ¼ M̂
ð0Þ
1 Q̂ incorporates the projection operators M̂

ð0Þ
1 ; Q̂

ðdÞ
1

(8.1.10), (9.1.10),wecanwrite ĥ1 ¼ ĥ1 R; t R0; t0j Þð , for bothvolumesor surfaces, in the form

ĥ
ðdÞ
1 ¼

X1

m¼0
Â
ð1Þ
m

�
R; t
��R0; t0

� ¼
ð

V

ĥ
ðdÞ
1

�
R; t
��R0; t0

�
V

� �
R0;t0dR

0dt0 ð9:1:9aÞ

¼
ð

V

M̂
ð0Þ
1
�
R; t
��R0; t0

�
dR0dt0

ð

V

Q̂
ðdÞ
1

�
R0; t0

��R0; t0
�
V

� �
R0;t0dR

0dt0: ð9:1:9bÞ

Requiringeach term in thePSS(which takes the form(9.1.8a) tobeof the sameorder in the local

inhomogeneity operator Q̂ results in the series, also expressed as the integral:

Q̂
ðdÞ
1 �

X1

m¼0
B̂
ð1Þ
m

�
R; t
��R0; t0

� ¼
ð

V

Q̂
ðdÞ
1

�
R; t
��R0; t0

�� �
R0;t0dR

0dt0: ð9:1:10Þ

Equation (9.1.10) shows as we expect, that Q̂
ðdÞ
1 is (except for the initial term B̂

ð1Þ
0 ) a global

operator (since it contains M̂
ð0Þ
1 ), and equivalently since Q̂

ðdÞ
1 depends on xh i(9.1.8b). The

components of the sum in (9.1.10) are then found—somewhat laboriously—from (9.1.8b)

to be,6:

B̂
ð1Þ
0 ¼ Qh i; B̂

ð1Þ
1 ¼ Q̂M̂Q̂


 �� Q̂

 �

M̂ Q̂

 �

;

B̂
ð1Þ
2 ¼ Q̂ M̂Q̂

� �ð2ÞD E
�2 Q̂

 �

MQð Þð2Þ
D E

þ Q̂

 �

MQ̂

 �2

;

B̂
ð1Þ
3 ¼ Q̂ M̂Q̂

� �ð3ÞD E
� Q̂

 �

M̂ Q̂

 �� �3þ 4 Q̂


 �
M̂ Q̂

 �

Q̂M̂Q̂

 �

;

� Q̂M̂Q̂

 �2� 2 Q̂


 �
M̂Q̂
� �3D E

; etc:

9
>>>>>>>>>=

>>>>>>>>>;

ð9:1:11Þ

Similarly, the expression determining ĥ
ðdÞ
1 in terms of the global mass operator ĥ1 and its

averages is obtained here by multiplying [(9.1.8a) and (9.1.8b)] by M̂1 and using the

series (9.1.8b) with (9.1.9) to derive the Â
ð1Þ
m operators. Thus, now one has

ĥ
ðdÞ
1 ¼ xh i� 1þ xh ið Þ ¼

X1

m¼0
�1ð Þm xh imþ 1; 0 � xh ik k < 1; ð9:1:12Þ

and

) A
ð1Þ
0 ¼ ĥ1h i; Að1Þ1 ¼ ĥð2Þ1

D E
� ĥ1h i2;

A
ð1Þ
2 ¼ ĥð3Þ1

D E
�2 ĥ1h i ĥð3Þ1

D E
þ ĥ1h i3;

A
ð1Þ
3 ¼ ĥð4Þ1

D E
� ĥ1h i4þ 4 ĥ1h i2 ĥð2Þ1

D E
� ĥð2Þ1
D E2

�2 ĥ1h i hð3Þ
 �
; etc:

ð9:1:13Þ

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

6 We may drop from time to time the subscripts (1) on M̂
ð0Þ
1 and the superscripts ð0Þ, as well, to reduce the

complexity of these symbols.
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Aswehave noted above (Eq. (9.1.8b) et. seq.) the relations (9.1.8)–(9.1.13) apply for scattering

from both volumes or surfaces.

9.1.1.3 Vanishing Means Qh i ¼ 0 and Symmetrical pdfs of Q̂ In the important special

cases when the mean scattering operator vanishes, that is, Qh i ¼ 0, the results for Q
ðdÞ
1

simplify considerably. We see directly from Eqs. (9.1.11) and (9.1.13) that

B̂
ð1Þ
0 ¼ 0; B̂

ð1Þ
1 ¼ Q̂M̂Q̂


 �
; B̂

ð1Þ
2 ¼ Q̂ M̂Q̂

� �ð2ÞD E
; B̂
ð1Þ
3 ¼ Q MQð Þð3Þ

D E
� Q̂M̂Q̂

 �2

;

B̂
ð1Þ
4 ¼ Q MQð Þð4Þ

D E
�2 QMQh i Q MQð Þð2Þ

D E
;

B̂
ð1Þ
5 ¼ Q MQð Þð5Þ

D E
þ 2 QMQh i MQð Þð4Þ

D E
� Q MQð Þð2Þ
D E2

þ QM̂Q̂

 �3

; etc:

9
>>>>>=

>>>>>;

ð9:1:14Þ

In terms of the global operator ĥ1, where ĥ1h i ¼ 0, we obtain

Â
ð1Þ
0 ¼ 0;A

ð1Þ
1 ¼ ĥð2Þ1 ; Â

ð1Þ
2 ¼ ĥð3Þ1

D E
; Â
ð1Þ
3 ¼ ĥð4Þ1

D E
� h

ð2Þ
1

D E2
;

Â
ð1Þ
4 ¼ ĥð5Þ1

D E
�2 h

ð2Þ
1

D E
ĥð3Þ1
D E

;

Â
ð4Þ
5 ¼ h

ð6Þ
1

D E
þ 2 h

ð2Þ
1

D E
h
ð4Þ
1

D E
� ĥð3Þ1
D E2

þ hð2Þ

 �3

; etc:

9
>>>>>=

>>>>>;

ð9:1:14aÞ

A further simplification occurs when Q̂ and ) ĥ1 have symmetrical pdfs about Q̂

 � ¼ 0,

that is, Q2mþ 1

 � ¼ 0. Then [(9.1.14) and (9.1.14a)] reduce further to

B̂
ð1Þ
0 ¼ 0; B̂

ð1Þ
1 ¼ Q̂M̂Q̂


 �
; B̂

ð1Þ
2 ¼ 0; B̂

ð1Þ
3 ¼ Q̂ M̂Q̂

� �ð3ÞD E
� Q̂M̂Q̂

 �2

;

B̂
ð1Þ
4 ¼ 0; B̂

ð1Þ
5 ¼ Q̂ M̂Q̂

� �ð5ÞD E
þ 2 Q̂M̂Q̂

 �

M̂Q̂
� �ð4ÞD E

;

..

. ..
. � Q̂ M̂Q̂

� �ð2ÞD E2
þ Q̂M̂Q̂

 �3

; etc:;

which suggests: B̂
ð1Þ
2m ¼ 0; B̂

ð1Þ
2mþ 1 6¼ 0;¼ Q̂ M̂Q̂

� �2mþ 1
D E

þ 0 Q̂
2mþ 2

� �D E
;m � 3:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

ð9:1:15aÞ

The corresponding development for ĥ
ð1Þ
d is

Â
ð1Þ
0 ¼ 0; Â

ð1Þ
1 ¼ ĥð2Þ

D E
Â
ð1Þ
2 ¼ 0; Â

ð1Þ
3 ¼ ĥð4Þ

D E
� ĥð2Þ
D E2

;

Â
ð1Þ
4 ¼ 0; Â

ð1Þ
5 ¼ ĥð6Þ

D E
þ 2 ĥð2Þ
D E

ĥð1Þ
D E

þ ĥð2Þ
D E3

;

..

. ..
.

Â
ð1Þ
2m ¼ 0; Â

ð1Þ
2mþ 1 6¼ 0;¼ ĥð2mþ 2Þ

D E
þ 0 ĥð2mÞ
D E

; ĥð2m�2Þ
D E

; . . . ; ĥð2Þ
D E

;

in products 0 ĥ2mþ 2
� �
 �

:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð9:1:15bÞ
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In most instances where the PSS is used, ĥ1h ik k is sufficiently small vis-à-vis unity on

physical grounds, that is, the series converge reasonably quickly.7

For volumes we have for the average global, from (8.1.10)

M̂
ð0Þ
1
�
R; t
��R0; t0

�
V
¼
ð

V

gð0Þ
�
R; t
��R0; t0

�
V

� �
R0;t0

dR0dt0; ð9:1:16Þ

where M̂
ð0Þ
1 is of course nonrandom.

9.1.1.4 Structure of ĥ
ðdÞ
1 for Surface Scatter From the general expressions [(9.1.9)

and (9.1.10)] we need now to specialize the results above (9.1.11)–(9.1.15b) to account for

the different possible statistical situations represented by (9.1.6b) and the different physical

situations encountered by scatterers in the volume and on a surface.

However, when we are dealing with a random Green’s function, where the integral

operator M̂
ð0Þ
1 jS that occurs in the case of scatter from random surfaces (cf. Section 8.3.4

extended to the ensemble of randomsurfaces), we have amore complex picture. The random

global Green’s function operator here is defined now by

M̂
ð0Þ
1
�
R; t
��R0; t0

�

S
�
ð
dt0

þ

S

gð0Þ1 J
�
r0; t0

�
z
� J

�
r0; t0

�
z
gð0Þ1

h in o� �
r0;t0

dr0: ð9:1:17Þ

In more detail, the elements of (9.1.17) are (Section 8.1.5.2)

g
ð0Þ
1 ¼ g

ð0Þ
1

�
R; t
���r0; t0

�
;

q
qn

��
2

4

3

5ds¼ n̂.r��� �
dS
�
r0; t0

�¼ J
�
r0;t0

�
dr0;dr0� dx0dy0

with

n̂ �r� J0
�
r0; t0

�
z
¼ �zx

q
qx0
þzy

q
qy0
þ q
qz0

�.�
1þz2xþz2y

�1=2
;dS
�
r0; t0

�¼ dr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2xþz2y

q
;

z¼ z
�
r0; t0

�¼ îzz
�
r0; t0

�
;zx

qz
qx0

;zy
qz
qy0

;r0¼ îxx0þ îyy0
;

8
>>>><

>>>>:

ð9:1:17aÞ

as shown in Fig. 9.5. Equations (9.1.17) and (9.1.17a) represent the integral randomGreen’s

function or projection operator, for any (as yet unspecified) sources on the random surface

S
�
r0;t0

�
, radiating into the space outside this surface.

For inhomogeneities distributed on S that can scatter the incident radiation, or sources

therein on, we obtain the desired mass operator ĥ1 by combining M̂
ð0Þ
S and Q̂S in the usual

way, to obtain from (9.1.17)

ĥ1=S ¼
ð
dt0

þ

S

gð0Þ1 J� Jgð0Þ
h i

QS

n o� �
r0;t0

dr0; ð9:1:18aÞ

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

7 See Chapter 8.
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which in more detail is

ĥ1=S ¼
ð
dt0

þ

S

gð0Þ1
�
R; t r0; t0

�
J
�
r0; t0

�
z
� J

�
r0; t0

�
z
gð0Þ1
�
R; t r0; t0

��� �h o
Q
�
r0; t0

�
z

� �
r0;t0

dr0:
���

n

ð9:1:18bÞ

Equations (9.1.18a) and (9.1.18b) apply for each member of the ensemble of random

surfaces S0
�
in M̂S

�
and the local random inhomogeneitiesQ

�
r0; t

�
on these surfaces. Thus,

both J and Q are random while the free-space Green’s function g
ð0Þ
1 is not.

We are now ready to consider the average field aðQÞ

 �

, appropriate to the Dyson

equation (9.1.7b), for surface scatter. We distinguish two cases, (I) where the random

surface S and the scattering inhomogeneities on it are statistically independent and (II) in

which they are statistically related. First, we note that here from (9.1.14), (9.1.18b) both

M̂
ð0Þ
1 Sj and Q̂S are random, and therefore ĥS is also. We begin with the surface counterpart

to (9.1.16), using (9.1.9b), to obtain, with the help of (9.1.18b)

ĥ
ðdÞ
1=S ¼

ð
dt0

þ

S

dr0 gð0Þ1 J� Jgð0Þ1
h i ð

dt0
þ

S

Q
ðdÞ
1=S

� �� �
r0;t0dr

0; ð9:1:19aÞ

or in more detail,

ĥ
ðdÞ
1=S ¼

ð
dt0

þ

S

dr0 gð0Þ1
�
R; t r0; t0

�
J
�
r0; t0

� ð
dt0
þ

S

Q
ðdÞ
1=S

�
r0; t0 r0; t0

�� �
r0;t0

���
����

�

� J0
�
r0; t0

�
gð0Þ1
�
R; t r0; t0

��� � ð
dt0
þ

S

Q
ðdÞ
1=S

�
r0; t0 r0; t0

��� �� �
r0;t0dr

0;
�

ð9:1:19bÞ

with dr0 ¼ dx0dy0 and r0 ¼ îxx
0 þ îyy

0(9.1.17a). Here the average, that is the deterministic

operationh
ðdÞ
1=S is obtained from [(9.1.9a) and (9.1.9b)], which is explicitly represented by the

various series (9.1.11), (9.1.14), (9.1.15) and implicitly by (9.1.13a), with ĥ
ðdÞ
1 ! ĥ

ðdÞ
1=S. For

Cases I and II we see finally that

Case I: ĥ
ðdÞ
1=S! ĥ

ðdÞ
1=S

D E

z=Q
or Case II: ĥ

ðdÞ
1=S! ĥ

ðdÞ
1=S

D E
�
z1;QS

�; ð9:1:20Þ

0x

0y

0z

TO

( )00 , tS r

0r

)( 00
ˆ ,z tζ ri

000
ˆˆ

x yx y+= iir

FIGURE 9.5 Surface elevation î2z r0; t0ð Þ along r0 in the x0y0-plane.
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where z=Q indicate the average over the elevation z, independent of the average over the Q̂S

comprising Q̂
ðdÞ
1=S. In a similar fashion, (z, Q) denotes the joint average over z and QS. In

Case I, one replaces J by Jh iz. For Case II, the average is taken over J and Q̂
ðdÞ
1;S jointly,

in (9.1.19b). Here QS usually represents the plane-wave reflection and/or transmission

coefficient at a point, R0

�
r0; t0

�
;T0

�
r0; t0

�
, Section 8.3.4. Accordingly, with (9.1.11) and

(9.1.19), averaged as indicated in (9.1.20), we are formally equipped to evaluate Dyson’s

equation, namely the (deterministic) integral equation8 (9.1.7b)

Dyson’s equation : aðQÞ
�
R; t
�D E

V or S
¼ aH

�
R; t
�þ ĥ

ðdÞ
1

D E

V or S
aðQÞ

�
R; t
�D E

V or S

ð9:1:21Þ

for random scattering in volumes (V), from surface (S), or combinations of both, as outlined

in Section 8.4 in the deterministic cases of a givenmember of the ensemble postulated there.

As before, (9.1.21) represents a feedback or FOR system, which is now expressed in a

modifiedversionofFig. 9.4,9 namely, Fig. 9.6, representing themoregeneral situationwhere

M̂
ð0Þ
S and Q̂S are statistically related.

Although the deterministic nature of the equivalent deterministic medium is implicit in

the mass operators ĥ
ðdÞ
1=V (9.1.16), ĥ

ðdÞ
1=S

D E
, cf. (9.1.20), its suggested exploitation by the FOS

formulation above (9.1.21), as indicated by the FORof Figs. 9.2 and 9.4 is potentially new, at

least in the context of the computer-aided evaluations recommended here. The reduction of

the ensemble to a deterministic form, cf. (9.1.21) above, allows us to employ all the technical

aperture outlined in Chapter 89 preceding, for dealing with the classical nonrandom

inhomogeneous medium [2]. However, there is a price to pay: in going from the ensemble

aðQÞ
� �

to the deterministic result aðQÞ

 �

we have destroyed most of the statistical

information inherent in the ensemble representing the scattered field. Here (in the first-

order case) all we have remaining is the average field aðQÞ

 �

(9.1.21). Expressed alterna-

tively, given aðQÞ

 �

we cannot reconstruct the ensemble aðQÞ
� �

. Equivalently, we cannot

infer Q̂ from the measure Q̂
ðdÞ
, or more generally, the mass operator ĥ1 from ĥ

ðdÞ
1jV or S

D E
. In

particular, when aH; M̂
ð0Þ
V;S (Eq. 9.1.17, are known, we can estimate Q̂

ðdÞ
1jV or S, in principle, to

any degree of accuracy in a controlled way, with a determinable error, by the method (or its

extensions to measure ĥ
ðdÞ
1jV or S

D E
directly, knowing aH and aðQÞ


 �
of Section 8.5.3.

9.1.2 Dyson’s Equation in Statistically Homogeneous and Stationary Media

Next, we illustrate how the integral equations (9.1.5b), (9.1.7b) may be solved analytically,

without recourse to the perturbationmethod (i.e., thePSSof (9.1.7c), for example).Webegin

with the generic case of an infinite volumeV of continuous inhomogeneities (external to the

distribution (source�GT ), andwe neglect the backscatter (Section 8.3.4.2).Accordingly, let

8 Depending on the boundary and initial conditions this may be an integro-differential equation. See Chapter 9 of

Ref. [20].
9 The loop relations for this FOR are a1 ¼ aHþaF; a2 ¼ ah i; aF ¼ ĥh ia2 ¼ ĥh ia, which becomes

ah i ¼ aHþ ĥh i ah i, first iteration, which upon repetition leads to aðQÞ ¼ aHþ ĥh iaðQÞ;Q!1, cf. (8.5.11) for

details.

RANDOM MEDIA: OPERATIONAL SOLUTIONS—FIRST- AND SECOND-ORDER MOMENTS 551



us write Dyson’s equation (9.1.7a) for this situation, with the help of (9.1.9a), in the more

explicit form

aðQÞ
�
R; t
�
V

D E
¼ aH

�
R; t
�þ ..

.
ðð

VT

dt0dR0gð0Þ1
�
R0; t0 R0; t0

�
V

ðð

V

Q
ðdÞ
1

�
R0; t0 R0; t0

�..
.
aðQÞ

�
R0; t0

�D E
dR0dt0

����

	

V

����

�

..

.  M̂1jV ! ..
.  Q1 ! ..

.  aðQÞ
D E

! ð9:1:22Þ

HereQ
ðdÞ
1 (or equivalently g

ð0Þ
1 Q

ðdÞ
1 � h

ðdÞ
1 , cf. (9.1.8)) is the kernel associated with the mass

operator for the average field aðQÞ

 �

. It is, of course, a deterministic quantity, a statistic of the

random field10aðQÞ in V.

9.1.2.1 Dyson’s Equation: Hom-Stat Media—Volume Scatter In this case, we can

obtain closed-form solutions for Dyson’s equations [(9.1.7b) and (9.1.21)]. Let us consider

the particular example of (9.1.21) abovewhereV is the infinite volume containing scattering

elements and let the ensemble of individual representations, that is, the Langevin

equation (9.1.3), be Hom-Stat. This in turn means that the kernels Q
ðdÞ
1 and g

ð0Þ
1 in

(9.1.9) and (9.1.10) individually exhibit Hom-Stat properties. Accordingly, Q
ðdÞ
1 and

g
ð0Þ
1 depend only on the differences

�
R0�R0; t

0�t0
�
so that

Q
ðdÞ
1;V jHom-Stat ¼ Q

ðdÞ
1

�
R0�R0; t

0�t0
�
V
¼
ð

V

dR0
ðt0

t0

q
ðdÞ
1

�
R0�R0; t

0�t0
�
V
dt0

¼ FkFs

�
g
ðdÞ
00;1jV

�
¼
ð

Br1

ds

2pi

ð1

�1

dk
�
2p
�3 g

ðdÞ
00;1

�
k; s
�
V
e�ik �

�
R0�R0

�
þ s
�
t0�t0
�

9
>>>>=

>>>>;

:

ð9:1:23Þ

Here the double Fourier transform11 is

g
ðdÞ
00;1jV � FRFt Q

ðdÞ
1;V

n o
; withQ

ðdÞ
1

�
R0�R0; t

0�t0
�
V
¼Q

ðdÞ
1jV ; withR!R0;R0!R0

t! t0; t0! t0

9
=

;

ð9:1:23aÞ

Hα
)( 1α

( )2α

( )(Q)α

( )2α

( )α
⊕

)(
1, ,
ˆ d

S Q
η

ζ

FIGURE 9.6 The FOR of aðQÞ

 �

for Dyson’s equation (9.1.21), with the averaged integral mass

operator of Eq. (9.1.20), for surface scatter, cf. Fig. 9.4.

10 We remark that (9.1.22) is a generalized version of the result (4.15), (4.28), and so on, in RKT [7]. It is a

generalization to an arbitraryfield of a distributed source and the (possibly) non-Gaussian statistics, vis-à-vis a point

source in a medium with a Gaussian index of refraction.
11 For theHom-Stat cases the Fourier transformsFk;Fs arewith respect to the differences r ¼ R0�R0; Dt ¼ t0�t0.
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in the above. For the Dyson equations (9.1.7b) and (9.1.22), the Hom-Stat assumption

represents the necessary and sufficient condition for the factorability ofQ
ðdÞ
1jV and g

ð0Þ
1 jV and

consequently the reduction of (9.1.22) to a closed analytic solution. Similar remarks apply

for the (deterministic) global mass operator ĥ
ðdÞ
1jV , (9.1.6b) here. Accordingly, we can

write (9.1.9)12

ĥ
ðdÞ
1

�
R0; t

���R0; t0

�

V
¼
ð

V

dR0

ðt

t
ð�Þ
0

h
ðdÞ
1

�
R0�R0; t

0�t0
�
V
dt0

¼
ð

Br1

es
�
t0�t0
�
ds

2pi

ð1

�1

dk
�
2p
�3h

ðdÞ
00;1

�
k; s
�
V
e�ik �

�
R0�R0

�

9
>>>>=

>>>>;

ð9:1:24Þ

Here thekernelh
ðdÞ
1jV ¼ g

ð0Þ
1 Q

ðdÞ
1

h i

V
,whereg

ð0Þ
1 is deterministic.However, in themoregeneral

situation where g
ð0Þ
1 is a statistical quantity, as in the case of sources on a random surface

(Section 9.1.1.4), either primary or generated by the source aH and/or scattering sources in

the volume outside ofVT , the kernelh
ðdÞ
1=S is determined by the additional average in (9.1.20),

cf. Section 9.1.3 ff.

We next use the space–time transforms of aH; a
ðQÞ
V

D E
, and M̂

ð0Þ
1 Q̂

ðdÞ
1

h i

V

� ¼ Ĥ
ðdÞ
1=V

�
:

aH

�
R; t
� ¼

ð

Br1

est
ds

2pi

ð1

�1
Y0

�
k; s
�
G00

�
k; s
�
T
e�ik � R dk

�
2p
�3 ; ð9:1:25aÞ

raðQÞ
�
R; t
�
V

D E
¼
ð

Br1

est
ds

2pi

ð1

�1
a
ðQÞ
00

�
k; s
�
V

D E
e�ik � R dk

�
2p
�3 ; ð9:1:25bÞ

and

M̂
ð0Þ
1 Q̂

ðdÞ
1 aðQÞ
D Eh i

V
¼
ð

Br1

est
ds

2pi

ð1

�1
Y0

�
k; s
�
g
ðdÞ
00;1

�
k; s
�
V

a
ðQÞ
00

�
k; s
�
V

D E
e�ik � R dk

�
2p
�3 ;

ð9:1:25cÞ

From these we obtain the desired closed-form result for Dyson’s equation (9.1.22)13 here

which is a result of the postulated Hom-Stat character of the medium, namely,

aðQÞ
�
R; t
�
V

D E
¼
ð

Br1

est
ds

2pi

ð1

�1

 
Y0G00;T

1�Y0g
ðQÞ
00;1

!

k;sð Þ;V
e�ik � R dk

2pð Þ3 ; ð9:1:26Þ

12 For theseHom-Stat cases the Fourier transformsFk;Fs arewith respect to thedifferencesr ¼ R�R0; Dt ¼ t�t0:
13 This is the extension of Eq. (4.36), p. 132, Vol. 4, [7] to arbitrary signal inputs, including time, as well as space,

general Green’s functions, as well as the array or aperture.
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We can also express this last more compactly, since the kernel h
ðdÞ
00 ; k; sð Þ(9.1.24) is the

(double) Fourier transform of Mð0ÞQðdÞ1

� �

V
, namely,

aðQÞ R; tð ÞV
D E

¼
ð

Br1

est
ds

2pi

ð1

�1

Y0G00;T

1�hðdÞ00;1

 !

k;sð ÞjV
e�ik � R dk

2pð Þ3 ; ð9:1:26aÞ

where specifically we have

h
ðdÞ
00;1 k; sð ÞV � Y0 k; sð Þ1qðdÞ1 ; k; sð ÞV ; in which Y0 k; sð Þ1

¼ �L�10 ¼ FRFT Gf g; Eqs: ð8:1:17aÞ and ð8:1:17bÞ

qðdÞ1 ¼ Eq: ð9:1:23Þ and ð9:1:23aÞ: ð9:1:27Þ

and by definition, cf. Eq. (8.1.50):

G00;T k; sð ÞV ¼ FRFt GT R; tð ÞV
� �

¼
ð1

�1
dR

ð1

�1
dt

ð1

�1
YT R1; s=2pið ÞSin R; s=2pið ÞDeik

.R�st ds
2pi

: ð9:1:27aÞ

Here Sin R; tð ÞD is the truncated (i.e., finite duration) input signal [cf. Eq. (8.1.50)], which

vanishes outside the space–time interval D. The quantity Y0 (cf. 8.1.17a) is the (double)

Fourier transform of the Green’s function, with G00;T a similar transform of the source

density GT R; tð Þ, which contains the aperture or array structure of the distributed sources

in VT.

The integral cf. [(9.1.26) and (9.1.26a)] is thewave number–frequency(WNF) amplitude

spectrum of the mean scattered field. The denominator, 1�hðdÞ00;1, (9.1.27), is the field

renormalization factor, proportional to the local mass operator kernelQ
ðdÞ
1 jV for the volume

of scatterers, illustrated inFig. 9.7. The quantityQ
ðdÞ
1 depends on the density of scatterers and

the other characteristics of the scattering medium. In most applications Q
ðdÞ
1 is known only

approximately, but can in principle be found by suitable application of themethods outlined

in Section 8.5.3, where now the deterministic local mass operator Q is replaced by Q
ðdÞ
1 jV.

Again, this involves a four-dimensional computational model. We observe (from Section

(8.1.7)) that since the aperture or array is embodied in the original source densityG(R, t), we
can further exhibit its role explicitly in specifying the injected signal in space, aswell as time,

by using the relations (8.1.53) or (8.1.56). For example, in the case of arrays, which are here

characterized by discrete “point”-elements, we see that the result (9.1.27a) becomes for

input signals of finite duration D:

G00;T k; sð Þjarray ¼
XM

m¼1
eik � jmY ðmÞT jm; s=2pið ÞSin jm; s=2pið ÞD 1�e�sT� �

; ð9:1:28aÞ

and for apertures

G00;T k; sð Þjaperture ¼
ð1

�1
eik � RY ðmÞT R; s=2pið ÞSin R; s=2pið ÞD 1�e�sT� �

dR: ð9:1:28bÞ

9
>>>>>=

>>>>>;
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From Section 2.5.2, and more particularly Section 8.1.7 we now obtain for the Dyson

equation [(9.1.26) and (9.1.26a)] a result that contains the explicit array structure as well as

the finite duration of the input signal:

aðQÞ R; tð ÞV

 � ¼

ð

Br1

est 1�e�sT� � ds

2pi

ð1

�1

Y0 k; sð Þ1dk= 2pð Þ3
1�hðdÞ00;1 k; sð Þ

0

@

1

A

V

� e�ik � RXM
m¼1

e�ik � jmY ðmÞT jm; s=2pið ÞSin jm; s=2pið ÞD

ð9:1:29Þ

Figure 9.7 shows the average field in the scattering situation of an infinite volume containing

discrete scatterers with a source (in VT) producing an adjustable beam pattern. To evalu-

ate (9.1.29) we must choose representative values of h
ðdÞ
00;1, or equivalently, q

ðdÞ
00;1 orQ

ðdÞ
1

� �
.

In general this can be done only approximately (cf. Section 9.3 following). The sum in

Eq. (9.1.29) is seen from Section 2.5.3 to be the generalized beam patternAMjSin , that is, one
which depends on the input signal Sin�D as well as on the filters associated with each (point)
sensor. Inserting a steering vector kOT ¼ 2pnOT;T we have

XM

m¼1
YTSin�Deik � jj!XM

m¼1
Y
ðmÞ
T Sin�Dei k�kOTð Þ � jjm � AM DnTðsÞ; s=2pijsin�Dð Þ; ð9:1:30aÞ

where

DnT sð Þ � nT�nT;nT;nT ¼ f sð Þ; andAMjSin ¼
XM

m¼1
Am DnT; s=2pið ÞjSD ; withAm � Y

ðmÞ
T Sin�D:

ð9:1:30bÞ

0
ˆ

Ti

0
ˆ

Ti

∞

−∞
TV

A

B

P

P

x

z

−∞

−∞

∞

∞

FIGURE 9.7 Scattering by inhomogeneities in an infinite medium excited by a source in VT, with

a moveable beam pattern P �Pmð Þm
� �

. B is the region of significant scatter, with negligible

backscatter (A).
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If the same signal is applied to each sensor in the transmitting array, theAmjSinY
ðmÞ
T andAMjS0 in

factors into Sin s=2pið ÞDAM , cf. Section 2.5.3.1. (For a further discussion, including recep-

tion, see Sections 2.5.4 and 2.5.5.) Note finally, that the double Fourier transform of

a R; tð Þh iV , Eq. (9.1.29), namely the wave number–frequency amplitude spectrum of the

average field, is the integrand

a
ðQÞ
00 k; sð ÞV

D E
¼ Y0 k; sð Þ1AM DkT=2ps=2pið Þ

1�hðdÞ00;1 k; sð Þ
jSin�D

 !

V

; ð9:1:31Þ

in which DkT � k�kOT ¼ 2pDnT sð Þ, [(Eqs. (9.1.30a) and (9.1.30b)], contains the steering

vector. An important additional feature is the frequency dependence of wave number, that is,

DnOT ¼ fOT sð Þ,which exhibits the “entanglement” of space and time inpropagation (see also

Sections 2.5.2 and 2.5.6, item 2, and examples in Chapter 8).

9.1.2.2 Dyson’s Equation, Cont’d.:Hom-StatMedia—Surface Scatter In the common

case where we have scattering from a surface or interface between two media capable of

reflection and transmission (air–water, water-bottom, etc.), the canonical Dyson equations

(9.1.7b) and (9.1.21) are handled essentially in the sameway above for volume, except that

the primary signal source remains in thevolume.Themain scatteringmechanism is provided

by the interface or reflecting surface, from above and below, as shown in Fig. 9.8a and b.

Equation (9.1.21) is modified to

aðQÞ R; tð ÞS
D E

¼ aH R; tð Þþ ĥ
ðdÞ
1=S aðQÞ R; tð ÞS
D E

; ĥðdÞ ð9:1:32Þ

where ĥ
ðdÞ
1 jV þ S is established presently (9.1.36). The excitingfieldaH R; tð Þ is represented as

before by Eq. (9.1.25a).

We distinguish now two types of scenario: Type I, where a source in a homogeneous

medium (V) is scattered by inhomogeneities on a random, perfectly reflecting surface (S) and

Type II, in which the medium (V) contains inhomogeneities in addition to those on the

z

z′ζ =

TV V

(a) (b)

S

Hα )(sα )(sα

)(sα

r

z

z′ζ =

TV V

S r

Hα

)(sα

)(vα

)(vα )( svα +

)( svα +

FIGURE 9.8 (a) Case I. Scattering from completely reflecting surface (S) only, into the homoge-

neousmediumV. (b) Case II. Same as (a), except that nowV is a scatteringmedium. (S	V scattering is

neglected.)
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scattering surface (S). The situations are illustrated in Fig. 9.8a and b. Here we employ the

results of Section 8.3.4.1 and specifically Eq. (8.3.26),with (8.3.25a) and (8.3.25b), sincewe

are neglecting the higher order of scattering interactions embodied in (8.3.26a). Now we

have the added requirement that the random surface z R0; t0ð Þbe Hom-Stat, as well as g
ð0Þ
1

and the inhomogeneity component Q
ðdÞ
1=S, for example

Q
ðdÞ
1=SjHom-Stat ¼ QðdÞ R0�R0; t

0�t0ð ÞS ¼
ð
dt0
þ

S0

q
ðdÞ
1 R0�R0; t

0�t0ð ÞSdS0 R0; t0ð Þz

¼ FkFs q
ðdÞ
00;1=S

n o
¼
ð

Br1

ds

2pi

ð
dk

2pð Þ3 q
ðdÞ
00;1 k; sð ÞS0e�ik

. R0�R0ð Þþ s t0�t0ð Þ

9
>>>>>=

>>>>>;

;

ð9:1:33Þ

with the inverse, like (9.1.22),

q
ðdÞ
00;1jS ¼ FrFDt Q

ðdÞ
1=S

n o
; withQ

ðdÞ
1=S above: ð9:1:34Þ

[See Eq. (9.1.23) and (9.1.23a) and footnote 2. The average global mass operator (9.1.7a),

analogous to (9.1.24), is given by

ĥ
ðdÞ
1

�
R0; t0

���R0; t0

�

S
¼

ðt0

t
ð�Þ
0

dt0

þ

S0

ĥ
ðdÞ
1

�
R0�R0

��t0�t0
�
dS0 R0ð ÞS

¼
ð

Br1

ds

2pi
es t0�t0ð Þ

þ

S

ĥ
ðdÞ
00;1 k; sð ÞSe�ik � R0�R0ð Þ dk

2pð Þ3

9
>>>>>>>=

>>>>>>>;

; ð9:1:35Þ

with ĥ
ðdÞ
1 ¼ M̂

ð0Þ
1=s

D E
Q̂
ð0Þ
1=s, from the appropriate averages, cf. (9.1.32), (9.1.7a), and remarks

following Eq. (9.1.24).

We begin next with the relations [(8.3.23a) and (8.3.23b)], which on taking the

appropriate averages to convert to the Dyson equations, becomes

I :
1�ĥðdÞS

� �
a Sð Þ
 � ¼ aH

a Sð Þ
 � ¼ aHþ ĥ
ðdÞ
S a Sð Þ
 � ;

8
<

:

II :
1�ĥðdÞS

� �
a V þ Sð Þ
 � ¼ a Vð Þ
 � ¼ 1�ĥðdÞS

� �
1�ĥðdÞV

� �
aH6 1�ĥðdÞS �ĥðdÞV

� �
aH

a V þ Sð Þ
 �
6aHþ ĥ

ðdÞ
S þ ĥ

ðdÞ
V

� �
a V þ Sð Þ
 �

6aHþ ĥ
ðdÞ
V þ S a V þ Sð Þ
 � ;

8
<

:

ð9:1:36Þ
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which last is in more detail similar to Eq. (8.3.26), where we neglect the comparatively

smaller scatter product terms ĥ
ðdÞ
S ĥ

ðdÞ
S aHh i. Following now with the same procedure

as we used to obtain (9.1.26), and so on, we find for (I and II) above, shown schematically

in Fig. 9.8a and b, that the Dyson equations are respectively:

I: aðQÞ R; tð ÞS
D E

¼
ð

Br1

est 1�esT� � ds

2pi

ð1

�1

Ẑ0 k; sð ÞG00;T k; sð Þ� �

1�Ẑ0 k; sð ÞgðdÞ00;1 k; sð Þ

 !

S0

e�ik � Rdk
2pð Þ3 :

ð9:1:37Þ

Here Ẑ0 is a deterministic (i.e., average) local operator,which is the surface counterpart toY0

for volumes in (9.1.26), and so on. It is given explicitly by

Ẑ0 k; sð Þ ¼
ð
dt0
ð
dr0ĥ r;Dtð ÞSð ÞR0;t0eik � r�sDt; with r ¼ R�R0;Dt ¼ t�t0; ð9:1:38aÞ

where ĥ, and thus Ẑ0 by (9.1.38a), are represented by the (deterministic) relations14

ĥ r;Dtð ÞS0 ¼ ĝð0Þ R�R0; t�t0ð Þ ¼ g
ð0Þ
1 J0� J0gð0Þ1

h iD E

R;z

¼ g
ð0Þ
1 r0z � r0�r0z � rgð0Þ1D E

R;z

9
>=

>;
ð9:1:38bÞ

with z ¼ z0 R0; t0ð Þ6z0 r0; t0ð Þð Þ the random surface elevation, cf. Eq. (8.1.42g). The global

mass operator is specifically (in transform space) and in its space–time form

ĥ
ðdÞ
00;1 k; sð Þ � Ẑ0 k; sð ÞSqðdÞ00;1 k; sð ÞS; ð9:1:38cÞ

with the components [(9.1.38a) and (9.1.38b)]. In the relation (9.1.37) Ẑ00;1, Eqs. (9.1.38a)

and (9.1.38b), operates on G00;T, the (transform of the) source density GT R0; t0ð Þ of the
transmitter, producing theoriginal fieldaH R; tð Þ. Similarly, Ẑ0;S alsomodifies the (transform

of the) average of the effect of the local inhomogeneities, embodied in q
ðdÞ
00;1 (or equivalently,

Q
ðdÞ
1=S). The role of the transmitter’s arrayAM, with applied signal, is obtained by substituting

AM in Eq. (9.1.30a), and so on, for G00;T, that is

I: aðSÞ R; tð ÞS
D E

¼
ð

Br1

est 1�e�sT� � ds

2pi

ð1

�1

Ẑ0 k; sð ÞSAM Dk=2p; s=2pið Þ� �

1�hðdÞ00;1 k; sð Þ

 !

Sin�D

e�ik � R dk

2pð Þ3 ;

ð9:1:39Þ

14 Because of the assumed Hom-Stat properties of the random surface z R0; t0ð Þ

Ĵ
0 � qz

qx0
q
qx0
þ qz

qy0
q
qy0
þ q

qz0
¼ zx

q
qx0
þ zy

q
qy0
þ q

qz0
¼ f̂ zð Þ; ĝð0ÞS ¼ gð0Þ1 f̂


 �� f̂

 �

gð0Þ1
h i

;

g
ð0Þ
S (and M̂

ð0Þ
1=S) are also Hom-Stat, provided z, and QV aVh i have at least continuous first derivatives.
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cf. [(9.1.29) and (9.1.31)] for volumes. Equations (9.1.37) et. seq. and (9.1.39) is the formal

solution to Dyson’s equation for the scattered field in the homogeneous volume (V),

attributable to the scattering from the random rough surface (S), here on perfect reflection,

when thehigherorder scatter ĥSĥVa
ðV þ SÞ is negligible.Here Ẑ0, unlike its counterpart forY0

for volume, is seen to be a (global) operator (9.1.38a).

For the more complex Dyson situation II, (9.1.36), we need now the contribution to the

volume scatter ĥ
ðdÞ
V aðV þ SÞ
 �

, cf. Fig. 9.8b. This is readily obtained from (9.1.26) et. seq. by

noting that h
ðdÞ
V þ S 6 h

ðdÞ
V þh

ðdÞ
S . Thus, the contribution of volume scatter can be considered

separately from that due to the surface, when the “cross-scatter” component � h
ðdÞ
S h

ðdÞ
V

� �
is

neglected here, cf. (9.1.36).Accordingly,wemayuse our previous result (9.1.26) et. seq. and

write for the added volume component directly, here h
ðdÞ
V aðV þ SÞ
 �

, and for the surface

contribution h
ðdÞ
S aðV þ SÞ
 �

, (9.1.32), to obtain directly

II: aðVþSÞ R; tð Þ
D E

6aH R; tð Þþ aðSÞ R; tð ÞS
D E

þ aðVÞ R; tð ÞV
D E

¼ aH R; tð Þþ I: aðQÞ R; tð ÞS
D E

"

¼
ð

Br1

est 1�esT� � ds
2pi

ð1

�1

Ẑ0 k; sð ÞG00;T k; sð Þ� �

1�Ẑ0 k; sð ÞgðdÞ00;1 k; sð Þ

 !

S0

	e
�ik � Rdk
2pð Þ3

#

þ aðQÞ R; tð ÞV
D E
"

¼
ð

Br1

est
ds

2pi

ð1

�1

Y0G00;T

1�
h
ðdÞ
000;1

0

@

1

A

k;sð ÞjV

e�ik � R dk

2pð Þ3
#

; ð9:1:40Þ

Asbefore,aH R; tð Þ, the homogeneous component, if any, is givenby (9.1.25a) above. In short,

the Dyson equation for Case II, Fig. 9.8b, is the sum of the two right hand members of

Eq. (9.1.36), that is, aHþ ĥ
ðdÞ
VþS aðVþSÞ
 �

, as required. The explicit incorporation of the

generalizedbeampattersAM canbe included, as indicated in (9.1.31)and (9.1.39), onapplying

the results above to ĥ
ðdÞ
VþS � ĥ

ðdÞ
S ĥ

ðdÞ
V explicitly. Similar to the case of volume scattering

(9.1.2.1), in the Hom-Stat situations of surface scatter (Section 9.1.2.2) we have obtained

formal, closed-formresults, cf. (9.1.37)and (9.1.39).Aswehave seen, theglobaloperator Q̂
ðdÞ
1=S

for the surface inhomogeneities is also found from the results (9.1.9a)–(9.1.15b), applied

specifically to surface cases. However, Q̂
ðdÞ
1=S itself does not posses an explicit closed form but

must be approximated. Various types of such approximations are considered in Section 9.3.

9.1.2.3 Dyson’s Equation—The Purely Deterministic Hom-Stat Case Our results for

aðQÞ R; tð Þ
 �
when the medium is considered to be deterministic and Hom-Stat (Section 8.3

et. seq.) may be obtained at once from Section 9.1.2.2, Eq. (9.1.26) for scatter in volumes

and (9.1.37) and from surfaces. Since themedium now constitutes a one-member ensemble,
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the associated probability measure is unity. Thus, a Qð Þ
 � ¼ a Qð Þ: no averages are required.
The solution for the scattered field (9.1.26) becomes, for volumes:

aðQÞ R; tð ÞV ¼ FkFs Y0G00;T= 1�Y0q00;T
� �� �

V
; q
ðdÞ
00;1jV ¼ q00;1jV ¼ FR;t Q1=V

� �
; ð9:1:41Þ

this last from (9.1.8a) and (9.1.23a). Similarly, h
ðdÞ
00;1 ¼ h00;1 ¼ Y0q00;1, for volumes

[(9.1.27) and (9.1.27a)]. Equation (9.1.41) represents the solution of the integral

equation for these deterministic cases

aðQÞ R; tð Þ ¼ aH R; tð Þþ ĥ1a
ðQÞ R; tð Þ; S or Vð Þ; ð9:1:42Þ

which in the Hom-Stat regime postulated here can be effectuated by simple Fourier

transforms. Here “Hom-Stat” requires a steady state in time and homogeneity in space,

while the signal causing the scatter from themedium’s inhomogeneities is “on”.This, in turn,

is determined by the transmitted signal’s durationD � 1ð Þ, which is expressed inG00;T, (the

double transform) of the signal density GT R0; t0ð Þ, vide Section 8.1.7 for example.

[Equivalent forms of solution to (9.1.41) are (9.1.29) and (9.1.31).

Similar modifications of Dyson’s equation are made for deterministic scatter from

surfaces. The result, from (9.1.37) et. seq. above, is

aðQÞ R; tð ÞS ¼ FkFs Ẑ0G00;T

� �
= 1�Ẑ0q00;1
� �� �

S

n o
; ð9:1:43Þ

which is the solution to (9.1.42) for surfaces,with theoperator kernel ĥ, cf. (9.1.38b),without

the average here.

9.1.3 Example: The Statistical Structure of the Mass Operator Q̂
ðdÞ
1 , with Q̂


 � ¼ 0

In this instance themean (Langevin)mass operator h
ðdÞ
1 ¼ M̂

ð0Þ
1 Q̂

ðdÞ
1

D E� �D E
, Eqs. (9.1.14a),

(9.1.15a), (9.1.15b) simplified considerably [cf. Section 9.1.1.3], when Q̂

 �

vanished and is

symmetrically distributed about Qh i ¼ 0.We outline here as an example of the calculations

involved a more detailed development of (9.1.15a). In this case, generally, we start with the

appropriate development of Q̂
ðdÞ
1 embodied in the relation (9.1.10) and Section 9.1.1.4 for

surface scatter, namely,

Q̂
ðdÞ
1 ¼

X1

m¼0
B̂m

�
R; t
��R0; t0

�
V or S

¼
ð

V or S

Q̂
ðdÞ
1

�
R; t
��R0; t0

�� �
R0;t0dR

0dt0; ð9:1:41Þ

where the operator series B̂m is explicitly obtained from (9.1.15a), with the corresponding

relation for h
ðdÞ
1 from (9.1.15b) and the results of Section 9.1.1.4.

To proceed further we must use a specific form of Langevin equation, appropriate to the

class of propagation we are considering (Table 8.4). In addition, we must treat Q̂ as a

stochastic operator in this Langevin equation:
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9.1.3.1 Example: The Stochastic Time-Dependent Helmholtz Equation. We begin

first with propagation in volumes.

r2� 1

c20
1þ «R R; tð Þ½ � q

2

qt2

� �
aðQÞ R; tð Þ ¼ �GT; R«VT;¼ 0; elsewhere; ð9:1:42Þ

subject to the familiar boundary and initial condition. (Dirichlet, i.e., no primary sources on

the boundaries (Table 8.3), and qaðQÞ=qt ¼ q2a Qð Þ=qt2 ¼ 0, with aðQÞ 2 V�VT; V!1
(infinite medium)). Accordingly, we see at once that

Q̂ � « R; tð Þ
c20

q2

qt2
: ð9:1:43Þ

Applying this to the first term of (9.1.22) yields directly, for volumes15:

D
Q̂1

�
F̂12

��Q̂2

�

V

E
¼ «R R1; t1ð Þ

c20

ðtþ

t�
0

ð

VT

�
q2

qt2
gð0Þ1
�
R1; t1

��R2; t2
�� «R R2; t2ð Þ

c20

* +

	 q2

qt22
ð ÞR2;t2

dR2; dt2

����
R2¼R0; t2¼t0

; ð9:1:44aÞ

notationally in view of (9.1.22). We easily see that16

Q̂1F̂12jVQ̂2


 � ¼ 1

c20

ðtþ

t�
0

ð

VT

K«R R1; t1;R2; t2ð Þ q
2

qt21
gð0Þ
�
R1; t1 R2; t2

� q2

qt22
ð ÞR2;t2

dR2; dt2;

����

ð9:1:44bÞ

where K«R ¼ «R R1; t1ð Þ«R R2; t2ð Þh i is the covariance of «R.
Similarly, for scattering from surfaces in this case for backscatter from the surface S ¼ S0

enclosing VT we obtain16

Q̂1F̂12jSQ̂2


 � ¼
ð ð

S0

KR0
R1; t1;R2; t2ð Þ q2

qt21
gð0Þ1

q
qn
ð Þ�ð Þ qg

ð0Þ
1

qn

" #( )
q2

qt22
ð ÞR2;t2

dS0 R2; t2ð Þ;

ð9:1:45Þ

15 We use the well-known relation for differentiating under the integral sign

q
qc

Ðb

a

f x; cð Þdx ¼ Ð
b

a

q
qc f x; cð Þdxþ f b; cð Þ qbqc�f a; cð Þ qaqc ;

where the last two terms here are zero.
16 By inserting a factor lT	V ¼ l where t0 � t � t andV 2 VT, and 0 elsewhere in the integrand, we can replace the

finite limits by �1;1ð Þ.
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in which KR0
¼ R0 R1; t1ð ÞR0 R2; t2ð Þh i is the covariance of the (plane-wave) reflection

coefficient.

We follow the sameprocedure for the forth-ordermoment of Q̂V , cf. (9.1.22), andfind that

Â
ð1Þ
3 ¼ Q̂ F̂VQ̂

� �ð3ÞD E
¼

ðð

tRð Þ

0

B@

1

CA

ð3Þ

K«R R1; t1; . . . ;R4; t4ð Þ q
2

qt21
F̂12

�
R1; t1

��R2; t2

�

V

� � � q
2

qt23
F̂24

�
R3; t3

��R4; t4

�

V
� q2

qt24
ð ÞR4;t4

dR2 . . . dR4dt2 . . . dt4:

ð9:1:46Þ

In fact, the general formula for the 2mth moment of Q̂V , from B̂
ð1Þ
2m�1;m � 1, is now readily

seen to be

Q̂ F̂V Q̂
� �ð2m�1ÞD E

¼
ðð

tð Þ

0

B@

1

CA

ð2m�1Þ

K«R R1; t1; . . . ;R2m; t2mð Þ
Y2m�1

i¼1

q2

qt2i
F̂i;iH jV

 !
q2

qt22m
ð ÞR2m ;t2m

Y2m

i¼2
dRidti;

ð9:1:47aÞ

with m� 1. For surface scatter, we have alternatively

Q̂ F̂S0Q̂
� �ð2m�1ÞD E

¼
ðð

tð ÞS0

0

B@

1

CA

ð2m�1Þ

KR0
R1; t1; . . . ;R2m; t2mð Þ

Y2m�1

i¼1

� q2

qt2i
gð0Þ1

q
qn
ð Þ�ð Þ q

qn
gð0Þ1

2

4

3

5

0

@

1

A

i;iþ1

q2

qt22m
ð ÞR2m;t2m

Y2m

i¼2
dS0 Ri; tið Þ;

ð9:1:47bÞ
where

gð0Þ1
q
qn
ð Þ�ðÞ q

qn
gð0Þ1

2

4

3

5

i;iþ1

¼ gð0Þ1
�
Ri; ti

��Riþ1; tiþ1

� q
qni
ð Þi�ðÞi

q
qni

gð0Þ1
�
Ri; ti

��Riþ1; tiþ1

�

with
q
qni
� n̂i � ri;

ð

ðtÞ

þ

S0

0

B@

1

CA

ð2m�1Þ

�
ð

ðt1Þ

þ

S0 R2;t2ð Þ

� � � � � � � � �
ð þ

S0 R2m ;t2mð Þ

ð Þ:

9
>>>>>>>>=

>>>>>>>>;

ð9:1:47cÞ

These higher order evenmoments of Q̂, represented here byK«R;2;...;2m andKR0;2;...;2m, are

the higher order covariance which constitute the mass operator Q̂
ðdÞ
1 , along with the first-

order covariances K«0 R1; t1;R2; t2ð Þ;KR0
R1; t1;R2; t2ð Þ. As we can see from [(9.1.28a)

and (9.1.28b)] their complexity increaseswith theorder (m). For theoddmoments (in Q̂)m�
0, we have a similar behavior:
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Q̂ F̂V Q̂
� �ð2mÞD E

¼
ðð� �ð2mÞ

K«R R1;t1; . . . ;R2mþ1;t2mþ1ð Þ
Y2m

i¼1
F̂i;iþ1jV

q2

qt22mþ1
ðÞR2mþ1;t2mþ1

Y2mþ1

i¼2
dRidti

ð9:1:48aÞ

for volume scatter,m� 1. (Form¼ 0, we have Q̂

 �¼0, cf. (9.1.14).) For surface scatter the

odd moments (m� 1) become explicitly

Q̂ F̂S0 Q̂
� �ð2mÞD E

¼
ðð� �ð2mÞ

KR0
R1;t1; . . . ;R2mþ1;t2mþ1ð Þ

Y2m

i¼1

q2

qt2i
gð0Þ1

q
qn
ðÞ�ðÞ q

qn
gð0Þ1

2

4

3

5

i;iþ1

� q2

qt22mþ i
ðÞR2mþ1;t2mþ1

Y2mþ1

i¼2
dS0 Ri;tið Þ;m�1;

ð9:1:48bÞ
again with Q̂


 �¼0 here.

9.1.3.2 The Gaussian Case Wenote first from the above that although Q̂

 �

vanishes, the

higher order (m� 1) oddmoments generally do not, so that Q̂F̂V ;SQ̂

 �

is the lowest order of

nonvanishingmoment comprising the statisticQ
ðdÞ
1 . Themass operatorQ

ðdÞ
1 , (9.1.22), in this

time-dependent Helmholtz is accordingly given by the combination of odd and even terms

above, corresponding to the development in (9.1.13).

Consequently, Q̂
ðdÞ
1 for volumes VTð Þ and surfaces STð Þ is seen to require for a complete

description all themoments of Q̂, of all orders. This is to be expected, since Q̂
ðdÞ
1 is nonlinear

in Q̂, becauseof thegeneral scattering,which involves all orders of interaction.This results in

a different, if not impossible, analytic task, particularly for strong scattering. Approxima-

tions are accordingly required and are inherent in any practical approach. (Some of these are

noted in Section 9.3.) Even when Gaussian statistics for the local inhomogeneities (Q̂) are

employed, where the higher order covariances reduce to sums of products of second-order

statistics, (9.1.30a), this remains the case. Effective approximate methods for obtaining

estimates of the mass operator ĥ
ðdÞ
1 ¼ MQ̂

ðdÞ
1

� �
require experimental and numerical

methods, most readily applied to the governing integral equation (9.1.7a). This is described

briefly in Section 8.5.3 and is discussed in Chew [1].

We also observe Table 8.4 of the preceding chapter that the inhomogeneity operator Q̂ for

other common types of media, with their characteristic propagation equations (cf. 2-6 in the

table), have the same simple linear structural product relations between the random

parameters a2
12; t̂01, and so on, and the various differential operators q=qtð Þ;ð

q=qtð Þr2; . . . etcÞ: This allows us to replace in (9.1.23) – (9.1.28b) the local operators

q2=qti
� �

for the time-dependent Helmholtz equation by the various others, for example,

q=qtð Þ; q=qtið Þr2, and so on, and the statistical moments K«;KR0
, by Ka2

1
1;Kt̂ . . . ; and so

on, of these other random parameters.

Finally, we obtain our basic desired result: a generalized Huygens Principle (GHP) for

random scattering in an infinite volume of scattering,17 cf. Section 8.3.4. This is now

17 Here we neglect the backscatter effect (cf. Sections 8.3.3.1. and 8.3.3.2 and Figs. 8.1 and 8.2), and for surface

scatter, the array volume contributions.
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provided by (9.1.28a) and (9.1.22) to give hðkÞm ¼ M̂1Q
ðdÞ
1;1

� �
for the resulting mean field

a
ðQÞ
V

D E
[Dyson’s equation (9.1.7a) or equivalently (9.1.7a) in expanded form]. A similar

GHP is obtained for surface scatter a
ðQÞ
S

D E
when (9.1.22) is used to yield h

ðdÞ
S ¼ M̂1;SQ

ðdÞ
1;S .

9.1.4 Remarks

Section 9.1 has introduced the extension of the deterministic results of Section 8.3 et. seq. to

random fields. These earlier results produce representative members of the ensemblewhich

constitute the resulting Langevin equation, namely a set of dynamical equations whose

solution is described by statistical moments, and more fully, by the probability distribution

of the random field.

The discussion here has largely been devoted to the first moment of the scattered field,

obtained from theDyson equation.This includes the physically approximate situationwhere

the scatterers can be considered to be homogeneous and stationary, mathematically

represented by (9.1.23) and (9.1.24) and for volume by (9.1.34) and (9.1.35). The extension

to a four-dimensional feedback system by the FOR of 9.1.1.1 by analogy with the familiar

one-dimensional one of electrical engineering practice, is now made for these average

Langevin equations, which are schematically illustrated in Figs. 9.4 and 9.6. (See also

Fig. 8.18 for a typical representation of the ensemble.) These results are themselves

extensions of the more familiar relations of the “classical” scattering theory [1–7, 17], for

example, in the following respects, which include

i. broadband signals and transients, as well as steady state examples;

ii. distributed sources VTð Þ;
iii. general aperture and arrays;

iv. general (linear) random media, both non-Hom-Stat and Hom-Stat, in which the

Green’s functions (both deterministic and random) represent a variety of possible

media impulse responses;

v. scattering from surfaces as well as volumes, including from both;

vi. the statistics of the inhomogeneities, represented by Q̂ are general, that is, non-

Gaussian;

vii. the mass operator Q̂
ðdÞ

(and hence ĥðdÞ) are nonlocal, as in ĥ;

viii. the generalized Dyson equations (9.1.26) and (9.1.37) are nonlinear in Q̂
ðdÞ

(and

) ĥðdÞ), although they are linear in the average field aðQÞ

 �

.

The (integral) Dyson equation discussed in Section 9.1.1 is the first-order Dyson equation,

for the mean scattered field aðQÞ

 �

. It is formally exact, but depends on knowledge of Q̂
ðdÞ
1

that is not usually available. This is true even for Hom-Stat fields, for which exact closed

form solutions of the basic integral equation (9.1.7a) are available (9.1.26, 37) et. seq.

Approximate forms for QðdÞ offer one approach to quantitative results. The numerical

methods of the feedback approach outlined in Chapter 8 offer another, albeit a computa-

tional intensive one, but one within the capabilities of modern methods.
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9.2 HIGHER ORDER MOMENTS OPERATIONAL SOLUTIONS

FOR THE LANGEVIN EQUATION

The Dyson equation can be formally generalized to higher order moments, for example,

a
ðQÞ
1 . . .aðQÞm

D E
. Their evaluation can be obtained in fashion similar to that discussed in

Section 9.1.2. As expected, they become progressively more coupled as their order m � 2ð Þ
increases.We consider first the second-order medium m ¼ 2ð Þ, that is, one constructed from
the ensemble

að2Þ ¼ a1a2 ¼ a R1; t1ð Þa R2; t2ð Þ � að2Þ R1; t1;R2; t2ð Þ; ð9:2:1Þ

which is then generalized further in Section 9.2.3 for the case m > 2.

9.2.1 The Second-Order Moments: Analysis of the Bethe–Salpeter Equation (BSE)

Accordingly, let us examine in particular the second-ordermedium m ¼ 2ð Þ, with the help of
the FOS (Section 9.1.1). We use now the basic ensemble relation (9.1.5b) and consider the

ensemble at two field points P R1; t1ð Þ and P R2; t2ð Þ, namely,

a1 ¼ aH1þ M̂1Q̂1a1;a2 ¼ aH2þ M̂2a2; with a1 ¼ a R1; t1ð Þ;a2 ¼ a R2; t2ð Þ; ð9:2:2Þ

where M̂1 ¼ M̂1 R; t R1; t1j Þð and Q̂1 ¼ Q̂ R1; t1ð Þ, and so on. Their average product is the
second-order, second moment

m ¼ 2ð Þ : MðaÞ12 � a1a2h i ¼ M̂1 Q̂1a1M̂2Q̂2a2


 �þaH2 M̂1Q̂1a1


 �

þaH1 M̂2Q̂2a2


 �þaH1aH2; or ð9:2:3aÞ

¼ ĥ1a1ĥ2a2h iþaH1 ĥ1a1h iþaH2 ĥ2a2h iþaH1aH2: ð9:2:3bÞ

Because the similar operators �ĥð Þ commute and clearly do the different fields

a1;a2;aH1;aH2ð Þ, we can write ĥ1a1ĥ2a2h i ¼ ĥ1ĥ2a1a2h i ¼ M̂1M̂2 Q̂1Q̂2a1a2


 �
, since

M̂2Q̂1 ¼ Q̂1M̂2, since M̂2 and Q̂1 are also entirely different functions. By extension of (9.1.6)

and so on in the (first-order) Dyson formulation this enables us to define a (deterministic)

second-order mass-operator or “intensity operator” Q̂
ðdÞ
12 ([7], p. 128, Eq. 4.22):

Q̂
ðdÞ
12 a1a2h i � Q̂1Q̂2a1a2


 �
; where Q̂

ðdÞ
12 ¼ Q̂

ðdÞ
12 R1; t1;R2; t2 R01; t

0
1;R

0
2; t
0
2

�� �
;

� ð9:2:4Þ

a1 ¼ a1 R01; t
0
1

� �
and so on, in (9.2.4). Equivalently, the second-order global intensity operator

(GIO) is given by

ĥ
ðdÞ
12 a1a2h i � ĥ1ĥ2a1a2h i6 ĥ

ðdÞ
12 R1; t1;R2; t2 R01; t

0
1;R

0
2; t
0
2

�� � ¼ M̂1M̂2 Q̂1Q̂2a1a2


 �
;

�

ð9:2:5Þ

� M̂1M̂2Q̂
ðdÞ
12 a1a2h i ð9:2:5aÞ
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These operators Q̂
ðdÞ
12 ; ĥ

ðdÞ
12

� �
embody the inhomogeneity effects of the nowequivalent second-

order deterministicmedium.The relations (9.2.4) and (9.2.5), aswe shall see presently, allowus

to calculate Q̂
ðdÞ
12 and ĥ

ðdÞ
12 .

Using the defining relations (9.1.6), (9.2.5), with (9.1.9),

ĥ
ðdÞ
1 a1h i � ĥ1a1h i; ĥðdÞ2 a2h i � ĥ2a2h i; and ĥ

ðdÞ
12 a1a2h i � ĥ1ĥ2a1a2h i; and

ĥ
ðdÞ
12 � ĥ

ðdÞ
12 R1; t1;R2; t2 R01; t

0
1;R

0
2; t
0
2

�� �� ð9:2:6Þ

in (9.2.3a), or (9.2.3b) allows us to express the second moment of the field at different

positions and times, namely (9.2.6) M̂
ðaÞ
12 ¼ a1a2h ið Þ, entirely in terms of the deterministic

global operators (9.2.6), with the help of the following equivalent of (9.2.3b),

from (9.1.6), (9.1.8b), et. seq., to obtain finally

M
ðdÞ
12 � a1a2h i ¼ 1�ĥðdÞ12

� ��1
1�ĥðdÞ1 ĥ

ðdÞ
2

� �
a1h i a2h i: ð9:2:7Þ

Equation (9.2.7) is the FOS form of an analogue to the BSE, arising originally in

quantum field theory [see, for example, Chapter 4 of Ref. [7], and pp. 117, 129, 130,

also Section 4.3]. As in the first-order cases discussed in Section 9.1, the averaging process

destroys information: from a1a2h i we cannot reconstruct the ensemble a1a2f g, with all

its statistical properties. We can, of course, obtain the (product of the) mean values in

the limit,

M
ðdÞ
1 M

ðdÞ
2 z lim

t2�t1!1
a1a2h iY 1�h1ð Þ�1

D E
aH1 1�h2ð Þ�1
D E

aH2

����
t2�t1!1

¼ a1h i a2h i
����
t2�t1!1

:

ð9:2:8Þ
Equally important to note, moreover, is that Eq. (9.2.7) is in the form of a Dyson’s

equation (9.1.7), albeitwith adifferent “mass operator” Q̂
dð Þ
12 as feedback source anddifferent

feedforward operator, analogous to M̂1 ¼ M̂1
� �

. In fact, if we set

B
ð1Þ
12 � 1�ĥðdÞ1 ĥ

ðdÞ
2

� �
a1h i a2h i � Ĥ

ð1Þ
12 a1h i a2h i; i:e:

Ĥ
ð1Þ
12 � 1�ĥðdÞ1 ĥ

ðdÞ
2

9
=

;
; ð9:2:9aÞ

then Equation (9.2.7) becomes

M
ðaÞ
12 � a1a2h i ¼ 1�ĥðdÞ2

� ��1
Ĥ
ð1Þ
12 a1h i a2h i; ð9:2:9bÞ

which is the second-(order) second moment of the scattered field a ¼ aðQÞ
� �

. Accordingly,

the covariance of this field is given by the integral equation

K
ðaÞ
12 � a1a2h i� a1h i a2h i ¼ 1�ĥðdÞ12

� ��1
Ĥ
ð1Þ
12 �1

� �
a1h i a2h i ¼ K

ðaÞ
12 R1; t1;R2; t2ð Þ:

ð9:2:10Þ

9
=

;
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This covariance is also readily seen to be from (9.2.9a)–(9.2.10)

1�ĥðdÞ12

� �
K
ðaÞ
12 ¼ ĥ

ðdÞ
12 �ĥðdÞ1 ĥ

ðdÞ
2

� �
a1h i a2h i; or

K
ðaÞ
12 ¼ 1�ĥðdÞ12

� ��1
ĥ
ðdÞ
12 �ĥðdÞ1 ĥ

ðdÞ
2

� �
a1h i a2h i:

9
>=

>;
ð9:2:10aÞ

These higher order integral equations, analogous to (9.1.7a), formally represent particular

moment solutions to the Langevin equation (9.2.3a) (without the average). For the intensity

a2
1


 �
and variance of the scattered field we have at once from (9.2.9b) and (9.2.10):

I
ðaÞ
11 ¼ M

ðaÞ
11 ¼ a2

1


 � ¼ 1�ĥðdÞ11

� ��1
1�ĥðdÞð2Þ1

� �
a1h i2; ð9:2:11aÞ

K
ðaÞ
11 ¼ a2

1


 �� a1h i2 ¼ 1�ĥðdÞ11

� ��1
Ĥ
ð1Þ
11 �1

� �
a1h i2 ð9:2:11bÞ

(Note that IðaÞ ¼ a2 is different from I
ðaÞ
11 ¼ a2

1


 �

On comparison with (9.1.2) it is evident that (9.2.9b) is in the indicated Dyson form,

cf. (9.1.7a). Here Ĥ
ð1Þ
12 a1h i a2h i ¼ B

ð1Þ
12 takes the place respectively of the original, unper-

turbed field aH, and ĥ
ðdÞ
12 is now the new field renormalization operator, where Ĥ

ð1Þ
12 a1h i a2h i

is effectively the new field. The desired output is a1a2h i, now the space–time second-order

second moment of the total field. The FOR diagram for this second-order case, namely the

analogue of Fig. 9.2, is shown to be from the equivalent circuit diagram approach of Section

8.5 to be Fig. 9.9.

Correspondingly, these perturbation series solutions of (9.2.7) and (9.2.9b) are canoni-

cally represented by the integral equation

PSS : M
ðaÞ
12 ¼ a1a2h i ¼ aH1aH2þ

X1

k¼1
ĥ
ðdÞ
12

� �ðkÞ
Ĥ
ð1Þ
12 a1h i a2h i: ð9:2:12Þ

When the input signals are random, or has random components (f), the complete ensemble

average is

a1a2h ih if ¼ aH1aH2h ifþ
X1

k¼1
ĥ
ðdÞ
12

� �ðkÞ
Ĥ
ð1Þ
12

. a1h i a2h i: ð9:2:12aÞ

It is also seen from (9.2.7)–(9.2.11a) that calculation of the higher order moments, for

example a1a2h i here, depends explicitly on the determination of the lower order moment.

11
21 MM −−

T2T1GG

21
ˆM̂ M 21α α

)(
12

ˆ dQ

⊕

FIGURE9.9 Feedback operational representation for the second order, that is BSE (9.2.7), (9.2.46),

or equivalently here, the second-order Dyson equation (9.2.7).
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Finally, all the above results apply, of course, for the Fourier transform (FT) expressions

for a1;a2, that is, a01;a001, and so on, with ĥ
ðdÞ
1 ! Ŷ001Q̂

ðdÞ
001, double FT, and so on, with

Q̂
ðdÞ
00;12 ¼ FR2;t2FR1;t1 , cf. (9.2.4) and so on. A possible advantage in employing these

transformed relations is that the operator M̂1Q̂1; M̂2Q̂2, commutes in (k,s)-space, Section

8.4.2. For the intensity spectrum of the scattered field a, we use the results of Chapter 2 for
the space–timeWiener–Khintchine (W-K) relations, in particular for the discretely sampled

field data a Rm; tnð Þf g. (See also Section 2.5,when apertures and arrays provide the coupling
of the input signal to the medium, here a random scattering environment.) Accordingly, we

have for the resulting wave number–frequency intensity spectrum in the general case for

non-Hom-Stat scattered fields and ensembles of infinite duration, that is, D¼1:18

Wa n; fð Þ1 ¼ 2FR;t K
ðaÞ
11

D En o
¼ 2

ð1

�1
K
ðaÞ
11 p1; p1�pð Þ

D E

a
e2piq � pdp; dp ¼ dRdt

ð9:2:13aÞ

p ¼ R; tð Þ; p1 � R1; t1ð Þ; p2 � R2; t2ð Þ, with q ¼ n; fð Þ. The inverse transform is in turn

K
ðaÞ
11 p1;p1�pð Þ

D E

a
¼ 1

2
F�1n;f Waf g K

ðaÞ
11

D En o
¼ 1

2

ð1

�1
Wa n; fð Þ1e�2piq � pdq; dq¼ dndf ð9:2:13bÞ

The conditions for which (9.2.13a) and (9.2.13b) hold are given in Sections 2.3–2.4. For

truncated non-Hom-Stat continuous ensembles (where Dj<1j ), relations similar to

(9.2.13a) and (9.2.13b) are also given there. For these scattered fields Ka is specified

by (9.2.10). When the ensemble is Hom-Stat we can drop the averages h ia
� �

in (9.2.13a)

and (9.2.13b). For discretely sampled scattered fields a Rm; tnð Þ the structure of the

covariance Ka is given by (9.2.10) and the second-order second moment by (9.2.9b).

9.2.2 The Structure of Q̂
ðdÞ
12

This is similar to thefirst-order cases (m¼ 1)where the inhomogeneityoperator Q̂
ðdÞ
1 appears

in the evaluation of the mean field ah i. Section 9.1.1.2, for the case of the second-order

moments (m¼ 2) of the scattered field a1a2h i, [(9.2.3a) and (9.2.3b)], the inhomogeneity

operator Q̂
ðdÞ
12 is also always an integral operator. Its structure may also be developed

explicitly in terms of feedforward and feedback operators, as additional solutions of the

original Langevin equation here.

The procedure for obtaining Q̂
ðdÞ
12 is an obvious, althoughmore involved, extension of the

method used to obtain Q̂
ðdÞ
1 (and ĥ

ðdÞ
1 ), Section 9.1.1.2. Here one starts with the defining

relations (9.2.5) for ĥ
ðdÞ
12 and then uses (9.2.5a) to get Q̂

ðdÞ
12 . Equation (9.2.5) is explicitly

ĥ
ðdÞ
12 a1a2h i � ĥ1ĥ2a1a2h i

ĥ
ðdÞ
12 1�ĥ1ð Þ�1 1�ĥ�12

� �
aH1aH2 ¼ ĥ1ĥ2 1�ĥ�11

� �
1�ĥ�12

� �
aH1aH2


 � ð9:2:14aÞ

18 The redundant statistical average h ia is simply to remind the reader of the averages associatedwith the particular

randommechanism associatedwith the non-Hom-Stat phenomenon involved here. Usually it is implicit in the non-

Hom-Stat covariance Ka itself and is consequently omitted, cf. Sections 2.3 and 2.4.

568 THE CANONICAL CHANNEL II: SCATTERING IN RANDOM MEDIA



) ĥ
ðdÞ
12 ¼ ĥ1ĥ2 1þ

X1

1

ĥ
ðnÞ
1

 !

1þ
X1

1

ĥ
ðnÞ
2

 !,

1þ
Xn

1

ĥ
ðnÞ
1

 !

1þ
Xn

1

ĥ
ðnÞ
2

 !* +

;

kĥ1k; kĥ2k < 1; ð9:2:14bÞ

where the commutation property of h1;h2, and h1 versus h2 have been invoked [cf.

Chapter 8]. Equation (9.2.14b) can be put in a more convenient form if we let

ŷ1 �
X1

1

ĥ
ðnÞ
1 and ŷ2 �

X1

1

ĥ
ðnÞ
2

and use 1þ yð Þ�1 ¼ 1�yþ y2� . . . ; to obtain

ĥ
ðdÞ
12 ¼ ĥ1ĥ2 1þ ŷ1þ ŷ2þ ŷ1ŷ2ð Þh i 1� ŷ1þ ŷ2þ ŷ1ŷ2ð Þþ ŷ1þ ŷ2þ ŷ1ŷ2ð Þ2�ð Þ3þ . . .

D E

ð9:2:14cÞ

After some tedious but basically straightforward algebra, we obtain the desired result below

through O ĥðsÞ
� �D E

:

ĥ
ðdÞ
12 ¼ ĥ1ĥ2h i½ �þ ĥ

ð2Þ
1 ĥ2

D E
þ ĥ1ĥ

ð2Þ
2

D Eh i
þ ĥ

ð3Þ
1 ĥ2

D E
þ ĥ1ĥ

ð3Þ
2

D E
þ ĥ

ð2Þ
1 ĥ

ð2Þ
2

D E
� ĥ1ĥ2h i2

h i

þ ĥ
ð4Þ
1 ĥ2

D E
þ ĥ

ð3Þ
1 ĥ

ð2Þ
2

D E
þ ĥ

ð2Þ
1 ĥ

ð3Þ
2

D E
þ ĥ1ĥ

ð4Þ
2

D Eh

� ĥ1þ ĥ2h ið Þ ĥ
ð3Þ
1 ĥ2

D E
þ ĥ

ð2Þ
1 ĥ

ð2Þ
2

D E
þ ĥ1ĥ

ð3Þ
2

D E� �	
þ 0 ĥð6Þ

� �D E

ð9:2:15Þ

¼ Â
12ð Þ
0 þ Â

12ð Þ
1 þ Â

12ð Þ
2 þ Â

12ð Þ
3 þ Â

12ð Þ
4 þO Â

12ð Þ
5

� �
; ĥ1;2

�� �� < 1; ð9:2:15aÞ

where A
ð12Þ
m ; m � 0ð Þ, represent the respective quantities in the various brackets, [ ].

Using (9.2.5a) in (9.2.15) we see directly that the intensity operator Q̂
ðdÞ
12 is represented by

Q̂
ðdÞ
12 ¼ M̂

�1
2 M̂

�1
1 ĥ

ðdÞ
12 ¼ Q̂1Q̂2


 �� �þ Q̂1M̂1Q̂1

� �
Q̂2


 �þ Q̂1 Q̂2M̂2Q̂2

� �
 �� �

þ Q̂1M̂1Q̂1M̂1Q̂1

� �
Q̂2


 �þ Q̂1 Q̂2M̂2Q̂2M̂2Q̂2

� �
 �þ Q̂1M̂1Q̂1

� �
Q̂2M̂2Q̂2

� �
 �� �

� Q̂1Q̂2


 �2þM̂
�1
2 M̂

�1
1 ½ �4þ½ �5
� �þ . . .

¼ B̂
ð12Þ
0 þ B̂

ð12Þ
1 þ B̂

ð12Þ
2 þetc: ð9:2:16Þ

When ĥ1h i ¼ ĥ2h i ¼ 0 or Q̂1


 �¼ Q̂2


 �¼ 0 there is no noticeable reduction in the

complexity of the operators ĥ
ðdÞ
12 ;Q̂

ðdÞ
12 , unlike the first-order cases, (9.1.13a) and (9.1.14).

9
>>>=

>>>;

9
>>>>>=

>>>>>;
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[If, however, the distribution (density) or pdf of ĥ1 (or Q̂1) and/or ĥ2 (or Q̂2) are symmetric,

we see that these results (9.2.15), (9.2.16) reduce to

ĥ
ðdÞ
12 ¼ ĥ1ĥ2h i½ �þ ĥ

ð2Þ
1 ĥ

ð2Þ
2

D E
� ĥ1ĥ2h i2

h i
þ O ĥ

ð3Þ
1 ĥ

ð3Þ
2

� �D E
¼ Â

ð12Þ
0 þ Â

ð12Þ
2 �O Â

ð12Þ
4

� �
:

ð9:2:16aÞ

Only the even in terms m ¼ 2m0 � 0ð Þ are nonvanishing, greatly simplifying the expres-

sions for these second-order operators ĥ
ðdÞ
12 ; Q̂

ðdÞ
1;2 . In any case, these operators, which play a

central role in the evaluation of the variousmoments of the scattered field, namelymoment

solutions to the generalized Langevin equation representing the ensemble of propagation

equations Lð1ÞaðQÞ ¼ �GT

� �
, and so on, are vastly more complex (i.e. “difficult”) than

those representing homogeneous media. It is this situation that motivates our efforts to

obtain the purely statistical solution.

9.2.3 Higher-Order Moment Solutions (m � 3) and Related Topics

Solutions for the higher-order moments a1; . . . ;amh imay be developed formally in similar

fashion to that described in Section 9.2. As expected, the resulting structures become

progressivelymore complex. The principal formal result here is that all these moments may

be expressed in the FOS form of a Dyson-type equation, cf. (9.1.7), (9.2.7), or “first-order”

form, of the type

M12:::m;a � a1:::amh i ¼ 1̂�ĥðdÞ12:::m

� ��1
B
ðm�1Þ
12:::m

with Ĥ
ðm�1Þ
12:::m ¼ 1̂�ĥðdÞ12:::m

� ��1

9
>=

>;
m � 2: ð9:2:17Þ

Similarly, one has

B
ðm�1Þ
12...m � Ĥ

ðm�1Þ
12...m a1h i . . . amh i; ĥðdÞ12...m � ĥ

ðdÞ
12...m R1; t1; . . . ;Rm; tm R01; t

0
1; . . . ;R

0
m; t
0
m

�� ��

� M̂1 . . . M̂mQ̂
ðdÞ
12...m ð9:2:17aÞ

and Ĥ
ðm�1Þ
12...m ¼ f̂ ĥ

ðdÞ
1 ; . . . ; ĥ

ðdÞ
12...m�1

� �
. Again, ĥ

ðdÞ
12:::m;1 is the equivalent (mth-order) field

renormalization operator, cf. (9.2.5), wherein Q̂
ðdÞ
12...m is the corresponding mth-

order equivalent deterministic mass operator, defined by19

Q̂
ðdÞ
12...m a1 . . .amh i � Q̂1 . . . Q̂ma1 . . .am


 �
;m � 2 ð9:2:18Þ

Here in detail, Q̂
ðdÞ
12...m is the deterministic function

Q̂
ðdÞ
12...m ¼ Q̂ R1; t1;R2; t2; . . . ;Rm; tm R01; t

0
1; . . . ;R

0
m; t
0
m

�� �� ð9:2:18aÞ

19 Note that for m¼ 1, a1h i!aH ¼ �ĜT Sinð Þ
� �

, obtain (9.1.7a). For m¼ 2 we also obtain (9.2.8b), as expected.
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cf. (9.2.4). This type of definitionof the “mass operator” Q̂
ðdÞ

as noted above20, cf. Eq. (9.2.7)

ff., in fact as we have already seen from Section 9.1.2.2, is the basis for the ensuing “first-

order”, or Dyson form, (9.2.17), in general case. Figure 9.10 shows the generalized FOR

for the FOS (9.2.14a).

The expressions for B
ðm�1Þ
12...m (9.2.17a) form a hierarchy of increasing complexity as m

increases, each new relation (m) depending on the various lower order results (m – 1,

m – 2, . . ., 1). Following the procedures leading to Eq. (9.2.2)–(9.2.7), for eachm (� 3), we

obtain after considerable (operational) algebra the explicit results

B
ð0Þ
1 ¼ 1 a1h i; Ĥð0Þ1 ¼ 1̂; ĥ

ðdÞ
1;1; ð9:2:19aÞ

B
ð1Þ
12 ¼ Ĥ

ð1Þ
12 a1h i a2h i; Ĥð1Þ12 ¼ 1̂�ĥðdÞ1 ĥ

ðdÞ
2 ; Eq: ð9:2:9aÞ; ð9:2:19bÞ

B
ð2Þ
123 ¼ Ĥ

ð2Þ
123 a1h i a2h i a3h i;

B
ð3Þ
1234 ¼ Ĥ

ð3Þ
1234 a1h i a2h i a3h i a4h i;

ð9:2:19cÞ

cf. Eq. (9.2.17), et. seq. Here specifically we have written for conciseness

Â1 � ĥ
ðdÞ
1 ; Â12 � ĥ

ðdÞ
12 , and so on so that Ĥ

ð2Þ
123; Ĥ

ð3Þ
1234 are explicitly

Ĥ
ð2Þ
123 ¼ 1̂�Â12

� ��1
1̂�Â3

� �
Â12Ĥ

ð1Þ
12 þ 1̂�Â13

� ��1
1̂�Â2

� �
Â13Ĥ

ð1Þ
13

þ 1̂�Â23

� ��1
1̂�Â1

� �
Â23Ĥ

ð1Þ
23 þ 1̂�Â1Â2�Â1Â3�Â2Â3þ 2Â1Â2Â3

� �
;

ð9:2:20Þ

Ĥ
ð3Þ
1234 ¼

�
1̂�Â123

� ��1
1̂�Â4

� �
Â123Ĥ

ð2Þ
123þ 1̂�Â124

� ��1
1̂�Â3

� �
Â124Ĥ

ð2Þ
124

�

þ 1̂�Â134

� ��1
1̂�Â2

� �
Â134Ĥ134þ 1̂�Â234

� ��1
1̂�Â1

� �
Â234Ĥ234

	

þ
�
1̂�Â34

� ��1
1̂�Â1

� �
1̂�Â2

� �
Â34Ĥ

ð1Þ
34 þ 1̂�Â24

� ��1
1̂�Â1

� �
1̂�Â3

� �
Â24Ĥ

ð1Þ
24

1)(11
1 12...m...M m

m BM −−−
1

ˆˆ ...MmM 1... mα α

)(
12...m

ˆ d
Q

⊕

FIGURE 9.10 mth-order Dyson equation: FOR for the mth-order (m � 2) FOS, where (9.2.17)

provides the mth-order (total) field moment a1:::amh i.

20 The result (9.2.7), which stems directly from (9.2.4), is a simpler definition of the mass operator than one finds,

for example, in the original literature ([4], { 60, pp. 343–347 and Eq. (36a). The Q̂
ðdÞ
12 derived in Section 9.2.2

generalizes much more easily in these higher moment cases, cf. (9.2.17), et. seq.
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þ 1̂�Â23

� ��1
1̂�Â1

� �
1̂�Â4

� �
Â23Ĥ

ð1Þ
23 þ 1̂�Â14

� ��1
1̂�Â2

� �
1̂�Â3

� �
Â14Ĥ

ð1Þ
14

þ 1̂�Â13

� ��1
1̂�Â2

� �
1̂�Â4

� �
Â13Ĥ

ð1Þ
13 þ 1̂�Â12

� ��1
1̂�Â3

� �
1̂�Â4

� �
Â12Ĥ

ð1Þ
12

	

þ
�
1̂� Â1Â2þ Â1Â3þ Â1Â4þ Â2Â3þ Â2Â4þ Â3Â4

� �

þ 2 Â1Â2Â3þ Â1Â2Â4þ Â2Â3Â4þ Â1Â3Â4

� ��3Â1Â2Â3Â4

	�
: ð9:2:21Þ

These higher order moments are important if we with to examine such quantities as the

statistics of the field intensity IðaÞ ¼ a2, namely itsmean square, I2a

 � ¼ a4


 �
, its fluctuation

I2a

 �� I2a


 � ¼ a4

 �� a2


 �2
, and its covariances, a2

1� a2
1


 �� �
a2
2� a2

2


 �� �
 �
, and so on. The

higher order moments are also important in assessing the departure from Gauss statistics.

Other moments of interest are the central moments DIð12...mÞa � a1� a1h ið Þ a2� a2h ið Þ . . .h
am� amh ið ÞÞ;m � 1,which are readily obtained as various combinations ofM12...m;a (9.3.1),

on expansion of DIð12...mÞa , explicitly with the help of (9.3.3), (9.3.4), (9.3.5). Similarly,

(cf.Sections9.1.1.1and9.2.2),onecanobtain theassociateddeterministicmediumoperators

Q̂
ðdÞ
12...m, (9.3.2),with, of course, averyconsiderable increase in thecomplexityof the resulting

structure. This once more reinforces the argument for computational solutions. Our opera-

tional formulation here presents an initial step, from the mathematical formulation to

operational procedures for calculation. At the same time it provides a physical background,

motivating use of a generalized feedback process bywhich ultimately numerical resultsmay

be obtained.

9.2.4 Transport Equations

The concept of the equivalent deterministic medium (EDM), as developed above in

Section 9.1.1.1, allows us to obtain an appropriate form of Dyson equation, cf. (9.1.7a),

(9.2.9), (9.2.10), and (9.2.17). This is now the basic integrodifferential equation (of the

FOR) governing the propagation of the field statistic in question, for example, ah i; a1a2h i,
and so on. The corresponding FOS and PSS accordingly represent the desired formal

solutions for these field statistics. Conversely, the actual propagation equations for the field

statistics are obtained by operator inversion of the FOR. This is a form of “transport”

equation, where the quantity transported or “propagated” is some field statistic, and the

medium supporting it is now the EDM for that statistic.

As a first example, let us consider the propagation of the mean field a R; tð Þh i. Since
M̂
�1
1 ĥ

ðdÞ
1;1 ¼ Q̂

ðdÞ
1 , the EDM here, wemay apply M̂

�1
1 (� L̂

ð0Þ
, cf. Section 8.1.5) to (9.1.7), to

get directly

L̂
ð0Þ�Q̂ðdÞ1

� �
ah i ¼ M̂

�1
1 aH ¼ �GT ½ þ b:c:sþ i:c:s� ð9:2:22Þ

for this first-order transport equation. However, this is not an ordinary dynamical equation

for the propagation of the fielda, which is usually a partial differential equation, but is rather

an integro-differential equation for the propagation of ah i, since Q̂
ðdÞ
1 is always an

integrodifferential operator [cf. (9.1.12)]. The initial conditions are those of the source

GTð Þ, and the boundary conditions are those incorporated in M̂1, namely, an unbounded
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medium. Boundary effects, if any, are included in the inhomogeneity operator, Q̂, contained

in Q̂
ðdÞ
, cf. (9.1.10). Sometimes it may be easier to work with the wave number–frequency-

form. This gives the WNF transport equation (with the help of Section 8.4.1):

L̂
ð0Þ
o �Q̂

ðdÞ
oo

� �

 a0h i ¼ �GoT; ð9:2:23Þ

where L̂
ð0Þ
o � F�1R FtL̂

ð0Þ
.With kernels of the type (Footnote 3), closed form solutions like the

(integrand of) [(9.1.18a), (9.1.21) are possible here.

Ana secondexample of a transport equation, let us nowconsider thegeneral second-order

cases examined in Section 9.2.1, where the field statistic is now

M
ðaÞ
12 r1; t1; r2; t2ð Þ � a1a2h i: ð9:2:24Þ

The formal solutions for M
ðaÞ
12 is the FOS (9.2.7), in the indicated Dyson form (9.2.7b).

The associated transport equation for M
ðaÞ
12 is found after forward multiplication by

M̂
�1
2;1M̂

�1
1;1, with (9.2.7a), to be

L̂
ð0Þ
2 L̂

ð0Þ
1 �Q̂

ðdÞ
12

� �
M̂
ðaÞ
12 ¼ M̂

�1
2;1M̂

�1
1;1 1̂�ĥðdÞ1;1ĥ

ðdÞ
2;1

� �
a1h i a2h iþ b:c:sþ i:c:s½ �

¼ L̂
ð0Þ
2 a2h iL̂ð0Þ1 a1h i�Q̂ðdÞ1 Q̂

ðdÞ
2 a1h i a2h iþ b:c:sþ i:c:s½ �

¼ GT1Gt2� GT2L̂
ð0Þ
1 a1h iþGT1L̂

ð0Þ
2 a2h i

n o
þ b:c:sþ i:c:s½ �

;

ð9:2:25Þ

since Q̂
ðdÞ
1 a1h i ¼ L̂

ð0Þ
1 a1h iþGT1 from Eq. (9.2.22). Again, Q̂

ðdÞ
12 is always an integral

operator (cf. Section 9.2.2); the initial conditions are those of the source GTð Þ, for an
effectively unboundedmedium M̂1

� �
here, with boundary effects oncemore included in Q̂,

as a component of Q̂
ðdÞ
12 , cf. (9.2.15). The transport equation (9.2.25) for a1a2h i is clearly

symmetrical in its indexes (1, 2). It is an integrodifferential equation, of a more complex

character than Eq. (9.2.25) for ah i, and, in fact, requires the solution of (9.2.22) in order to
obtainM

ðaÞ
12 ¼ a1a2h i.Asa special case of (9.2.25),wefind that the transport equation for the

field intensity Ia ¼ a2
1


 �� �
becomes

L̂
ð0Þ2
1 �Q̂

ðdÞ
11

� �
Ia ¼ G2

T1� 2GT1L̂
ð0Þ
1 a1h i

n o
þ b:c:sþ i:c:s½ �; ð9:2:26Þ

with the integral

I
ðaÞ
11 � a2

1


 � ¼ 1�ĥðdÞ11

� ��1
1�ĥðdÞð2Þ1

� �
a1h i2: ð9:2:26aÞ

Transport equations for higher order moments of the field may be established in similar

fashion from the results of Section 9.2.3. These, in turn, require a hierarchy of lower order

solutions, with their associated lower order transport equations. Because of their integral

character transport equations for field statistics are always global relations, like their
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equivalents the FOR, as distinct from the (usually) differential equations directly governing

propagation of thefield,which are essentially local. The integral of a transport equation is the

corresponding statistic of the scattered field itself, that is Eqs. (9.2.22, 9.2.25) for a1h i and
a1a2h ihere, as is easily demonstrated bydirect integrationof [(9.2.22)–(9.2.25)].Apossible

practical utility of the transport equation vis-à-vis the corresponding FOS is that it may

be easier to approximate and to solve numerically. In general, this is a computational task

on the order of that for large-scale weather prediction; indeed, what we are seeking is a kind

of “weather-prediction” in the medium, as represented by the various field statistics

themselves.

9.2.5 The Gaussian Case

When the statistics of the random parameters in the Langevin equations are normal, that is,

Gaussian, the kernelsQ
ðdÞ
1 jV;S simplify considerably, provided QV;S


 � ¼ 0, cf. (9.1.14). This

is usually a reasonable assumption for most applications, from the view point of the Central

Limit Theorem (CLT); (see Section 9.1.3.1, for instance). The corresponding reduction in

complexity of themass operator kernelsQ
ðdÞ
1 then follows. The higher order pdfs of themass

operator kernels now obey the well-known relations ([17], Section 7.3.3 ibid)

E z1z2; . . . ; z2mf g ¼
X

all pairs

Ym

k 6¼l
zkzl ¼

X

all pairs

zkzl�zpzr ; . . . ; zqzs
� �

k 6¼l;p 6¼r;...;q 6¼s; etc:

E z1z2; . . . ; z2mþ 1f g ¼ 0; z ¼ QV ;S;

9
>>=

>>;

ð9:2:27Þ

The number of averages over pairs in the above is equal to the number of different ways 2m

different variables z1; . . . ; z2m can be saluted in pairs. This number is21 2mð Þ!=2mm!. For
example, whenm¼ 2, we get three ways into which z1z2z3z4 can be factored into products

of (first-order) covariances, that is,

m ¼ 2 : E z1z2z3z4f g ¼ z1z2 � z3z4 þ z1z3 � z2z4 þ z1z4 � z2z3 ð9:2:28Þ

And for m¼ 3, we see that the number of pairs is now 15, with an (approximately)

exponential increase as the order (m) increases. We note in passing that z1z2; . . . ; zm may

also be used to derive other moments in the Gaussian case. For example, consider

z1z2z3z4h iz2! z1
¼ z21z3z4

 � ¼ z21


 � � z3z4h iþ 2 z1z2h i � z1z4h i; or ð9:2:28aÞ

z1z2z3z4h iz1! z2! z3
z33z4

 �

; etc:; ð9:2:28bÞ

again with z ¼ QV orQS and zh i ¼ Qh i ¼ 0.

21 There are (2m)! permutations, but 2m interchanges of argument and m! permutations of the factors give no

additional separations into new pairs.
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With Gaussian statistics for the kernelQ, and the condition Qh i ¼ 0, only the even order

terms involving Q in (9.1.14) are nonvanishing, that is mþ 11 ¼ 2n; m � 1, obey-

ing (9.2.27). Accordingly, we have

m¼ 1ðn¼ 2Þ : Q̂ M̂Q̂
� �ðmÞD E

¼ Q̂M̂Q̂

 �¼ Q̂ R1;t1ð ÞM̂ R1;t1 R

0; t0j ÞQ̂ R0;t0ð Þ� � ¼ M̂1 Q̂1Q̂2


 �


¼
ð
gð0Þ R1; t1 R2;t2j ÞKQ R1; t1;R

0; t0ð Þð ÞR0 ;t0dR0dt0
�

ð9:2:29aÞ

where KQ¼ Q1Q2h i; R2;t2ð Þ¼ R0; t0ð Þ is the covariance of Q. Similarly, we see that

by (9.2.27)

m¼ 2 6¼ 2nð Þ : Q̂ M̂Q̂
� �ð2ÞD E

¼ 0; ð9:2:29bÞ
and

m¼ 3 n¼ 2ð Þ : Q̂ M̂Q̂
� �ð3ÞD E

¼ Q̂ M̂Q̂M̂Q̂M̂Q̂
� �
 �

¼ Q̂ R1;t1ð ÞM̂ R1; t1 R2; t2j ÞQ̂ R2; t2ð Þ . . .Q̂ R0; t0ð Þ� �


¼
ð
. . .

ð
g
ð0Þ
1 g

ð0Þ
2 g

ð0Þ
3 Q̂ R1; t1ð Þ . . .Q̂ R0; t0ð Þ
 �ð ÞR0;t0dR2 . . .dR

0dt2 . . .dt0;

where

Q̂ R1;t1ð Þ . . .Q̂ R0;t0ð Þ
 �¼KQ12
KQ34
þKQ13

KQ24
þKQ14

KQ23
by ð9:2:28Þ; ð9:2:29cÞ

in which KQ12
¼ Q̂ R1; t1ð ÞQ̂ R2;t2ð Þ
 �¼KQ12

R1; t1;R2; t2ð Þ, and so on. The higher order

moments are computed in the same fashion, with an ever increasing complexity of sums of

covariance products. The result is a simplification of moment structure: only first-order

covariances are involved, but theoverallmoment structure (i.e., the leftmember of (9.2.29c))

ismore complicatedwhen itsGaussian character is explicitly exhibited. In the non-Gaussian

cases these higher moments do not factor, however, and are thus more compact, that is

“simpler.” The drawback here is that they are often unknown. When they are calculated the

result can provide a simplification.

Finally, observe that the results above for volume scatter in the Gaussian case carry over

formally for surface scatter if we simply replace
Ð
g0QVð ÞRdR0 in the above by

gð0ÞjV! gð0Þ1
q
qn
ð Þ�ð Þ qg1

qn
;

ð

VT

ð ÞdR0 !
þ

S

ð ÞdS R0 2 Sð Þ; and QV!QS; ð9:2:30Þ

cf. (9.1.46). See also Sections 9.1.2.2 and 9.1.3. However, even when Q̂ is Gaussian, the

random scatter is usually not.

9.2.6 Very Strong Scatter: Saturation ĥk k ’ 1

In all our treatment above we are dealing with a random perturbation system, equivalently

represented by an ensemble of integrodifferential equations, namely, a Langevin propagation

equation, where the governing condition on the global scattering operator is ĥ1k k < 1,

[cf. Section 8.2.2, Eqs. (8.3.12) et. seq.]. What happens when very strong scatter is produced,

that is, hk k! 1? More particularly, what happens under this condition to the Langevin

equation of propagation, namely the randomized version of Eqs. (8.3.20) and (8.3.22)?
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9.2.6.1 An Example As a simple but often useful case, let us assume that the medium

with no surface sources on S0 (cf. 8.1.47) is highly dissipative and still homogeneous.

We begin with the governing equation, which is here the modified, time-variable Helmholtz

relation with absorption, that is, the Green’s function (G.F.) (8.1.31), extended to an

ensemble of such equations by the random nature of the constant absorption parameter

aR. We write for the G.F. g
ð0Þ
1

� �
:

r2�a2R�
1

c20

q2

qt2

� �
gð0Þ1 ¼ �d R�R0ð Þd t�t0ð Þ

� �
; ð9:2:31Þ

where the braces { } explicitly remind us (for the moment22) of the ensemble nature of this

Langevin equation. For a general distributed source (density) GT R; tð Þ we have the

corresponding field, in the case of the infinite (here ideal) medium cf. (8.1.44) with

vanishing initial conditions. Here the governing Langevin equation from which aðQÞ

derived is the first relation in (8.1.38), namely,

�
r2�a2R

q
qt
� 1

c20

q2

qt2

�
aðQÞ ¼ �GT R; tð Þ;R 2 VT;

¼ 0; R =2 V�VT;

9
>=

>;
t�0 � t � tR ð9:2:32Þ

for the initial period tR�t0ð Þ of field buildup. (For a discussion of GT, see Sections 8.1.1

and 8.1.5.)

Next, for saturation or very strong scattering, we have the condition that at some time tR
later than the initiation time t�0 of the field aðQÞ R; tð Þ

����a
2
0

qaðQÞ

qt

���� >>

����
1

c20
� q2

qt2

����; or more simply; that c0 � 1; for tR � t: ð9:2:33Þ

Now for these times

�
r2�a2R

q
qt

�
aðQÞ ¼ �GT R; tð Þ;R 2 VT

¼ 0; R =2VT

9
>=

>;
; tR � t; ð9:2:34aÞ

is the governing equation. Applying c0 � 1, (with proper care for the limit in the

exponential of the G.F. G r;Dtð Þ of (8.1.31c)), we obtain:

G r;Dtð Þ6
aR e�a

2
Rr

2=4Dt
� �

8 pDtð Þ3=2
1Dt; tR � t; DtR ¼ t�tR

r ¼ ��R�R0��

9
>>=

>>;
; ð9:2:34bÞ

22 For the most part we drop the braces in Chapters 8–9, it being understood that we are always dealing here with

ensembles. As stated above, a2R is a real, random constant with respect to the ensemble (9.2.31), namely a particular

constant value for each ensemble representation.
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b0 ¼ aR is a randomconstantwith respect to the randomG.F. (9.2.34b).Correspondingly, the

resulting random diffusions fieldaðQÞ R; tð Þ here is (from (8.1.47) with no surface sources on

S0 and aH ¼ 0 initially) the stochastic solution

a Qð Þ R; tð Þ ¼
ðt

tR > t�
0

aRdt
0

8 pDtð Þ3=2
ð

VT

e�a
2
R R�R0ð Þ2=4DtGT R0; t0ð ÞdR0: ð9:2:35Þ

The initial random field aðQÞ t0 � t � tRð Þ is the solution of (9.2.32), which is obtained from
the first term of (8.1.44), now with the randomized G.F. (8.1.31c). (Particular solutions

of (9.2.34a) and (9.2.32) are given directly by (9.2.35), and (9.2.32), with the corresponding

particular values of aR ¼ a constant.)

The diffusion mechanism, of course, depends on the nature of the medium and the field

applied to it. In all cases it takes a finite time tRð Þ for the applied field to reach a saturated state,
where diffusion is achieved. For gases and liquids (the atmosphere, water, and similar media)

the time to equilibrium tRð Þ as a diffusion process is a function of the speed of the propagation
heat, and this accordingly depends on the mean free path lg of the gas or liquid molecules.

Here this speed is that of sound in the medium, provided the excitation is acoustic. When the

excitation is electromagnetic, propagation involves different mechanisms, impeding the free-

space speed—that of light—due to scattering and in many cases the intrinsic material

characteristics (molecular and atomic), particularly for solids, dielectrics and even conductors

(resistance), with a conversion into heat. In any case, diffusion can become a significant

component of the propagation process, if not the only one. (For details see Section 2.5 of

Ref. [19]; Sections 9.12, 10.4, and 12.1 of Ref. [21]; and Sections 7.5 and 7.7 of Ref. [22].)

In a more general model the random parameter aR is a function of position and time,

aR ¼ aR R; tð Þ, with a corresponding adjustment of the saturation condition (9.2.33) above,

condensed into a simple requirement that c0 � 1, for t � tR. If there are other random

parameters, that is c ¼ c R; tð Þ with
1=c2 R; tð Þ ¼ n R; tð Þ=c20 ¼ 1þ « R; tð Þ½ �=c20; ð9:2:36Þ

(where n(R,t) is often called the index of refraction, with n(R,t), or equivalently «(R,t) a
random quantity), the Langevin equation (9.2.32) is now inhomogeneous and becomes

specifically

r2�a2R R; tð Þ q
qt
� 1þ « R; tð Þ

c20

q2

qt2

2

4

3

5

0

@

1

AaðQÞ ¼ �GT R; tð Þ;R 2 VT

¼ 0; R 2 V�VT

9
>=

>;
; t�0 < t < tR

ð9:2:37Þ
with the left member alternatively expressible as

r2�a20R
q
qt
� 1

c20

q2

qt2

� �
� â2R= R; tð Þ q

qt
þ « R; tð Þ

c20

q2

qt2

� �� 	
aðQÞ � L̂

ð0Þ�Q̂
� �

;aðQÞ; t0 < tR:

ð9:2:38Þ

Here Q̂ is the random inhomogeneity operator in this case, because of â2Rð> 0Þ and «, (with
�« ¼ 0 usually). When the saturation condition (i.e., the extended version of (9.2.33),

or c0 � 1 for simplicity is achieved), and when the fluctuations in â2R are small vis-à-vis
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a20R, with t � tR, then it is clear that [(9.2.37) and (9.2.38)] reduce to the diffusion

equation (9.2.34a) where now aR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20Rþ â2R

q� �
¼ aR R; tð Þ > 0ð Þ is a random variable

and furthermore is a function of position and time, obeying (9.2.33). In fact, whenever the

absorption term � ðq=qtÞað Þgreatly exceeds the other time dependent terms in the propa-

gation equation, one arrives at a diffusion equation after a certain term t � tR. In other

words, a state of saturation exists. Alternatively, an intermediate state during t�0 � t < tR
� �

occurs, where propagation obeys a wave equation of the type (9.2.37), and where individual

solutions of the form [(8.3.20) and (8.3.22)] represent the resulting stochastic fieldaðQÞ R; tð Þ.
In terms of the mass operator ĥ1, for the latter one has 0 � ĥk k < 1 and for the former,

ĥk k! 1�«, where « is a small positive number.

9.2.6.2 Solutions to the Homogeneous Langevin Equation in the Diffusion Limit
hk k � 1 Because the diffusion field (9.2.35) is nonrecursive, that is, is not subject to

feedback (cf. Fig. 8.18), the mass operator Q̂ vanishes. Accordingly, the nth-order moment

of (9.2.35) can be written

a
ðQÞ
1 ;...;a

ðQÞ
n

D E
¼ aðQÞ R1;t1ð Þ...aðQÞ Rn;tnð Þ
 �

¼
Yn

m¼1

ðt1

t
ð1Þ�
0

dtð1Þ

8 pDtmð Þ3=2
ð

V
ðmÞ
T

dRðmÞGT RðmÞ;tðmÞ
� �

aRe
�a2Rr2m=4Dtm

* +

w1 aRð Þ
;

ð9:2:39Þ

with

rm¼jRm�RðmÞj;Dtm¼ tðmÞ�tR >0ð Þ;m¼1;2;...;n: ð9:2:39aÞ

In the case of a Rayleigh distribution of the average diffusion parameter aR, that is,

w1 aRð Þ¼w1 xð Þ¼x

c
e�x

2=2c;x�0;c¼x2 : ð9:2:39bÞ

we can write

M
ðaÞ
12...n� a

ðQÞ
1 ...a

ðQÞ
n

D E
¼ 1

8ðpÞ3=2

2

4

3

5

nðt1

tR

dtð1Þ

ðDtÞ3=2
...

ðtn

tR

ðDtÞ3=2dtðnÞ
ð

V
ð1Þ
T

dRð1ÞGT Rð1Þ;tð1Þ
� �

...

ð

V
ð1Þ
T

dRð1ÞGT RðnÞ;tðnÞ
� �� xnþ1e�Anx

2

c

* +

w1ðxÞ
ð9:2:40aÞ

in which

An¼1þ2c
Xn

m¼1
r2m=4Dtm; r2m¼ Rm�RðmÞj2:

�� ð9:2:40bÞ
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Since

1

c

ð1

0

xnþ1e�x
2Andx¼ 2cð Þn=2G n=2þ1ð Þ

1þ2cP
n

m¼1
r2m=4Dtm

� 	n=2þ1 ; ð9:2:41Þ

we have finally

M
ðaÞ
1;2...n¼ a

ðQÞ
1 ...aðQÞn

D E
¼cn=2G n=2þ1ð Þ

25n=2p3n=2

Yn

m¼1

ðtm

t�
0

dtðmÞ

DtðmÞ½ �3=2
ð

V
ðmÞ
T

dRðmÞ
GT RðmÞ;tðmÞ
� �

1þ2cP
n

m¼1
r2m=4Dtm

� 	n=2þ1 :

ð9:2:42Þ

From Eq. (9.2.42) we obtain at once specific analytic results for the mean (n¼ 1) and

second-moment function (n¼ 2) for the above example:

ðn ¼ 1Þ : M
ðdÞ
1 ¼ aðQÞ

D E
¼ c1=2

27=2p

ðt

t�1
0

dtð1Þ

Dt1ð Þ3=2
ð

VT

dRð1ÞGT Rð1Þ; tð1Þ
� �

1þ 2c r21=4Dt1
� �3=2 ; ð9:2:43Þ

ðn ¼ 2Þ : M
ðdÞ
12 ¼ a

ðQÞ
1 a

ðQÞ
2

D E
¼ c

25p3

ðt1

t�1
0

dtð1Þ

Dt1½ �3=2
ðt2

t�1
0

dtð2Þ

Dt2½ �3=2
ð

V
ð1Þ
T

ð

V
ð2Þ
T

dRð1ÞdRð2ÞGT Rð1Þ; tð1Þ
� �

GT Rð2Þ; tð2Þ
� �

1þ 2c r21=4Dt1þ r22=4Dt2
� �� �2 :

ð9:2:44Þ

For n � 3 the analytical burden although explicit enough, cf. (9.2.42), increases greatly, but

it is still less than that encountered in evaluating the operator solutions analytically. Those

higher moment numerical solutions require computer solutions, in both cases. Other

examples of saturation can occur in types 3 and 4 [Eqs. (8.1.32) and (8.1.33)] and, in fact,

when the term aðqa=qtÞ is dominant in the propagation equation. We also note that the

covariance of this example is given by

K
ðaÞ
12 � a1a2h i� a1h i a2h i ¼ M

ðaÞ
12 �MðaÞ1 M

ðaÞ
2 ; Eqs: ð9:2:43Þ and ð9:2:44Þ; ð9:2:45Þ

with the associated intensity spectrum (9.2.13a), provided the medium is homogeneous and

stationary, at least in the equilibrium or diffusion phase considered here.

9.2.7 Remarks

In Section 9.2, we have presented a formal extension of our operator approach to the

calculation of the second and higher order moments of the scattered field, under rather

general conditions. These require the evaluation of the appropriate order of mass operator

Q̂
ðdÞ
12 or its extension ĥ

ðdÞ
12 , and so on. The procedure is outlined in some detail for the
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covariance, and second-order second moment, in Section 9.2.1. (These moments are a

form of Bethe–Salpeter equation employed in quantum mechanics. Unlike the first-order

moments (Dyson’s equation), it is not susceptible to a closed form solution [Eqs. (9.1.18)

and (9.1.21)] obtained by appropriate Laplace transforms, ever in the case of homoge-

neous, stationary medias (RKT, [7], in Chapter 4 of Volume 4, 3rd paragraph; also,

Section 4.3 ibid.). Higher order moments (Section 9.2.3) are treated in similar fashion,

with a further increase of complexity as well as a further extension of the FOR

representation [cf. Fig. 9.10].

In Section 9.2.4 the concept of the transport equation is introduced, as an integrodiffer-

ential equation which describes the propagation of a statistic of the field, for example, the

propagation of themean field aðQÞ R; tð Þ
 �
, of the second-order average field, and so on. Just

as the mean mass operator Q̂
ðdÞ
1 and the second-order average mass operator Q̂

ðdÞ
12 are global

operators (e.g., function of M̂1), so also are the extended forms ĥ
ðdÞ
1

� ¼ M̂1Q̂
ðdÞ
1

�
and so on.

The integrals of the transport equations are the corresponding statistics of the scattered field.

In both Sections 9.1 and 9.2, the statistics are generally non-Gaussian, even when the

statistics of the parameters of the Langevin equation are themselves Gaussian. Finally, we

have seen that when the Langevin equation has a dominant absorption term, it becomes after

a certain time a diffusion field. This is a result of saturation and it is no longer described by a

feedback mechanism (FOR), Section 9.2.6. This in turn is only possible if a source is

continuously applied to the scattering medium and the dissipation term becomes large

relative to the propagation term c0!1ð Þ. The details are discussed in Sections 9.1 and 9.2.
Equivalent diagram methods illustrate our results above, in Section 9.3.

9.3 EQUIVALENT REPRESENTATIONS: ELEMENTARY FEYNMAN

DIAGRAMS

As is well known [4, 7, 12, 18], diagram representations and methods are often useful and

compact forms for describingfield interactions.Moreover, they are also useful and insightful

in the development of approximations, whichwemust almost always seek ifwe are to obtain

practical solutions.This is particularly true in the case of strong scattering, and indefining the

extent to which weak-scattering models may be appropriate. Here we extend the usual

deterministic Feynman diagrams to include ensemble diagrams aswell, defining the symbol

“vocabulary” in a consistent fashion23 as we proceed to describe the various ensemble and

moment solutions discussed in Sections 9.1 and 9.2. In Section 9.3.1, we define the

vocabulary of our diagram elements and use them to represent the operational results

developed in Sections 9.1 and 9.2. Our treatment here generalized to some extent earlier

representations [4, 7, 9], in that arbitrary (linear) media, broadband signals, and various

boundarydiscontinuities, involving surface scatter, and feedback forms [cf.Figs. 9.4and9.6]

are considered. Our treatment is an elementary survey.

23 There are, of course, as many diagram “vocabularies” as there are users [18], equally valid as long as they are

logical, consistent, and simple.Our symbol choices overlap somewhatwith others ([4], p. 60), [9], andMattuck [18],

for example.
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9.3.1 Diagram Vocabulary

Let us begin our discussion of diagram methods first with a description of some of the

principal elements and their interpretation in terms of the operator formulations of the three

preceding sections. Table 9.1 provides these data. The elements in the table are largely self

explanatory. We shall use them to obtain the diagram equivalents of the principal results of

Sections 9.1–9.3 in what follows.

9.3.1.1 The FOR and FOS in the Deterministic Case We begin with the feedback

operational representation and solutions (i.e., FOR and FOS) for the deterministic situation

in Chapter 8, in particular for deterministic scatter discussed in Section 8.3. Here we have

only one member function, where everything needed a priori to determine the scatter

produced in the medium. From Table 9.1 and Figs. 9.3 and 9.5, respectively for volume and

surface effects, are that

T , or +=  (FD)

H
FOR ð9:3:1Þ

• Η

Η Η

FOS; (FD)

ð9:3:2Þ

inwhich FDdenotes a Feynmandiagram24,whose PSS is givenby the last relation of (9.3.2).

(The second relation in (9.3.2) is the result of factoring out the integral operator M̂ ¼ !ð Þ in
both numerator and denominator in the secondFOSdiagram.) The FOSequivalent of (9.3.2)

in frequency wave number space becomes (cf. Table 9.1 and (8.4.11b)).

oo oo oo oo
H H

oo

..

=

=

οο

οοοοοο ο

FOS, (FD)

with ð9:3:3Þ

Equation (9.3.3) is the deterministic version of the integrands of Eqs. (9.1.26) and (9.1.37),

et. seq. without any averaging provided Q̂
ðdÞ ! Q̂ is Hom-Stat, that is, has the form

Q̂ R�R0; t�t0ð Þ, cf. (9.1.23). We also note that G00;T ¼ has the appropriately equivalent

Feynman diagrams. Note that, in general, the feed forward (!) and feedback .ð Þ operators
do not commute, except as convolutions in transform (k, s) space, cf. Section 8.4. The

multiple interaction terms k � 2ð Þ are explicitly revealed by the expansion (9.3.2), namely,

24 For our purposes here we shall use this term for all diagrams.
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TABLE 9.1 A Dictionary of Space–Time Diagram Elements

(1)

T

T

T

VS

H

(2)

(3)

(4)

(5)

(6)

(7)

(1)

(2)

(2a)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(8)

(9)

(10)

(11)

. .

Deterministic Elements Random Elements

Π
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(FOS)
(PSS) k=1 k=2 k=3

= (1 +) + + + . . .) ð9:3:4Þ

We can use diagram iteration alternatively to solve the FOR of (9.3.1) and obtain

ð9:3:5Þ

This corresponds to “iterating the loop” indefinitely in the feedback representation and is

obviously identical to the PSS Sk M̂Q
� �k

aH in (9.3.4). These diagrams show that their

elements can be added, subtracted, multiplied, and inverted (i.e., “divided”), cf. (9.3.2)

and (9.3.3), as well as Fourier transformed (and by other linear operators), as well.

9.3.1.2 Equivalents for Random Fields: Basic Diagrams We next consider the more

general cases of randomfields.Webeginwith the following basic ensemble diagrams. These

are the ensemble analogies of the deterministic cases of Section 9.3.2, based on the generic

integral equation for scatter in random inhomogeneous media:

aðQÞ R; tð Þ ¼ aH R; tð Þþ M̂1Q̂aðQÞ R; tð Þ; ð9:3:6Þ
In various forms, these diagram represent the operational expressions for the scattered field.

The “solutions” here of (9.3.6) are, of course, the various moments and distributions which

describe the probabilistic status of the ensemble. Accordingly, the basic diagram may be

summarized as follows:

FOR: or : cf. Fig. 8.16TT ð9:3:7aÞ

FD: = +

+ ;
Eq. (9.3.6)

= H{α}
ð9:3:7bÞ

T

T

ð9:3:7cÞ

PSS: + + , cf. (9.3.4)]... ð9:3:7dÞ
Herewe haveY � M̂1

� �
representing the feedforward operator, that is, the integralGreen’s

function for random surface (S), to be replaced by its nonrandomcounterpart for volume (V),

namelyY. Here O denoted the local ensemble feedback or random scattering operator, Q̂.

The ensemble Feynman diagram equivalent (FD) of the FOR, (9.3.7a), is precisely (9.3.7b ),
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while (9.3.7c ) gives the corresponding ensembleFOS, and (9.3.7d ) thePSS,which is readily

obtained by iterating the FD, (9.3.7b ), or as the unaveraged form (9.1.6a) of (9.1.21).

9.3.1.3 First-Order Dyson Equation and the Associated Deterministic Medium The

(deterministic) first-order Dyson equation, Eq. (9.1.21), is now easily written:

Dyson’s equations :
H

(d )
,

, Eq. (9.1.21)
ð9:3:8Þ

where now we denote the average by the overhead bar, applied here to the corresponding

ensemble symbol. From Table 9.1, our general diagram conventions are to represent

ensemble quantities as “open” forms, e.g. , , etc., and average and otherwise

deterministic quantities by solid forms, e.g., , , with field averages denoted by loop \
brackets, , for example, , and so on. The aim is consistency of notation

and simplicity with a minimal evolution of complexity.

We note once more that diagrams can be manipulated in the same fashion as are operator

equations [cf. (9.1.21), etc]. One also observes the same positioning rules and conditions of

inversion, for example, for multiplication and “division.” Addition and subtraction are also

directly equivalent to the addition and subtraction of operators and operator-derived

(algebraic) quantities [cf. (9.1.2) et. seq. for volume, and (9.1.37) and (9.1.39) for surfaces],

as indicated in the examples below. Finally, transforms of diagrams are the corresponding

diagrams of the transforms [cf. Section 8.4, now applied to the various operator elements of

thedirect diagrams].This alsopermits anexplicit diagrammatic representation,with thehelp

of Table 9.1, of the various wave number–frequency spectra of the scattered field,

particularly the amplitude and intensity spectra in operator form (cf. Section 8.4).

Accordingly, the corresponding diagrams for the equivalentmedium [cf. Section 9.1.1.1]

become:

Equiv. Med. FOR :
T

(d)
, cf. (9.1.21); ð9:3:8aÞ

=

=

=

(d)

T , with

η

η

η

Equiv. Med. FOS : ð9:3:8bÞ

Equiv.Med.FD:

+ ;
(d)

=First -Order Dyson Equations : ð9:3:8cÞ
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η η

ð9:3:8dÞ

(d )
=

(d ) (n) ð9:3:8eÞ

Here denotes the k-fold average:

ð9:3:8fÞ

Equations (9.3.8e) follow from the iteration of the FD (9.4.8c).

In the same way we find that the ED1M, cf. [(9.1.7b) and (9.1.7c)] as developed in

Sections 9.1.2 and 9.1.3, can be expressed diagrammatically as

(d)
m=0 m=1

m=2

m=2+ +–

+ ..., or

+– –[ [

+[      ]

= [ ] ]] ð9:3:9aÞ

= [   ] (           ) (           ) (           )[                   ] [                                                              ]m=0 m=1 m=2+ + +–– ð9:3:9bÞ
this last in terms of η (            ), where for example, ĥð2Þ1

D E
¼ = , and so

on, cf. (9.3.8b) above.

9.3.1.4 Second Order Diagrams Second-order diagrams are handled in the same way.

Thus, for the second-order Dyson (Bethe-Salpeter Equations) form for a1a2h i, ([(9.2.3a)
and (9.2.3b)], etc. cf., Section 9.2.1), we readily construct its FD:

  Second-order
Dyson equation:
(Bethe–Salpeter
     analogue)

12

Eq. (9.2.3b)

=
, 2 12

121,∞ 2,∞

1 2
+

d

ð9:3:10aÞ

with (9.2.5a), where ! 1;2 � M̂ðR12 ; t12 R
000; t000Þ1

�� , and so on, and where, from (9.2.7) we

obtain

or
12 12

=
1 2

d d d

ð9:3:10bÞ
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We have also the equivalent (second-order) medium FOR and FOS, cf. Fig. 9.9:

ð9:3:11Þ

PSS2: Eqs. (9.2.12) and (9.2.12a):

12 12 12
(     )
12 1     2 1          2

[                    ]d d d d+ [                                     ]
H

= +  ... ð9:3:12Þ

The explicit structure of the second-order equivalent deterministic medium or operator Q̂
ðdÞ
12

as given by (9.2.16), and so on, is diagrammatically,

+ + + + + + ð9:3:13Þ

Accordingly, h
ðdÞ
12;1, (9.2.15), is represented by

d

12 12

d
that is M̂

�1
2 ;M�11 , (i.e., !�1

21 )

times the diagram (9.3.13).

Higher-order moments (Section 9.2.3) may be diagrammed in the same way. Of course,

each is based on the hierarchy of diagrams below its order, but the generalized Dyson

form (9.2.17) and FOR (Fig. 9.10) permits an immediate formal generalization of the

results (9.3.8a)–(9.3.12); Q̂
ðdÞ
12...m, [(9.2.18) and (9.2.18a)], however, is progressively more

complex. One diagrammatic advantage of the generalized Dyson form (9.2.17) is that it

explicitly eliminates the intricate ladder, vertex, and lattice diagrams originally constructed

for a1a2h i; m ¼ 2ð Þ [cf. [4], { s60, 61, for the classical Helmholtz equation (9.1.42), «¼ «
(R, t). These latter, of course, are subsumed in the hierarchy embodied in (9.2.17). Aswe see

it is possible to obtain explicit statistics for its variousmoments, for example, Q̂1Q̂2


 �
, and so

on, and accordingly analyze the resulting diagram structure, although the results can still be

highly complex, requiring knowledge of the higher order covariance of the random

quantities involved.

9.3.2 Diagram Approximations

Amajor problem, as always for strong-scatter situations, is the approximate evaluation of the

FOS or its PSS equivalent. Even for the “exact” analytic solutions in the Hom-Stat cases, cf.

Section 9.1.2, it is necessary to use approximations of the mass operator Q̂
ðdÞ
1 . Another

important question arises in truncating the PSS in the comparatively weak-signal regimes.

Here, for example, we can ask what is the effect of stopping at a given term in the PSS and

what is the overall contribution of the remaining terms, and what criteria of truncation are

reasonable. In any event, various approximations are needed for quantitative results.

We consider briefly here two useful classes of approximation: (I) series modification and

(II) truncation. In the former, the character of the equivalent deterministic medium, or its

“mass” operator, is modified. In the latter, the PSS is truncated: a finite number of orders of

interaction is retained, while the higher orders are discarded. We begin with Case I.
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9.3.2.1 Approximation: Series Modification—The First Order Dyson Equation As

applied to the various forms of the Dyson equation [cf. (9.1.2), (9.1.7a) and (9.1.7b),

(9.3.8) (9.3.11)], the form of the equivalent deterministic scattering operators (EDSO),

Q̂
ðdÞ
1 ; Q̂

ðdÞ
12 ; . . . ; Q̂

ðdÞ
12...m, cf. (9.1.7b), (9.1.7c), (9.1.12), ismodified in some fashion, suggested

by the physics of the problem. This EDSO is altered, usually by truncation, while the infinite

operator series implied by 1�ĥðdÞ1;1
� ��1

, and so on, cf., [(9.1.7b) and (9.1.7c)] and so on,

remains.

Let us examine, for example, the first order Dyson equation [(9.1.7b) and (9.1.7c)] for the

mean field ah i and postulate a first-order independent structure for Q̂:

Ia. First-Order Independence (Volumes and Surfaces):

Q̂
ðdÞ ¼

Yk

n¼1
Q̂

 �n ¼ Q̂1


 �
Q̂2


 �
. . . Q̂n


 � ¼ ð.. . . . .Þ12 ð9:3:14Þ

(9.1.27) in (9.1.26) for volumes and from (9.3.14) in (9.1.38a,b,c) and then in (9.1.38c) for

surfaces we see at once that the average mass operator (V and S) Q̂
ðdÞ
1 is directly [(from

9.1.11)], Q̂

 � 6¼ 0 (V or S)

Q̂
ðdÞ
1 jindep: ¼ Â

ð1Þ
0 ¼ Q̂


 � ¼ .; Â
ð1Þ
m ¼ 0;m � 1; ) ĥ

ðdÞ
1;1 � M̂1 Q̂


 � ¼ ! . ð9:3:15Þ

where Q̂
ðdÞ
1 reduces to a single term, so that [(9.1.7b) and (9.1.7c)] still becomes an integral

equation,

ah i ¼ aHþ M̂1 Q̂

 �

ah i ¼ 1̂�M̂ Q̂

 �� ��1

aH; ð9:3:16Þ

with the following equivalent (deterministic) diagrams [cf. (9.3.8), (9.3.8a)]:

H H H
== = . ð9:3:16aÞ

However, equation (9.3.16) can still in principle be solved exactly analytically

[cf. (9.1.26), and so on, for volume and (9.1.36) et seq. for surfaces], since the mass

operator Q̂
ðdÞ
1 has only a finite number of terms. In the case of no volume or surface scatter

with Qh i ¼ 0 and )Q̂ðdÞ1 ¼ 0, as expected, ah i then reduce to aH . This clearly shows, as

for example �« ¼ a in the Helmholtz equation (9.1.42), with all higher order terms

vanishing cf. (9.3.15), that the postulate Qh i ¼ 0 (9.3.14) here is too restrictive to provide

meaningful results in such cases.

In a similar way, we may employ a more sophisticated, second-order assumption on the

statistical character of Q̂ which is often used. This is the second-order “independent” or

(generalized)Bourret (B) or bilocal approximation, involving second-order covariances, or

“nearest (B) neighbor” correlations or equivalently.

Ib. Second-Order Independence (Volumes and Surfaces):

Yk=2;kþ1=2

n¼1
Q̂
ð2ÞD En ¼ Q̂1Q̂2


 �
Q3Q4h i��� Qk�1Qkh i¼½ ��� �k¼even ð9:3:17aÞ

¼ Q̂1Q̂2


 �
Q3Q4h i��� Qk�2Qk�1h i Qkh i¼½ ��� �k¼odd ð9:3:17bÞ

8
<

:
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Alternatively, for the odd-order case we can also set, to25

Pk Q̂
ð2ÞD En

¼ Q̂1


 � Yðk�1Þ=2

n¼1
Qð2Þ
D En

Q̂1


 �
Q̂2Q̂3


 �
Q̂4Q̂5


 ���� Qk�1Qkh i� �¼½ ��� �ðnÞ:
ð9:3:17cÞ

Consequently, themassoperator,Q
ðdÞ
1 , (9.1.27)becomeshere from(9.1.11) for Q̂


 � 6¼ 0;¼ 0:

 ��� B̂
ð1Þ
0���!  ������B̂

ð1Þ
1 ���!  ������������������B̂

ð1Þ
2������������������!  ������B̂

ð1Þ
3�������!

Q̂
ðdÞ
1 ¼ Q̂


 � þ Q̂M̂Q̂

 �� Q̂


 �
M̂ Q̂

 �� �þ Q̂ M̂Q̂

� �2D E
�2 Qh i M̂Q̂

� �2D E
þ Q̂

 �

MQ̂

 �2h i

þ Q̂ M̂Q̂
� �3D E

� Qh i M̂ Q̂

 �� �3þ 4 Q̂


 �
M̂ Qh i Q̂M̂Q̂


 �� Q̂M̂Q̂
� �2�2 Q̂


 �
M̂Q̂
� �3D Eh i

ð9:3:18aÞ

When Q̂

 � ¼ 0 and has symmetrical pdfs about Q̂


 � ¼ 0, we obtain themuch simpler result,

cf. (9.1.15a):

 ������� B̂
ð1Þ
1 �������!  ������������������B̂

ð1Þ
3�����������������!  ������������������B̂

ð1Þ
5������������������!

Q̂
ðdÞ
1 ¼ Q̂M̂Q̂


 �þ Q̂ M̂Q̂
� �ð3ÞD E

� Q̂M̂Q̂

 �2h i

þ
�

Q̂ M̂Q̂
� �5D E

þ2 Q̂M̂Q̂

 �2

M̂Q̂
� �4D E

� Q̂ M̂Q̂
� �ð2ÞD E2

þ Q̂M̂Q̂

 �3

	
þ . . .

with

B̂
ð1Þ
2m¼ 0; B̂

ð1Þ
2mþ1 6¼ 0;¼ Q̂ M̂Q̂

� �2mþ1
D E

þ 0 Q̂
2mþ2

� �D E
;m� 3:

9
>>>>>=

>>>>>;

ð9:3:18bÞ
In diagram form the first few terms are

Q̂
ðdÞ
1 � jB¼ ½.�m¼0þ½ �.!.�m¼1þ½.! þ.!.!.�m¼2

½ !.þ.!.!.�m¼2
ð9:3:18cÞ

Now, unlike the purely independent case (9.3.14), (9.3.15), the series for Q̂
ðdÞ
1 does not

terminate, so that in this second-order situationwearegenerally forced to truncate the series to

obtain manageable approximations. In the Hom-Stat cases for the first-order Dyson equation

of Section 9.1.2, for the Fourier transforms of the kernels Q
ðdÞ
1 jV or S, we have from (9.1.23a)

and (9.1.34) respectively,

q
ðdÞ
00;1 k;sð ÞjV or S¼FrFDt QðdÞ r;Dtð ÞV or S

n o
; ð9:3:19Þ

whichappear explicitly in aðQÞ

 �

, (9.1.26) et seq. for volumes and (9.1.37) et seq. for surfaces.

Note that when Q̂

 � ¼ 0, which represents purely volume scatter effects without bound-

aries or interfaces, the bilocal or Bourret approximation (9.3.17a–c) for Q̂
ðdÞ
1 reduces to a

25 These are not the only arrangements: we can have . in any position without changing the nth-order (n¼ odd)

contribution.
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single term:

Q̂

 � ¼ . ¼ 0 : Q̂

ðdÞ
1 jBourret:B ¼ Q̂M̂1Q̂


 � ¼ Â
ð1Þ
1

� �
; Â
ð1Þ
m ¼ 0;m � 2 :¼ ; ð9:3:20Þ

for this first-order equivalent deterministic medium. [As we have just seen (cf. (9.3.18a)

and (9.3.18b)), with interfaces the Bourret approximation [(9.3.17a) and (9.3.17b)] yields a

non terminating series.] This compact result suggests the utility of the bilocal approximation

in applications, wherever it appears reasonable to describe the principal scattering effects of

the medium through second-order spatial (and temporal) correlations.

The various mean fields aðQÞ

 �

are diagrammed here in (9.3.8) when Q̂
ðdÞ
1 jB is given

either by (9.3.18), or by (9.3.20) in the unbounded (unlayered) cases. For the latter, we

have explicitly

Bourret H

ð9:3:21Þ

fortheassociatedFOSandPSS.UnlikethestrictlyindependentcaseIaabove,here aðQÞ

 � 6¼ aH

and aðQÞ

 �

now represents a meaningful expression for the mean scattered field when there

are no interfaces, cf. remarks following Eq. (9.3.16). Equation (9.3.21) is a generalization of

Tatarskii’sEq.(26),{61,[7],herebasedonthe“classical”Helmholtzequation,Section8.3.1.1,

Eq. (8.3.10) et seq., now with time-dependent index refractions « ¼ « R; t0ð Þ, to arbitrary

(linear) media and input signals. Similarly, the corresponding analytic solutions are given

here by (9.1.26) et seq. and (9.1.37) et seq., for volumes and surfaces, respectively.

Ic. Series Modification: Second-Order “Dyson Equation”: We may extend the above

next to the space-time correlation function of the (total) field, a1a2h i, cf. [(9.3.10a)
and (9.3.10b)]. If we use the postulated independent structure of Q̂, cf. (9.3.14), we find

from (9.3.15) and (9.3.16), (9.3.16a) that

(1) First-Order Independence:

Q̂
ðdÞ
12 jind ¼ Q̂1


 �
Q̂2


 � ¼ .
1
.
2
¼ Â

ð12Þ
o ; Â

ð12Þ
m ¼ 0; m � 1;

) ĥ
ðdÞ
12 jindM̂1M̂2 Q̂1


 �
Q̂2


 � ¼ !.
1
!.

2

(d)

1

(d)

2
¼ ĥ

ðdÞ
1 ĥ

ðdÞ
2 jind:

ð9:3:22Þ

Accordingly, with (9.2.3a) and (9.2.3b) et seq., (9.3.10b) and (9.3.16), Eq. (9.3.22)

reduces to the not unexpected result

a1a2h iind ¼ a1h iind � a2h iind; diagram 12jind ¼ diagram 1jind 	 diagram 2jind
ð9:3:16Þ1; etc: ð9:3:16aÞ1; etc: ð9:3:23Þ

Again, when Q̂

 � ¼ 0, the postulate I is still too restrictive for both surfaces and volumes

[cf. (9.3.16) and following remarks].

(2) Second-Order Dependence:

On the other hand, if we use the bilocal assumption (9.3.17a–c) here, we see that the

equivalent deterministic scattering operator Q̂
ðdÞ
12 , (9.1.16) is given by (9.3.13)

diagrammatically, with third- and higher-order correlations, for example,

, and so on, reducing to . In the important case of volume or surface
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scatter . ¼ Qh i ¼ 0ð Þ (with all odd moments of Q), we find that the infinite

series (9.2.16) for Q̂
ðdÞ
12 now contains only terms of pairs Q1Q2h i and so on,

Q̂
ðdÞ
12 ¼ Q̂1Q̂2


 �þ Q̂1 M̂1Q̂1

� �2
Q̂2

D E
þ . . . ¼ B̂

ð12Þ
0 þ B̂

ð12Þ
2 þ . . . ; ð9:3:24Þ

ð9:3:25aÞ

ð9:3:25bÞ

The general second-moment function of the field (¼ the covariance þ haðQÞ1 ihaðQÞ2 i),
without approximations, becomes diagrammatically now from (9.2.7) aswell as (9.2.9b),

cf. Section 9.2.1 above and (9.3.10b):

12
[                 ] [                   ]

1     2

–1

1      2 1            2
,

(d)     (d) (d)     (d)
= ð9:3:26Þ

where
1 or 2

is given explicitly by Eq. (9.3.8). [Other diagram equivalents are (9.3.11)

and (9.3.12). The same form applies for the Bourret approximation, except that now this

approximation is substituted forh
ðdÞ
1;2 � hðdÞ12 (and correspondingly for Q̂

ðdÞ
1 ; Q̂

ðdÞ
1;2), as well

as for B, and soon.Evenwith these simplifying conditions, the development

for a
ðQÞ
1 a

ðQÞ
2

D E

B
, (9.3.26) is considerably more complex than that for haðQÞ1 iB, (9.3.21)

here. Our results (9.3.10), (9.3.12), and (9.3.26) with = , are generalizations

of Tatarskii’s Eq. (27–49), {61, [7], to general (linear) media and arbitrary signals,

expressed now in the Dysonian hierarchy of Section 9.2.3.

(3) Some Higher Order Relations

As expected when Q̂ obeys first-order independence [Id, (1)], (9.3.22), we can show

that for (9.2.18)

Q̂
ðdÞ
12...mjind ¼

Ym

n¼1
Q̂n


 � ¼ AðmÞo

¼ .
1
.
2
.
3
. . . .

m

9
>=

>;

;A
ðmÞ
n�1 ¼ 0

9
=

;
; and ĥ

ðdÞ
12...mjind ¼

Ym

n

M̂n;1 Q̂n


 � ¼
Ym

n

ĥðdÞn;1
¼ ! .

1
! .

2
. . . ! .

m

9
>=

>;

ð9:3:27Þ

The corresponding mth order field moment can likewise be demonstrated to be

[from (9.2.19)–(9.2.21)]

a1 . . .amh iind ¼ a1h i a2h i . . . amh i;m � 1; ð9:3:28Þ
cf. (9.3.23). This again is entirely to be expected, since the scattering operator is completely

space–time independent, namely, (9.3.27). [With Q̂

 �2mþ 1 ¼ 0;m � 1, we have again too

strict a postulate (9.3.14) to give meaningful results physically.]
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In the bilocal cases (II), (9.3.14), however, when Q̂

 � 6¼ 0, that is, there are interfaces

producing specular reflections; noticeable space–time correlation in the resulting multiple

scattering can occur, as we have already seen (for Bourret). No simplifications occur

generally in the formal structure of Q
ðdÞ
12...m and in the FOS and associated diagrams, except

that all third- and higher order scattering correlations reduce to products of pairs and means

(of Q̂). However, when Q̂
m

D E
;m � 1 ¼ 0, it can be shown that

=A0
(m)

(d)

=0, m = odd 

m-1 m
m = even

1 2 3 4

=0(m)An≥1;
ð9:3:29aÞ

so that

→ →
1 2

(d ) ( (d ) (d )
12...m 12 34 1,

even
...ˆ ˆ ˆ ˆd)

B Bm m
m

η η η η −
=

= = → →
3 4

→ →
m-1 m

...

= 0, m = odd.

B B

ð9:3:29bÞ
The mth-order diagram for a1 . . .amh i, (9.2.17a), is compactly.

12...m     

...
m     1               2

ð9:3:30Þ

where Ĥ
ðm�1Þ
12...m is structured specifically according to Section 9.2.3. Again, we remark that

these results apply formally for both volumes and surfaces.

II. Series Truncation:

In the case cited above the “mass operator”Q
ðdÞ
1 and so on, is approximated either as an

infinite or terminated series [cf. (9.3.18), (9.3.15), (9.3.20), (9.3.27), (9.3.29a)], thus

altering the form but not the fact that the resulting approximate solution is still an infinite

though subseries of the original PSS. On the other hand, truncation replaces the exact (or

previously approximated) infinite operator series with a finite operator series. Of these

latter there are two principal types: Taylor series approximations, which yield analytic

forms directly and Born approximations, which constitute a hierarchy of truncated

operator series.

Let us consider Taylor first:

A. Taylor Series Approximations:

Although the exact solution aðQÞ

 �

of, say, the first-order Dyson equation [(9.1.7b)

and (9.1.7c)], (9.3.8), requires an infinite PSS, cf. [(9.1.7b) and (9.1.7c)], we can reduce the

evaluationof aðQÞ

 �

to a purely algebraic solutionbymeans of aTaylor series expansionwith

truncation. Thus, if we expand aðQÞ

 �

, for example

aðQÞ R0; t0ð Þ
D E

¼ aðQÞ R; tð Þ
D E

þ R0�Rð Þ � rR aðQÞ R; tð Þ
D E

þ t0�tð Þ q
qt

aðQÞ R; tð Þ
D E

þ . . . ;

ð9:3:31Þ
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and keep only the leading term for the generic integral equation

aðQÞ
D E

¼ aHþhðdÞaðQÞ; ð9:3:31aÞ

we have directly the first-order approximation form

ĥ
ðdÞ
1 aðQÞ ¼ M̂1Q̂

ðdÞ
1 aðQÞ
D Eh i

1
6 a R; tð Þh iM̂1QðdÞ1 1: ð9:3:32Þ

Here M̂1Q̂
ðdÞ
1 1 is simply an (analytic) function of (R, t), namely,

ĥ
ðdÞ
1 j11 ¼ M̂1Q̂

ðdÞ
1 1̂ ¼ Ð

M1 R; tjR0; t0ð ÞdR0dt0 Ð Q̂ðdÞ1 R0; t0jR00; t00ð Þ1dR00dt00

� N
ðdÞ
1 R; tð Þ:

ð9:3:33Þ

Applying [(9.3.32) and (9.3.33)] to (9.3.31a) gives thefirst-order approximateanalytic result

aðQÞ R; tð Þ
D E

1
6

aH R; tð Þ
1�NðdÞ1 R; tð Þ

; ð9:3:34Þ

where the exact or various approximate expressions for the equivalent deterministicmedium

operator Q̂
ðdÞ
1 may be employed, cf. (9.1.27), (9.3.15), (9.3.20). Thus, for the fully

independent (Ia, 1) and bilocal approximations Ib, Ic-(2), Q̂
ð2mþ 1ÞD E

jm�0 ¼ 0, we have

specifically (and exactly) here

N
ðdÞ
1�ind ¼ M̂1 Q̂


 �
1; N

ðdÞ
1�ind ¼ Q̂M̂1Q̂


 �
1; Q2mþ 1

 �

m � 0
¼ 0: ð9:3:35Þ

Clearly, there may be some points (foci) or lines (caustics) in space where aðQÞ

 �

1
!1,

when the denominator of (9.3.34) vanishes. The reality of these singularities depends on how

well (9.3.34) approximates aðQÞ

 �

itself. The true foci, and so onmay not be infinite, butmay

be located close to the singularities of the approximation.Thus, (9.3.35)may serve as a guide

as to potentially real foci, and so on.

Higher order yield a combination of analytic forms and simple differential operators, as

expected from the Taylor series (9.3.31). Thus, the second-order approximation for aðQÞ

 �

becomes directly, in the same fashion

að2Þ R; tð Þ
D E

6 1̂�NðdÞ1 1̂�NðdÞ2

� ��1
aH6aHþ

Xm

k¼1
N
ðdÞ
1 þN

ðdÞ
2

� �ðkÞ
aH; ð9:3:36Þ

where now

N̂
ðdÞ
2 � ĥ

ðdÞ
1 	 R0�Rð Þ

h i � rRþ ĥ
ðdÞ
1 	 t0�tð Þ

h i q
qt

; ð9:3:36aÞ

and truncation is chosen after m � 1ð Þ terms. The presence of these and subsequent high-

order terms stems, of course, directly from the higher order terms in the original Taylor

series (9.3.31) for aðQÞ

 �

.
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The error in using (9.3.34) for example, is generally difficult to assess, because the true

value of aðQÞ

 �

is not usually available.However, in the caseswhere theHom-Stat conditions

of Section 9.1.2 and so on, are obeyed we can use the exact result (9.1.26) and (9.1.37) to

determine the error vis-à-vis using (9.3.34) for ah iV or S.

In a similar way, we may develop a Taylor series approximation for the second-moment

function a
ðQÞ
1 a

ðQÞ
2

D E
, (9.2.7), (9.2.9b), using a two-variable expansion of a

ðQÞ
1 a

ðQÞ
2

D E
about

R1; t1;R2; t2ð Þ, cf. (9.3.31). The first-order result here is the analytic expression

a
ðQÞ
1 a

ðQÞ
2

D E
6

1�NðdÞ1 N
ðdÞ
2

1�NðdÞ12

� �
1�NðdÞ1

� �
1�NðdÞ2

� �

8
><

>:

9
>=

>;
aH1aH2;

N
ðdÞ
1;2 ¼ N

ðdÞ
12 1 ¼ M̂1;1M̂2;1Q̂

ðdÞ
12 1;

9
>>>>>=

>>>>>;

ð9:3:37Þ

whereN
ðdÞ
1 ¼ N

ðdÞ
1 R1; t1ð Þ, and soon, cf. (9.3.33).Again, various approximate forms for Q̂

ðdÞ
12 ;

Q̂
ðdÞ
1;2 may be used, cf. (9.3.22), [9.3.23a), (9.3.23b)] and (9.3.35) above. Higher order terms

(cf.(9.3.31))intheTaylorexpansionmayalsobesought,asin[(9.3.36)and(9.3.36a)]for aðQÞ

 �

.

The error, again, is difficult to determine, because of the complexity of the exact solution.

IIb. Born Approximations:

Unlike the above procedures I, II in Section 9.3.2.1, which essentially approximate the

“mass operator”,QðdÞwithan infiniteor truncated series, cf. (9.3.18a,b,cor (9.3.20), (9.3.25),
we may truncate the PSS directly. The resulting finite series is called a Born approximation

series, whose order depends on the stage at which truncation is applied. Thus, for the first-

order Dyson equation (9.3.8d) for the mean field aðQÞ

 �

we can construct the following

hierarchy of approximations and associated diagrams:

H
=. =. ð9:3:37aÞ

H

• HH=.First Born approximation

ð9:3:37bÞ

etc. etc. etc.  (k ≥ 3)

Second Born approximation =.

=. H

..
.

..
.

ð9:3:37cÞ

The kth-order

TBorn approximation is = (Q). :α⊕
•
•
•

•
• • • )( )(

0

ˆˆ .
k k

Hk
k

QMFOS α∞
=

= Σ

ð9:3:37dÞ
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Unlike the approaches abovewhich use modifications of the “mass operator,”QðdÞ, etc., but
where the resulting PSS remain infinite or where equivalently, the corresponding FOR and

FOS [(9.3.21), etc.] contain closed feedback loops, all Born approximations contain only

feedforward loops, as indicated in (9.3.37d). This is the immediate consequence, of course,

of the truncation of the direct PSS (9.3.8d).

More involved Born approximations are readily constructed by truncation of the Dyson

equation, cf. (9.3.8). Here we replace Q̂

 �

; Q̂ . . . Q̂

 �

, and so on in the direct PSS by

Q̂
ðdÞ
; . . . ;

�
Q̂
ðdÞ

. . . Q̂
ðdÞ�

, and so on,where Q̂
ðdÞ
ð Þ is givenby (9.3.9a), and (9.3.9b)which is an

infinite (sub-) series of operators, k each feedforward loop of ðFORÞk, (9.3.37d). In the

important cases of no interfaces (i.e. no coherent terms) Q̂
2mþ 1

D E

n � 0
¼ 0 where, for

example, a bilocal approximation (truncation) of Q̂
ðdÞ

is chosen to represent the correlation

structure of the scattering operator Q̂, we see at once from (9.3.20) that each Q̂ in the FORð Þk
of (9.3.37d) is replaced by Q̂

ðdÞ
6 , (e.g., ĥðdÞ ¼ .! ), k ¼ 1; becomes

, k¼ 2; and for k, becomes , with 2k Q̂

and M̂, operators in each feedforward link.Becauseof the bilocal assumption, afterk¼ 2,we

lose the higher order correlations. However, for 0 < k � 2, we have generated a more

sophisticated Born approximation. This is because of our use of the Dyson equation, rather

than the direct average of the PSS for aðQÞ

 �

, cf. (9.3.8d), and our implementation of the

bilocal approximation of the mass operator, Q̂
ðdÞ
, cf. (9.3.20).

As in all these approximate situations, the evaluation of error remains a major and

difficult problem, because the exact results are generally unknown. We must rely, instead,

on our physical intuition, aided by the (essentially) local physics governing the inhomoge-

neity operator Q̂ in question. This is one reason why the physical “anatomization” of the so-

far canonical Q̂ is critically important in specific cases and is often the principal modeling

subject. In the special situations where an exact solution is available [for example, in

Section 9.1.2 above], the error in the various Born approximations k � 1ð Þ can be evaluated,
relatively conveniently, at least for small k.

9.3.3 A Characterization of the Random Channel: First- and

Second-Order-Moments I

Our interest in these first- and second-order moments stems from their usefulness in

describing the physical events of scattering and ambient noise in acoustic and electromag-

netic channels and our ability to quantify their structure adequately in many practical

situations. We mention in particular such quantities in the covariance case as the intensity

spectrum, as well as other measures of noise (and signal) energizes, and their expansive

coherent component. Accordingly, we may use the results of Sections 9.1 and 9.2 to

characterize the general channel (T
ðNÞ
M of Fig. 9.1), specifically in terms of the homogeneous

and inhomogeneous (random) operators M̂ and ĥ1 � M̂1Q̂
� �

, cf. [(9.1.6a), (9.1.6b),

(9.1.7a), (9.1.7b)]. In addition to scattering and deterministic inhomogeneities, we include

now ambient fields.

9.3.3.1 Operator Structure of the Random Channel: Ambient Fields The channel

operatorT
ðNÞ
M ¼ 1̂�ĥ1

� ��1
M̂1

� �
, cf. Fig. 9.1, since from a ¼ T

ðNÞ
M �GTf g is conveniently
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written now

T
ðNÞ
M ¼ 1̂þ ĥ1

1̂�ĥ1

 !

M̂1 � M̂1þ Î1 � M̂1: ð9:3:38aÞ

) Î1 ¼ 1̂�ĥ1
� ��1

ĥ1M̂1: ð9:3:38bÞ

Herewe can immediately separate the homogeneous M̂1
� �

from the inhomogeneous Î1
� �

operations involved because of the assumed linearity of themedium. [Of course, for an ideal

medium, Î1 ¼ 0 and T
ðNÞ
M ¼ M̂1.] Moreover, when a variety of scattering mechanisms is

excited we use the M̂-form to account for their possible interactions.

When there are noticeableambient sources, of source density�GA, thesemaybe added to

the desired signal source �GTð Þ, so that the basic Langevin equation becomes

fðL̂ð0Þ � Q̂ÞaðQÞ ¼ �GT � GA þ ½b:c:sþ i:c:s�g; or ð9:3:39aÞ

1̂�ĥ1
� �

aðQÞ ¼ aHþaA; with aA ¼ M̂1 �GAð Þ; ð9:3:39bÞ

and ) a ¼ T
ðNÞ
M �GT�GAf g; ð9:3:39cÞ

where�GA (like�GT) is the source function describing the ambient field, andwhere�GA

may be localized or distributed. As sources extraneous to that of the desired signal, the

ambient field mechanism has a different physical (and hence statistical) structure from

that of the signal and the secondary scattering sources produced by the interaction of the

original signal with inhomogeneities. The key differences lie in the fact that the ambient

sources are usually independently emitting as well as independently spatially distributed,

unlike the scatter, which is initiated by the desired signal source and is radiatively coupled

(e.g., multiple scatter). We can, of course, have scatter produced by the ambient sources,

but these effects are usually small, except for deterministic multipaths. In any case, it is

clear from [(9.3.38a) and (9.3.38b)] and [(9.3.39a) and (9.3.39b)] that the medium

operator T
ðNÞ
M (¼ M̂1 and hence Î1, also) remain unchanged by the presence of sources,

ambient and desired, as we would expect as long as these sources themselves do not alter

the medium.

9.3.3.2 Elementary Statistics of the Channel Operator T
ðNÞ
M Here the principal channel

operator statistics, like those for the field (cf. Sections. 9.1 and 9.2), are the lower order

moments and covariance functions, for example, ah i; a1a2h i; a1a2h i� a1h i a2h i, and so on.
By direct averaging of (9.3.38a) we find directly that

T
ðNÞ
M

D E
¼ M̂1
D E

¼ M̂1þ Î1
D E

; K̂1;I ¼ Î1̂I2

D E
� Î11

D E
Î12

D E
; ð9:3:40aÞ

) T
ðNÞ
M1T

ðNÞ
M2

D E
¼ M̂11M̂12

D E
¼ M̂11M̂12þ M̂11 Î12

D E
þ M̂12 ¼ Î11

D E
þ Î11̂I12

D E
;

ð9:3:40bÞ
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with higher order moments determined in the same way. In more detail diagrammatically

with the help of (9.3.38b) and (9.3.7a–d), (9.3.8a–d), we can readily write

Î1 ¼ !�
1̂�!� ! ; ) Î1

D E
¼ !.

ðdÞ

1̂�!.
ðdÞ !

(d)

(d)
1̂–

; ð9:3:41aÞ

so that

T
ðNÞ
M

D E
¼ M̂1
D E

¼ ! þ
(d)

(d)
1̂–

; etc:; cf: ð9:3:8a�dÞ: ð9:3:41bÞ

The covariance function K̂1;̂I, (9.3.40a), is likewise represented diagrammatically by

the PTS expansion

11
[                             ] + [ 

+ [ ... ] , ] 

+

11 11 11 11 11 12

22

22 22 22 22

11 22 11 22 221     2 ð9:3:42aÞ

or more compactly,

1    2
[                      ] [                                                        ]

1    2 12
+

+ [ ... ] .

121   2   2    1   1   2 1   2   2        2   1   1 ð9:3:42bÞ

cf. [(9.3.9a) and (9.3.9b)]. Similarly, for themean intensity operator Î1;1


 � � Î
ð2Þ
1;1

D E� �
of

the random channel, we get at once from (9.3.41a)

ð9:3:43aÞ

þ ½. . .�; etc: ð9:3:43bÞ

on direct multiplication, cf. [(9.3.9a) and (9.3.9b)]. Higher order operator moments like

Î1;12

D E
� Î11

D E
Î12

D E� �
, Î1;1234

D E
� Î11j; Î12j; Î13j; Î14

D E� �
are obtained in similar

fashion. Of course, the principal practical use of these expansions occurs when the

higher-order terms can be neglected (e.g., Born approximations, cf. Eqs. (9.3.37a) et

seq. above, where, for example, all components to the right of the vertical dashed line in

[(9.3.42a) and (9.3.42b)], [(9.3.43a) and (9.3.43b)] are dropped).

9.3.4 Elementary Statistics of the Received Field

The received waveform X(t) following the receiver aperture R̂
� �

but before any subsequent

signal processing, is now readily found from (9.3.38a) applied to the sources in [(9.3.39a)
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and (9.3.39b)]. We have

X ¼ R̂aðQÞ�R̂ M̂1þ Î1
� �

�GT�GAð Þ ¼ R̂ 1̂þ 1̂�ĥ1
� ��1

ĥ1
h i

aHþaAð Þ; ð9:3:44Þ
cf. (9.3.39b). Consequently, the mean received waveform is

Xh i ¼ R̂ aðQÞ
D E

¼ R̂ M̂1þ Î1
D E� �

�GT�GAð Þ ¼ R̂M̂1 �GT�GAð Þ: ð9:3:45Þ

The incoherent component of Xh i is

Xh iinc ¼ Xh i�R̂ aHþaAð Þ ¼ R̂ Î1
D E

�GT�GAð Þ 6¼ 0: ð9:3:45aÞ

The nonvanishing character of Xh iinc is generally evident: although this component cannot

be (time-) correlated with the input signal, for example, this cross-correlation function

vanishes, the ensemble average does not, since Î1
D E

6¼ 0, cf. [(9.3.41a) and (9.3.41b)],

which represents a mean renormalization of the original field aH þaAð Þ.
The covariance and second-order moment of the received wave are, similarly,

KX t1; t2ð Þ ¼ X1X2h i� X1h i X2h i ¼ R̂1R̂2 a1a2h i� a1h i a2h ið Þ
¼ R̂1R̂2K̂1;I � GTþGAð Þ1 GTþGAð Þ2

ð9:3:46Þ

and

X1X2h i ¼ R̂1R̂2 a1a2h i ¼ R̂1R̂2M̂11M̂12 GT1þGA1ð Þ GT2þGA2ð Þ ð9:3:47Þ

where we have included possible ambient sources. Thus, the mean intensity of the received

wave is

X2

 � ¼ R̂

ð2Þ
M̂
ð2Þ
1 GTþGAð Þ2

D E
¼ R̂M̂1 GTþGAð Þ

h i2� 
: ð9:3:47aÞ

Higher order moments are determined in the same fashion:

X1X2X3X4h i ¼ R̂1R̂2R̂3R̂4 a1 . . .a4h i ¼ R̂1 . . . R̂4 M̂1;1 . . . M̂1;4

D E
G1 . . .G4 ð9:3:48aÞ

with

X2
1X

2
2


 � ¼ R̂
ð2Þ
1 R̂

ð2Þ
2 a2

1a
2
2


 � ¼ R̂
ð2Þ
1 R̂

ð2Þ
2 M̂

ð2Þ
1;1M̂

ð2Þ
1;2

D E
G2

1G
2
2 ð9:3:48bÞ

for the second-moment function of the intensity X2, cf. (9.3.47a). From [(9.3.38a)

and (9.3.38b)], it is clear that all orders of the operator Q̂ (or ĥ1 ¼ M̂1Q̂) appear in these
moment expressions.
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The appropriate diagrams follow from thoseof the correspondingoperators I1, or M̂1, cf.
[(9.3.41a) and (9.3.41b)], [(9.3.43a) and (9.3.43b)] (onpreoperating by R̂, cf. (9.3.44)).Thus,

for Xh i, (9.3.45)we canwrite directly Xh i ¼ R̂ , which is developed in a PSS explicitly

in (9.3.37), preceded by R̂. The diagram for (9.3.47), by direct expansion, is

ð9:3:49Þ

from which the various higher order moments of Q̂ (at points 1, 2) appear clearly. The

elements to the left of the vertical dashed lines constitute a form of first-Born approximation

to X1X2h i, cf. remarks for Eqs. (9.3.37a) et seq.

Finally, the central problem remains of obtaining the PSS solutions, or the equivalent

FOS, either by approximation (in the manner of Section 9.3.2), or in the comparatively rare

cases where closed form solutions can be generated (cf. 9.1.2). One can examine some new

approaches,whereby suitable decompositions of the inhomogeneity operator Q̂ into ordered

sums of its interaction elements can be achieved, thereby including the primary groups of

multiple scatter effects, along with their group probability distributions.

9.4 SUMMARY REMARKS

In the preceding sections we have outlined a “classical” operator formulation for treating

scattering in a linear medium. Because of its random nature, exemplified by our

quantitative a priori ignorance of a typical replica or representation of the scattered

field, we cannot best construct the Langevin equation governing propagation and various

assumptions about its statistical character. These, however, are (usually) sufficient for us to

obtain solutions to the particular Langevin equations for the phenomenon in question.

These “solutions”, as we have seen, are various statistics of the scattered field, that is,

moments and, if possible, probability distributions of the field. As explained at the

beginning of this chapter and Chapter 8, this approach constitutes an aposteriori or

predictive theory, since we never know in advance the deterministic nature of the replica

which we will actually encounter.

In brief, this chapter has provided a rather elementary and necessarily condensed account

of some of the principal results of classical scattering theory (in linear media) from an

operational viewpoint. However, we have generalized the treatment to include surfaces as

well as volumes, and distributed sources and their accompanying apertures and arrays, as

well as the formalismof propagation. The operational form inwhich our treatment is cast has

the advantages of formal exactness and compactness, and as such provides a convenient

vehicle for the large-scale computations required to obtain numerical results inmost cases. It

also allows us to express the detailed and complex structures analytically, fromwhich in turn

computations are tobemade.Asnotedearlier, these computations aregenerallyon the sale of

those needed for weather predictions and large-scale turbulence. In some cases, however,

analytically tractable results can be obtained, often with appropriate approximations.

We may summarize our treatment here with the following brief account of the present

chapter.

Section 9.1 describes operational solutions for the first and second moments of the

scattered field. In more detail, feedback operational solutions, are obtained for the generic

Langevin equation (cf. 9.1.5a). Then Dyson’s equation for the first moment is given, a
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deterministic relation, along with the equivalent mass operator Q̂
ðdÞ
1 , for volumes and

surfaces, along with its generalization ĥ
ðdÞ
1

� ¼ M̂1Q̂
ðdÞ�

; both Q̂
ðdÞ
1 and ĥ

ðdÞ
1 are global

operators. When the medium is Hom-Stat, Dyson’s equation can be expressed formally in

closed analytical relations, which however must employ a finite approximation of Q̂
ðdÞ
1 ,

cf. (9.1.26) et seq. for volumes, and (9.1.37) et seq. for surface. Included here is the example

of the Langevin equation for the general time-dependent Helmholtz equationwith a random

index of refraction, cf. Section 9.1.3 Examples.

Section 9.2 presents operational solutions for the higher order moment (i.e. Bethe–

Salpeter equations) in feedback form, including the structure of Q̂
ðdÞ
12 ; ĥ

ðdÞ
12 . (Even in forHom-

Stat media there mth-order moments m � 2ð Þare not reducible to closed form, unlike the

original first-orderDyson equation above.)A brief treatment of the transport equation is also

included in Section 9.2.4, alongwith analysis of theGaussian cases for Q̂ (Section 9.2.5) and

an example of very strong scatter — that is, ĥk k ¼ 1, leading to a diffusion medium, for

which first and second moments of the field in the volume, that is, aðQÞ

 �

; a
ðQÞ
1 a

ðQÞ
2

D E
, are

obtainable explicitly.

In Section 9.3 equivalent representations in terms of simplified Feynman diagrams are

discussed for both first- and second-order moments of the field including variety of

approximations, such as the Bourret or bilocal approximation series modification, trunca-

tion, Taylor series andBorn approximations.This Section concludeswith some lower order

statistics of the channel as a whole and in particular for the received field.
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APPENDIX A1

SELECTED PROBABILITY
DISTRIBUTIONS FOR GAUSSIAN
FIELDS

In the important cases where the noise (and sometimes the signal) fields are Gaussian, it is

well known that it is possible to obtain their probability distributions—in applications

the associated probability densities (pdf values)—of such fields, when their space–time

variances are specified. Moreover, in such cases, it is also possible to obtain the

performance of detection and estimation systems operating in these Gaussian environ-

ments, often in exact formulations, or in such forms as to simplify their evaluation greatly.

A variety of examples is presented in the early chapters, where obtaining exact generic

results under various conditions of signal reception, namely, “coherent,” “incoherent,”

and combinations thereof, is the goal. These in turn involve both linear and quadratic

functions and functionals of the received data x ¼ xj
� �� �

for Bayes optimal detection and

estimation algorithms.

In earlier work (Chapter 17, [1]), we have considered similar problems: first-order pdf

values of the spectral intensity of Gaussian processes (Section 17.2.3, [1]), pdf values of

allowing (quadratic) nonlinear operations and filtering (Section 17.3, [1]), first- and

higher-order characteristic functions (cf’s), and pdf values under similar nonlinear

conditions (cf. Problems 17.15–19, [1]). Our major innovations here are the extensions

of this earlier work (1) to space–time fields, including the often encountered cases of

separable space–time fields, (2) preformed beams, where only the temporal portion of the

array or aperture outputs are subject to optimal processing, and (3) explicit results for

broadband incoherent reception, which involves quadratic functions (and functionals) of

the received noise field.
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Here, we limit our attention to the following generic cases and to the evaluation of their

first-order pdf values, mainly underH0:N andH1:Sþ N. Specifically, we seek the pdf values

of the generic relation y ¼ logG xð Þ ¼ AJ þ F xð Þ, x ¼ xj¼mn

� � ¼ x Rm; tnð Þ½ �, when the

characteristic functions of the receivedfieldx underH0 andH1 are given, see Section 2.4, for

these Gaussian fields from which the noise field data x are taken. Here F xð Þ is the Gaussian
quadratic form F ¼ ~xLx and

y ¼ logG xð Þ ¼ AJ þ ~xLx; under
H0:N; H1 ¼ Sþ N

H1:N þ S1;H2 ¼ S2 þ N

�
; ðA1:1Þ

the latter for the binary signal cases S1 þ N versus S2 þ N. Generally, field statistic

L ¼ Ljj0
� �

is a J � Jð Þ; J ¼ MN square matrix, which may or may not be symmetrical;

L itself is often a product of covariance matrices and is at least positive semidefinite, that

is, ~xLx � 0. The matrix L is also assumed to have an inverse, that is, L�1L ¼ I and,

therefore, det L 6¼ 0, and to possess distinct eigenvalues, some of which may be negative

and all of which are nonzero. Here, the indices j; j0ð Þ are double, that is, j ¼ mn, where

m ¼ 1; 2;. . . ;M and n ¼ 1; 2;. . . ;N; J ¼ MN; represent respectively points in space and

time, for example, Ljj0 ¼ L Rm;tn;Rm0 ;tn0ð Þ. Alternatively, and equivalently, it is often

convenient to use a “condensed” or single index number k, where k renumbers j ¼ mn.

Thus, schematically, we can write the following isomorphisms:

j

k

� �¼ mn ¼ 1 1

1

� �
;
;

1 2

2

� �
; . . . ;
; . . . ;

1 N

N

� �
;
;

2 1

N þ 1

� �
;
;

2 2

N þ 2

� �
;
;
. . . ;

. . . ;

2 N

..

.

2 N

0

@

1

A ;
;

M 1

M � 1ð ÞN
� �

;
;

M 2

M � 1ð ÞN þ 1

� �
;
;
. . . ;

. . . ;

MN

MN

� �)

: ðA1:2Þ

where notational compactness is useful, particularly in cases for which L does not factor

into separable spatial and temporal components.

The pdf values we seek to evaluate, given their associated characteristic functions

F1 ijjH0;H1ð Þ, involve integrals of the following type:

w1 yjH0ð Þ ¼
ð1

�1

e�ij y�AJð Þdj=2p
det I� ijaLð Þ½ �g ; w1 yjH1ð Þ ¼

ð1

�1

e�ij y�AJð ÞþH1 ijð Þdj=2p
det I� ijaLð Þ½ �g ; ðA1:3Þ

for the hypothesis states H0 : N and H1 : Sþ N, refer to Eq. (A1.1). Here, g ¼ 1or1=2 are
associated respectively with narrow- and broadband data xf g for the most part. In the above

a; > 0ð Þ; y;AJ ; g;andL are generally real quantities, while j can be complex, by analytic

continuation, and I ¼ dkk0½ � ¼ dmn; m0n0
� �

is the unit matrix. By inspection, we see that the

associated cf’s here are

F1 ijjH0ð Þ ¼ e�ijAJ

det I� ijaLð Þ½ �g ; F1 ijjH1ð Þ ¼ e�ijAJþH1 ijð Þ

det I� ijaLð Þ½ �g ; ðA1:3aÞ

with H1 0ð Þ ¼ 0, so that F1 0jH0;1

� �
, implying

Ð
1w1 yjH0;H1ð Þdy ¼ 1. In addition, F1 ijð Þ is

assumed to be suitably continuous, so that its Fourier transform is everywhere nonnegative,
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that is, the resulting pdf values w1 y H0;H1j Þð are everywhere nonnegative, as required for a

proper pdf1. The cf’s here are obtained for Gaussian fields.

This appendix is organized as follows:

Section A1.1 Diagonalization of det Iþ gLð Þ for nonseparable space–time fields;

eigenvalue methods for discrete and continuous sampling; equivalent

trace methods for discrete and continuous sampling.

Section A1.2 Extension of the results of Section A1.1 to separable space–time fields,

including pertinent elements of matrix and Kronecker product algebras,

for discrete and continuously sampled fields.

Thus, the initial task for evaluating the expressions (A1.3) is the reduction of det Iþ gLð Þ to
diagonal form det Iþ gLð Þ ¼QJ

k¼1
1þgl Jð Þ

kð Þ, where l
Jð Þ
k ; k ¼ 1;. . . ; J ¼ MN are the eigenva-

lues, obtained in turn from the determinantal equation detðL� l Jð ÞIÞ. Contour integration of
the result inEq. (A1.3)yields thedesiredpdfvalues. (Seealso the test andProblems inChapter

17, [1], as well as the footnote on p. 724, ibid.)

A1.1 DIAGONALIZATION OF det Iþ gLð Þ FOR NONSEPARABLE FIELDS

We begin here with the nonseparable space–time cases L Rm;tn;Rm0 ;tn0ð Þ 6¼ A Rm;Rm0ð Þ
B tn;tn0ð Þ, where it is convenient not to use the “condensed” indexing kð Þ for L ¼ Lkk0½ �,
k isomorphic to j ¼ mn, refer to Eq. (A1.2). In this section, we present two methods for

achieving the desired reduction. The first requires the eigenvalues (and associated eigen-

vectors) of a certain class of homogeneous integral equation and is exact for allg. The second
yields useful approximate expressions that in many instance avoid the calculation of

eigenvalues needed in the first method. This second method is well suited to problems of

weak signal reception, where the often needed averages over the random signal parameters

can then be easily carried out, and themoment of the randomvariable y, (A1.1) (wheng is set

equal to 0 eventually), can be directly calculated.

A1.1.1 The Eigenvalue Method: Discrete Sampling

Using the condensed index k, refer to Eq. (A1.2), we assume initially for the various

constituents of det Iþ gLð Þ that

ð1Þ g is in general a complex quantity 0 � jgj � 1ð Þ
ð2Þ I ¼ djj0

� � ¼ dmn;m0n0
� � ¼ dkk0½ �; by ðA1:2Þ

ð3Þ L is a J � Jð Þ; J ¼ MN ¼ K matrix all of whose eigenvalues are distinct

and all of whose elements are real quantities: L; however; is not necessarily

symmetrical

9
>>>>>>=

>>>>>>;

:

ðA1:3bÞ

1 See (2) of Section 3.2 of Ref. [1] and footnote therein.
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From (3) in Eq. (A1.3b), we can always find a J � Jð Þ matrix Q ¼ Qjj0
� �� �

, which

diagonalizes L by means of the similarity transformation:

Q�1LQ ¼ L ¼ l
Jð Þ
k dkl

h i
; or LQ ¼ QL; ðA1:4Þ

where l
Jð Þ
k k ¼ 1; 2;. . . ; Jð Þ are the J real, distinct eigenvalues2 of L, and dkl is the usual

Kronecker delta dkl ¼ 1;¼ 0, k 6¼ l. The eigenvectors of L are formed from the rows ið Þ or
columns jð Þ ofQ and are found from the J linearly independent relations, expressed by the

matrix–vector product

Lfl ¼ l
Jð Þ
l fl ; l ¼ 1; 2;. . . ; J; with fl ¼ Qj

� �
l

or Qi½ �l ðA1:5aÞ

subject to the orthonormality conditions

~fk fl ¼ dkl ; k; l ¼ 1;. . . ; J; ðA1:5bÞ

after the eigenvalues have been determined from the secular equation

det L� l Jð ÞI
� 	

¼ 0: ðA1:5cÞ

For matrices satisfying (3) in Eq. (A1.3b), we can use the fact that detAB ¼ detA � detB
(for square matrices) and apply (A1.4) to det Iþ gLð Þ, to get

det Iþ gLð Þ ¼ det Q�1J IQþQ�1gLQ
� � ¼ det Iþ LLð Þ

¼
YJ

k¼1
1þ gl

Jð Þ
k

� 	
:

ðA1:6Þ

This is the factored or reduced form of the J ¼ MN-th degree polynomial in g
represented by det Iþ gLð Þ. Note that when L is symmetrical, Ljj0 ¼ Lj0j as well as

real,3Q can be an orthogonal matrix and we can relax the constraint above on L so that

all its eigenvalues be distinct. However, if L is not symmetrical, we must reimpose this

constraint.4 However, for the physical processes and fields considered here, this is not a

serious restriction.

2 The numbering kð Þ of the eigenvalues is distinct from the numbering of the elements ofL: the former are usually

numbered in decreasing order of magnitude for eventual use in numerical evaluations of integrals like (A1.2).
3 If L is complex, the argument proceeds as above, except that now Q and f have complex elements and the

orthogonality condition (A1.5b) becomes ~f *k fl , and so on. Then, if L is Hermitian, that is, Ljj0 ¼ L*j0 j , Q can be a

unitary matrix.
4 Even if the eigenvalues of L are not distinct and L is not symmetric, it is still possible to write

YJ

k¼1
1þ gl

Jð Þ
k

� 	

for det Iþ gLð Þ, but now there no longer exists a matrix Q, and hence a set of eigenvectors f k that can be used to

diagonalize L, since L cannot be then put into completely diagonal form.
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A1.1.2 The Eigenvalue Method: Continuous Sampling

In some of our subsequent applications, continuous (or analogue) sampling is ultimately

required. In passing from the continuous series to the continuous field, or process, the

intervals between sampledvaluesat Rm; tnð Þare allowed tobecomearbitrarily close,while at

the same time the total number Jð Þ of sampled values becomes infinite. We now distinguish

three situations:

(i) The casewhere the space–time data or observation intervalD ¼ O;Rð Þ; O;Tð Þ½ � �
DR;DT½ � remains finite and intervals between samples DR ¼ R=M;DT ¼ T=N go

to zero as M;N!1, or equivalently, J!1, that is, DR;DTð Þ! 0, while D
remains finite. Thus, m=Mð ÞDR ¼ R!R

m , and n=Nð ÞDt ¼ tn! t in the respective

limits M!1; N!1, where R 2 DwR and t 2 T in their respective domains.

(ii) The casewhere the space–time sample intervals DR;DTð Þ! 0 and the data interval

itself is then allowed to become infinite, that is, D!1.

(iii) The case where the spatial portion O;Rð Þ of the observation interval D remains

finite and discrete, while the temporal part O; Tð Þ, though finite, still requires

Dt!1, that is, N!1. (This corresponds to the usual analytic treatment in

applications where sensor arrays are included as point, rather than distributed

processing elements. Apertures, of course, must be regarded as continuous

elements over nonzero spatial regions.)

In all cases here, L! L R1; t1;R2; t2ð Þ is postulated to have suitable continuity and

convergence properties. For case (iii) specifically, L! L R1; t1;R2; t2ð Þ. The space–time

domains of L R1; t1;R2; t2ð Þ are �1 � t1; t2ð Þ � 1; �1 � R1;R2ð Þ � 1, consistent

with the assumed continuity and convergence properties required above to achieve the

indicated continuous representation L! L.

Wenow turn to thedeterminant (A1.6) and its limiting forms as DR;DTð Þ! 0, under case

(i). This determinant becomes

DD gð Þ � lim
J!1

det Iþ gLð Þ ¼
Y1

k¼1
1þ gl

1ð Þ
R

� 	
ðA1:7Þ

where DD is called a Fredholm determinant. Since the eigenvalues of L are all distinct, we

may employ the Hilbert theory of integral equations to write lk as the appropriate limiting

form of the eigenvalues l
Jð Þ
k , thus symbolically:

l
1ð Þ
k ¼ lim

J!1
Dj j
J

l
Jð Þ
k

� �
¼ lim

M;N!1
DRj j
M

T

N
l

Jð Þ
k

� �
; Rj j; T <1; ðA1:8Þ

refer to Eqs. (A1.9a) and (A1.9b). The Fredholm determinant DD gð Þ is absolutely conver-
gent for all 0 � D � R; Tð Þ, or equivalently, 0 � R1;R2ð Þ � R; 0 � t1; t2ð Þ � T , provided

gL R1; t1;R2; t2ð Þ � ML, whereML ¼ maxjgLj inD. (Similar remarks apply for the infinite

intervalswhenR!1orT!1, or both !1. Equation (A1.7) accordingly represents the

“factored” or reduced form of DD for the continuous cases (i) and (ii), analogous to the

discrete situation (A1.6).

DIAGONALIZATION OF det I þ gLð Þ FOR NONSEPARABLE FIELDS 605



The integral equation from which l
1ð Þ
k are found is as expected the limit of the set of J

simultaneous equations (A1.5a) in the discrete case. The matrix L becomes the kernel

L R1; t1;R2; t2ð Þ; the eigenvectors fk become the eigenfunctionsck R; tð Þ, and in place of the
cases (A1.5a) one gets an integral instead.Accordingly,multiplying both sides of (A1.5a) by

Dj j=J ¼ Rj jT=MNð Þ and setting tn ¼ nDt, Rm ¼ mDR, fk ¼ Yk Rm; tnð Þ, k; l ¼ 1;. . . ; J,
with Rm;Rm0ð Þ 2 Rj j; tn; tn0ð Þ 2 0; Tð Þ, one gets

XM;N

m;n

Rj jT
MN

L Rm; tn;Rm0 ; tn0ð ÞYk Rm0 ; tn0ð Þ ¼ l
Jð Þ
k Yk Rm; tnð Þ � RjT

MN
; withMN ¼ J:

ðA1:9aÞ

With the help of (A1.8), formally in the limit J!1, (A1.9a) becomes the homogeneous

Fredholm integral equation (of the second kind):

ð

DR

dR

ðT þð Þ

0 �ð Þ
L R; t;R0; t0ð ÞYk R0; t0ð Þdt0 ¼ l

1ð Þ
k Yk R; tð Þ;

0 � R � DR; 0 � t � T; k ¼ 1;. . . ;1ð Þ: ðA1:9bÞ

Asufficient condition that the eigenvalueslk bediscrete and that the eigenvectors Ykf g form
a complete orthonormal set (A1.6) is that the (real) kernel L R; t;R0; t0ð Þ be symmetric and

positive definite on 0 � R � DR; 0 � t � Tð Þ. Usually, L R; t;R0; t0ð Þ is positive semi-

definite andsuch that atmost theremaybeonlyafinite numberofnegative (real) eigenvalues;

all other eigenvalues are (real) and positive. If lk remain distinct (as well as discrete),

Eq. (A1.9b) holds as well for nonsymmetric kernels. (We remember that symmetry is a

sufficient condition, not a necessary one: There are nonsymmetric kernels where Ykf g form
a complete orthonormal set.) A number of illustrations of this are given in Section 17.3 of

Ref. [1]. The orthonormality condition (A1.5b) in either case becomes

ð

DR

dR

ðT

0

Yk R; tð ÞYl R; tð ÞdRdt ¼ dkl ; k; l ¼ 1;. . . ;1; ðA1:10Þ

where Ykf g form a complete orthonormal set (of weight 1) on D ¼ DR;DTð Þ. Another
useful, sufficient condition that Ykf g form a complete set is that the kernel L be the Fourier

transform of a spectral density, that is, L R; t;R0; t0ð Þ ¼ L R� R0; t-t0ð Þ ¼ F�1 W k=2pfð Þf g.
For proofs of these statements, the reader may consult the appropriate references,

in particular, Ref. [2], especially Chapters 6–8 for an extensive treatment of eigenvalues,

eigenfunctions, and their governing relations and conditions. As is frequently the case in

applications, note that unsymmetric kernels can occur, such as polar kernels, which have the

form A R0; t0ð ÞL R� R0; t-t0ð Þ, A > 0m. These can be handled by the methods discussed in

Section 8.1 of Ref. [2]. Additional (temporal) examples are also presented in Chapter 17 of

Ref. [1], pp. 727 and 728 therein and Appendix A2.2 of Ref. [2] for rational kernels.

A1.1.3 The Trace Method: Discrete Sampling

Our second method of reducing det Iþ gLð Þ to a more manageable form depends on the

trace of the J � Jð ÞmatrixL and its higher powers. To see how this comes about, let us start
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with the following development of the determinant as a polynomial in g:

det Iþ gLð Þ ¼
XJ

k¼0

gk

k!
D

Jð Þ
k ; D

Jð Þ
k �

XJ

l1...lk

Ll1l1 Ll1l2 � � � Ll1lk

Ll21l1 Ll21l2 � � � � � �
..
. ..

. ..
. ..

.

Llkl1 � � � � � � Llklk



























1 � k; l � J:

ðA1:11Þ

Evaluating the determinants D
Jð Þ
k shows that it is a function of the traces of L;L2;. . . ;Lk,

namely,

D
Jð Þ
k ¼ D

Jð Þ
k trL;. . . ; trLk
� �

:

One finds that

D
Jð Þ
0 ¼ 1 D

Jð Þ
1 ¼ trL D

Jð Þ
2 ¼ tr2L� trL2

D
Jð Þ
3 ¼ tr3L� 3trL � trL2 þ 2trL3

D
Jð Þ
4 ¼ tr4L� 6tr2L � trL2 þ 3tr2L2 þ 8trL � trL3 � 6trL4; and so on:

ðA1:12Þ

From (A1.11 and A1.12), we can readily establish the following identity, which is basic

to the trace method for reducing det Iþ gLð Þ to more manageable forms. This identity is

specifically

det Iþ gLð Þ ¼ exp
X1

m¼1

�1ð Þmþ1
m

gmtr Lmð Þ
" #

; ðA1:13Þ

which holds whenever the exponential series converges (see the footnote following

Eq. A1.14). Proof of (A1.13) can be established in several ways: (1) a direct method

uses (A1.11): both members of (A1.13) are developed in a power series k ¼ mð Þ in g, the
coefficients ofgm are comparedwith theobservation that all coefficients ofgm are identically

zerowhenm > J. Form � J, the result is simply the expansion of the determinant (A1.11),

withD
Jð Þ
k , Eq. (A1.12), the coefficient of gk¼m. This is much simpler in practice than a direct

evaluationofD
Jð Þ
k¼mð Þ in (A1.11), butdoesnot directly indicate the conditionofg forwhich the

series converges. A more satisfactory approach (2), which yields the conditions on g for

convergenceof (A1.13), startswith the eigenvalue (A1.6) andemploys thewell-known result

for any (square) matrix L5

XJ

k¼1
l

Jð Þm
k ¼ trLm; m � 0: ðA1:14Þ

5 See a matrix algebra text.
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The details of the proof are given on pp. 7.29 and 7.30 of Ref. [1].6 The trace method is

particularly useful for obtaining large sample, weak signal versions of the pdf values

wJ x� sð ÞN ;wJ xð ÞN in the Gauss noise cases because here only the first two or three

D
Jð Þ
1 ;. . . ;D

Jð Þ
3 are usually needed; refer to Section 17.2 of Ref. [1], and closing remarks

here below.

A1.1.4 The Trace Method: Continuous Sampling [1]

In the continuous cases, we proceed along the lines of (ii) above (cf. (A1.8) et seq.),

multiplying both sides of (A1.14) by DR=Mð Þ T=Nð Þ and passing to their respective limits, to

obtain formally

X@

k¼1
l
1ð Þm
k ¼ lim

MN!1
DRT

MN

� �
trLm

� �
¼ lim

J!1

XJ

l1;...;lm

Ll1l2Ll2l3 � � � Llml1 D=Jð Þm
" #

¼
ð

DR

dr � � � drm
ðT

0

L R1; t1;R2; t2ð ÞL R2; t2;R3; t3ð Þ � � � L Rm; tm;R1; t1ð Þdt1 � � � dtm

� B
DRTð Þ
M ðA1:15aÞ

or with z � R; tð Þ,
X1

k¼1
l
1ð Þm
k ¼

ð

D

dz1 � � � dzmL z1; z2ð ÞL z2; z3ð Þ � � � L zm; z1ð Þ � B Dð Þ
m ; ðA1:15bÞ

again where L is qoioð Þ onD, refer to Eq. (A1.9c). B Dð Þ
m are the iterated kernels of the basic

integral equation (A1.9b). Specifically, for m ¼ 1; 2, these are

B
Dð Þ
1 ¼

ð

D

L z1; z1ð Þdz1 ¼
X1

k¼1
l
1ð Þ
k ; ðA1:16aÞ

B
Dð Þ
2 ¼

ð

D

ð

D

L z1; z2ð ÞL z2; z1ð Þdz1dz2 ¼
X1

k¼1
l
1ð Þ2
k ; and so on; ðA1:16bÞ

(whereLneednot be symmetrical). The fundamental identity (A1.13) nowbecomeswith the

help of (A1.6) into (A1.7) and the above (A1.15a) and (A1.15b)

DD gð Þ ¼
Y1

k¼1
1þ gl

1ð Þ
k

� 	
¼ exp

X1

m¼1

�1ð Þmþ1
m

gmB Dð Þ
m

" #

: ðA1:17Þ

6 The region of convergence in the complex g-plane is determined solely by the largest eigenvalue ofL (in absolute

magnitude) and is a circle of radius m � l
Jð Þ
1









�1
. The left-hand member of Eq. (A1.13) is, of course, an entire

function of g, defined for all jgj <1, and represents, in effect, the analytic continuation of the right-handmember

outside the circle of convergence l
Jð Þ
1









�1
.
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The continuous analogue of Eq. (A1.11) is simply the power series in g:

DD gð Þ ¼
X1

k¼0

gk

k!
D
1ð Þ
k B

Dð Þ
1 ;. . . ;B

Dð Þ
k

� 	
ðA1:17aÞ

where D
1ð Þ
k is given by Eq. (A1.12), with the various traces replaced by the appropriate

iterated kernels B
1ð Þ
k (A1.15a) and (A1.15b), namely,

D
1ð Þ
0 ¼ 1; D

1ð Þ
1 ¼ B

ðDÞ
1 ; D

1ð Þ
2 ¼ B

Dð Þ2
1 � B

Dð Þ
2 ; D

1ð Þ
3 ¼ B

Dð Þ3
1 � 3B

Dð Þ
1 B

Dð Þ
2 þ 2B

Dð Þ
3 :

ðA1:17bÞ

Weremark that (A.15a) and (A.15b) and thefirst equation in the identity (A1.17) arevalid for

all g, since the Fredholm determinant is absolutely and permanently convergent for all the

kernels postulated here.7

The practical importance of the trace method is that it often permits an evaluation of

the Fredholm determinant, and integrals depending upon it, without having to solve the

associated homogeneous integral equation. In place of the eigenvalues lk and eigenfunc-
tions Ykð Þ, we have instead to calculate the iterated kernels of Eq. (A1.15) and then use the
fundamental identity (A1.17). For all g within the circle of convergence,8 this is exact; for

g outside, we are usually led to asymptotic expressions. The chief utility of this approach

occurs in those situations where the principal contributions occur for g within the integral

of convergence and where only the first few iterated kernels are then significant. The

method, in any case, is often well suited in these Gaussian regimes to the evaluation of the

various integrals that arise in threshold detection theory and in a variety of weak signal

estimation problems. (See Sections 17.2.1 and 17.2.2; also see Sections 20.3, 21.3.2 and

21.3.3 of earlier work [1].)

Theeigenvalue approach, on theother hand, is exact (as far as theFredholmdeterminant is

concerned), but frequently requires extensive calculations since the set of eigenvalues lkf g
may often form a but slowly converging series.9 Moreover, subsequent operations (like the

integrations (A1.1) in the discrete cases, for example) for themost part cannot be carried out

without making use of the approximations inherent in the trace method itself, so that from a

practical viewpoint there is then noultimate advantageof the latter approach over the former.

Similar remarks apply as well for the discrete situation: the discrete form (A1.13) of the

identity (A1.17) is usually more convenient than the eigenvalue representation.

Finally, it should be noted that the results of Section A1.1 (and Section A1.2 ff.) are not

restricted to Gauss processes and fields. They apply equally well to non-Gaussian fields and

processes (with the same conditions onL and L). However, one cannot expect their use to be

similar in the non-Gaussian noise regimes.

7 When L is symmetrical, these relations can be established alternatively with the aid of Mercer’s theorem, refer to

Eq. 8.61 of Ref. [1].
8 See footnote 6.
9 In the purely temporal cases, the Fredholmdeterminants, in special situations for specific kernelsL!G t; uð Þ, can
be expressed in closed form: see Eq. (17.43a) of Ref. [1].
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A1.2 DIAGONALIZATION OF det Iþ gLð Þ FOR SEPARABLE SPACE–TIME

FIELDS: KRONECKER PRODUCTS

In contrast to the general cases of Section A1.1 where L, usually a generic covariance

function of the field in question, is not space–time separable, we now consider the separable

cases. Physical examples arise in the modeling of noise environments in which reception

takes place when the medium supports a homogeneous noise field, at least in the domain of

the receiver’s sensor elements. For the important case of preformed beams M ¼ 1ð Þ,
separability is clearly not an issue in this regard. On the other hand, an accompanying

signal field is usually not separable, mainly because of the field’s nonuniform wave fronts

vis-à-vis the receiving sensor elements, unless the signal source is sufficiently distant.

Inhomogeneity of the input field X Rm; tnð Þf g, in any case, is the principal enemy of

separability.

Space–time separability, denoted in brief by S� T, can be compactly and conveniently

handled by elements of Kronecker matrix product algebra, in conjunction with the usual

matrix definitions and techniques. Accordingly, we let M �Mð Þ matrix A ¼ Amm0½ � repre-
sent the purely spatial portionofL, associatedwith thefield sampledby the receiving arrayor

aperture, at positions Rm;Rm0 in space. Similarly, we designate N � Nð Þmatrix B ¼ Bnn0½ �
for the temporally sampled outputs of the sensor elements, at times tn; tn0 . We can then

express L ¼ Ljj0
� � ¼ Lmn;m0n0

� �
, m; n ¼ 1;. . . ;M;Nð Þ in the separable form

S� T: L ¼ Lmn;m0n0
� � ¼ A� B ¼ Amm0B½ � ¼ Amm0 Bnn0½ �½ �; ðA1:18Þ

where, in more detail,

≡ Cmm′,nn′ ,[ ]A⊗B = ðA1:18aÞ

which defines C. Specifically, we have Amm0 ¼ A Rm;Rm0ð Þ and Bnn0 ¼ B tn; tn0ð Þ, so that

L Rm; tn;Rm0 ; tn0ð Þ ¼ A Rm;Rm0ð ÞB tn; tn0ð Þ: ðA:18bÞ

The product matrix, often called the direct product of A and B, is also known as the

Kronecker product matrixC ofA and B. It is a square matrix J � J ¼ MN �MNð Þ, which
possesses an inverse, provided detA; detB 6¼ 0. Note that Ljj0

� � ¼ Lmn;m0n0
� �

does not

generally imply L ¼ A� B ¼ C. This is true only if L � A� B, that is, space and time

variability are separable, refer to Eq. (A1.18b).

A1.2.1 Elements of Kronecker Product Algebra

We summarize, mostly without proof,10 a number of useful results involving Kronecker

product matrices. We shall need them in the reduction of the generic determinant

10 Proof is left to the reader here.
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det Iþ gLð Þ into separable and diagonalized space–time components. The following direct

product relations can be demonstrated,10 given thatA andB are postulated to be respectively

M �Mð Þ and N � Nð Þ square matrices, with finite inverses, such that C ¼ A� B ¼
Cmm0;nn0
� �

. We have the following:

(I) The Associative Law: A� B� C ¼ A� Bð Þ � C ¼ A� B� Cð Þ ðA1:19aÞ
(II) The Commutative Law: A� Bð Þ C�Dð Þ ¼ ACð Þ � BDð Þ ðA1:19bÞ
(III) The Distributive Law: Aþ Bð Þ � CþDð Þ ¼ A� C

þA�Dþ B� Cþ B�D

ðA1:19cÞ

(where A;B are of the same or smaller order than C;D ; A;B;C;D are not

necessarily of the same order).

In addition, one can readily show that

trA� B ¼ trAð Þ trBð Þ; detA� B ¼ det ABM
� � ¼ detAð Þ detBð ÞM : ðA1:20aÞ

The unit matrices associated with A;B; andC � A� Bð Þ here are

IA ¼ dA ¼ dmm0½ �; IB ¼ dB ¼ dnn0½ �
) IC ¼ IA � IB ¼ dC ¼ dAB ¼ djj0

� � ¼ dmn;m0n0
� � ¼ dmm0 � dnn0½ �

)

; ðA1:20bÞ

this last obtained on comparing the direct (simple index) renumeration of

j ¼ mnð Þ! k, refer to remarks associated with Eq. (A1.2), where in our

applications mð Þ and nð Þ index “space” and “time,” respectively, as used

generally throughout the book. From Eqs. (A1.20a) and (A1.20b) we see directly

that when C ¼ A� B, then

IA � B ¼ B O
O B

� �

M�Mð Þ
; IB � B ¼ B O

O B

� �

N�Nð Þ
;

) IC � B ¼ B O
O B

� �

J�Jð Þ
; J ¼ MN: ðA1:21Þ

(IV) Kronecker Product Inverses:

It is also possible to obtain a Kronecker product inverseC�1 ¼ A� Bð Þ�1 from the

above. We start with the definition C�1C � IC ¼ CC-1, which must be satisfied

whether or not C is separable, refer to Eq. (A1.18) et seq., as long as

C�1 ¼ ½Cj0j=detC� exists. To obtain A� Bð Þ�1, let us begin by assuming that

A� Bð Þ�1 ¼ A�1 � B�1: ðA1:22Þ

This is then used in the definition C�1C ¼ IC to write with the help of the commutative

law (A1.19b)

C�1C ¼ A�1 � B�1
� �

A� Bð Þ ¼ A�1A
� �� B�1B

� � ¼ IA � IB ¼ IC; ðA1:23Þ

DIAGONALIZATION OF det I þ gLð Þ FOR SEPARABLE SPACE–TIME FIELDS 611



as required, so that (A1.22) is indeed the desired inverse. (This is to be compared with

the usual matrix product inverse ABð Þ�1 ¼ B�1A�1, where, of course, A and B are of

the same order and detA; det B 6¼ 0.)

One can also define Kronecker powers from:

A 1½ � ¼ A;A 2½ � ¼ A� A; A kþ1½ � ¼ A� A k½ � ¼ A� A� � � � � A
 k !

; A kþl½ � ¼ A k½ � � A l½ �:

ðA1:24aÞ

WhenA and B commute, that is,AB ¼ BA (and thereforeA and Bmust be of the same

order M �Mð Þ or N � Nð Þ), one has

ABð Þ k½ � ¼ A k½ �B k½ � ¼ BAð Þ k½ � ¼ B k½ �A k½ �: ðA1:24bÞ

IfA and B do not commute, ABð Þ k½ � 6¼ A k½ �B k½ � generally (never, if k ¼ 2), but it is true

that ABð Þ k½ � ¼ A k½ �B k½ �, all A and B.

A1.2.2 Reduction of L to Diagonal Form

The reduction ofL � A� B to diagonal formparallels the procedures ofA1.1 above, refer to

Eq. (A1.4) et seq., except that nowwemust use an appropriately separable diagonalizing (i.

e., orthogonal for real matrices) or Hermitian (for complex matrices)) matrix

QS�T ¼ QS �QT , itself thus separable into M �Mð Þ space and N � Nð Þ time components,

respectively. Thus, we have to consider

Q�1S�TLQS�T ¼ QS �QTð Þ�1 L ¼ A� Bð Þ QS �QTð Þ: ðA1:25aÞ

With the result (A1.22) in conjunction with the commutative law (A1.19b) on the bracketed

quantities below, we obtain the diagonalized results:

Q�1S �Q�1T A� B
� �

QS �QT ¼ Q�1S A�Q�1T B
� �

QS �QT½ � ¼ Q�1S AQS

� �� Q�1T BQT

� �
;

ðA1:25bÞ

) ¼ Q�1S�TLQS�T ¼ LA � LB ¼ LC ¼ l
Cð Þ
j djj0

h i
¼ l Cð Þ

mn dmm0dnn0
h i

¼ l Að Þ
m l Bð Þ

n dmm0dnn0
h i

:

ðA:25cÞ

Conversely, we have

L ¼ QSLAQ
�1
S

� �� QTLBQ
�1
T

� �
: ðA1:25dÞ

In the above,LA ¼ IA ¼ l Að Þ
m dmm0

h i
andLB ¼ IB ¼ l Bð Þ

n dnn0
h i

. Thematrices determining the

respective eigenvalues of A and B here are found from

det A� l Að ÞLA

� 	
¼ 0; det B� l Bð ÞLB

� 	
¼ 0; and ) det C� l Cð ÞLC

� 	
¼ 0

ðA1:25eÞ
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in the usual way, refer to Eq. (A1.5c). Note from (A1.25c) that

l Cð Þ
mn ¼ l Að Þ

mnl
Bð Þ
mn ; m ¼ 1;. . . ;M; n ¼ 1;. . . ;N: ðA1:26Þ

When solving thesedeterminantal equations for thevarious eigenvalues,we shall index them

in descending orders of magnitude, for example, lkj j > lkþ1j j > lkþ2j j > � � � ; k � 1,

where k ¼ mn, refer to Eq. (A1.2) also.

The associated eigenvectors f
Cð Þ

k are obtained from relations like (A1.5a), namely, the

rows, or columns, of QS�T ¼ QS �QTð Þ and its component matrices, namely,

Af Að Þ
m ¼ l Að Þ

m f Að Þ
m ; m ¼ 1;. . . ;M; Bf Bð Þ

n ¼ l Bð Þ
n f Bð Þ

n ; n ¼ 1;. . . ;N: ðA1:27aÞ

From the fact that l
Cð Þ
j ¼ l Cð Þ

mn ¼ l Að Þ
m l Bð Þ

n , Eq. (A1.26), we next obtain the eigenvectors f
Cð Þ

j ,

namely,

Lf
Cð Þ

j ¼ l Að Þ
m l Bð Þ

n

� 	
f A�Bj¼mn ¼ l

Cð Þ
j l

Cð Þ
j ; j ¼ mn;. . . ;MN: ðA1:27bÞ

Using (A1.27a) and (A1.27b), we see that (A1.27b) may also be written equivalently in

detail:

Lf Cð Þ
mn ¼ Af Að Þ

m � Bf Bð Þ
n ¼

X

m0
Amm0 f

Að Þ Rm0ð Þ
h i

m
�
X

n0
Bnn0 f

Bð Þ tn0ð Þ
h i

n
¼ l Að Þ

m l Bð Þ
n f Að Þ

m f Bð Þ
n ;

ðA:27cÞ

where f are the indicated eigenvectors, formed respectively from the rows or columns of the

separable diagonalizing matrices QS and QT .

The corresponding orthogonality conditions are

f Að Þ
m f

Að Þ
m0 ¼ dmm0 ; m;m0 ¼ 1;. . . ;Mð Þ; f Bð Þ

n f
Bð Þ

n0 ¼ dnn0 ; n; n0 ¼ 1;. . . ;Nð Þ; ðA1:28aÞ

so that for L ¼ A� B here, we have

f
Cð Þ

j f
Cð Þ

j0 ¼ djj0 ¼ dmmdnn0 ; j; j0 ¼ 11; 12;. . . ;MN ¼ J ðA1:28bÞ

(see the preceding discussion in Section A1.1).

A1.2.3 The Reduction of det IC þ gLð Þ to Diagonal Form, L ¼ A� B

With the results above, we can obtain the diagonalized expressions for det IC þ gLð Þ
here. Proceeding as in (A1.6), we can write

det IC þ gLð Þ ¼ det IC þ gA� Bð Þ ¼ det Q�1S�TLCQS�T þ gQ�1S�T A� Bð ÞQS�T
� �

;

ðA1:29aÞ
since Q-1

S�TICQS�T ¼ IC, and in general det FGð Þ ¼ det F detG; F;G of same order;ð
K � KÞ. But (A1.25c) applied to (A1.29a) yields the desired result in the following
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equivalent forms:

Separable L: det IC þ gLð Þ ¼ det IC þ gl
Cð Þ
j I«

� 	
¼

YJ

j¼1
1þ gl

Cð Þ
j

� 	

¼
YM

m¼1

YN

n¼1
1þ gl Að Þ

m l Bð Þ
n

� 	
; ðA1:29bÞ

when L is explicitly separable into space and time components. As expected, this result

formally includes the nonseparable cases,Eq. (A1.6), ifweomit the last relation of (A1.29b).

A1.2.4 The Trace Method: Discrete Sampling

When L ¼ A� B, that is, L is space–time separable, the results of in Section A1.1 are

readily extended with the help of (A1.26) applied to (A1.14), namely,

XJ

k¼1
l

Jð ÞP
k ¼

XJ¼MN

m;n

l Að Þ
m l Bð Þ

n

h i
¼ trace Lp ¼ trace A� Bð Þpf g: ðA1:30Þ

As before, Eq. (A1.11), we have now for (A1.13) and (A1.29b), the following equivalent

relations:

det IC þ gLð Þ ¼ det IC þ g A� Bð Þð Þ ¼ exp
X1

p¼1

�1ð Þpþ1
p

g p trace A� Bð Þp
" #

¼
XJ

p¼0

gp

p!
D Jð Þ

p ; J ¼ MN

¼
YM

m¼1

YN

n¼1
1þ gl Að Þ

m l Bð Þ
n

� 	

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ðA1:31Þ

with D
J¼MNð Þ
p given by (A1.12), where trace Lp; 1 � p � J, is provided by (A1.30) and of

course Lp 6¼ trace Lð Þp. (The extension of the proof of Eq. (A1.13) to the exponential

relation in Eq. (A1.31) is readilymade along the lines of pp. 729 and 730 of Ref. [1].) Again,

the trace method, using D
Jð Þ
p ’s, is often the simplest though approximate way to obtain the

(first-order) pdf values of noise and signal and noise in the critical limiting cases of weak

signal detection (see the discussion in the paragraph following Eq. (A1.17b)).

A1.2.5 Continuous Samplings: Eigenvalue and Trace Methods

Here we can at once use the results (A1.29b) and (A1.31) to the obvious extensions of the

continuous cases for both the eigenvalue (1) and trace methods (2) developed in

Section A1.1. For the former in the limits (A1.8), we get the Fredholm determinant for

these separable cases and data intervals 0; Tð Þ; jDRj:

Continuous: DD gð ÞS�T ¼
Y1

m¼1

Y1

n¼1
1þ gl A;1ð Þ

m l B;1ð Þ
n

h i
; ðA1:31aÞ
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when a finite continuous aperture inm DRj j is employed. Formost of the examples discussed

in the present book, involving a finite number of “point” sensor elements in the spatial

interval DRj j, the limit operation lim T=N (A1.8) is only over T and the following hybrid

occurs and the semidiscrete result is as follows:

Semidiscrete: DD gð ÞS�T ¼
YM

m¼1

Y1

n¼1
1þ gl A;1ð Þ

m l B;1ð Þ
n

h i
: ðA1:31bÞ

A1.2.5.1 The Eigenvalue Approach The associated integral equations for the

eigenvalues and eigenvectors are given by Eqs. (A1.9b) and (A1.10) for the various

combinations of discrete and continuous forms, that is, S� Tð Þcont:; Sdiscrete � Tcont:, and

S� Tð Þdiscrete. Now we have the continuous version of L so that

L R; t;R0; t0ð Þ ¼ LA R;R0ð ÞLB t; t0ð Þ; R;R0 2 DR; t; t0 2 Tð Þ; ðA1:32Þ

so that from Eqs. (A1.9) and (A1.10) we obtain obvious extensions of the nonseparable

results of Section A1.1,

(i) S� Tð Þcont::
ð

DR

LA R; R0ð Þcp R0ð Þ
ðT

0

LB t; t0ð Þfq t0ð Þdt0 ¼ l A;1ð Þ
p l B;1ð Þ

q cp Rð Þfq tð Þ;

ðA1:32Þ

where we have written Eq. (A1.32), namely, L ¼ LALB, because of the postulated

separability of space and time, according to the procedures of Section A1.1 for this

limiting continuous case, and with the help of (A1.26). Clearly, (A1.32) embodies

two separate relations:

ð

DR

LA R;R0ð Þcp R0ð ÞdR ¼ l A;1ð Þ
p cp Rð Þ;

ðT

0

LB t; t0ð Þfq t0ð Þdt0 ¼ l B;1ð Þ
q fq tð Þ; p; q ¼ 1;. . . ;1; ðA1:33aÞ

where cp

 �
are the respective eigenfunctions, which form a complete orthonormal

set, obeying

ð

DR

cp Rð Þcp0 R
0ð ÞdR ¼ dpp0 ;

ðT

O

fq tð Þfq0 t
0ð Þdt0 ¼ dqq0 : ðA1:33bÞ

Again (refer to remarks following Eq. (A1.9b)), a sufficient condition that the sets

cp

 �
and fq

 �
are complete and orthonormal with discrete eigenvalues is that the

(here real) kernels LA; LB be symmetric. (For a complete discussion of the various

conditions on the kernels for orthonormality, and so on, see Chapters 6 and 7 of

Ref. [2].)

(ii) Sdisc � Tcontð Þ: Semidiscrete. Here the spatial portion of the S� T condition is

discrete, representing “point” sensor elements, out of each of which the temporal

process flows. Using the discrete form of space mm0ð Þ, refer to Eq. (A1.27a), in
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conjunction with the continuous version of time in (A1.32), we can write the

determining relations for the eigenvalues and eigenvectors/eigenfunctions from

L ¼ LALB, namely,

Af Að Þ
m

ðT

0

LB t; t0ð Þfq t0ð Þdt0 ¼ l Að Þ
m f Að Þ

m l B;1ð Þ
q fq tð Þ; with

m ¼ 1; . . . ; M; q ¼ 1; . . . ; 1: ðA1:34Þ

This separates into the spatial portion (A1.27a) and temporal part (A1.33a), with

their respective orthonormality conditions (A1.5b) and (A1.33b). Here, l Að Þ
m are

found as the solutions of det A� l Að ÞIA
� 	

¼ 0 as before, refer to Eq. (A1.25d).

(iii) S� Tð Þdisc. In this instance, both space and time are handled discretely. The results

are given in Eqs. (A1.27) and (A1.28).

A1.2.5.2 The Trace Method S� Tð Þ Again using the fact that space and time are

separable now, so that L ¼ LALB, refer to Eq. (A1.32), we find by direct extension of

Section A1.1 that Eqs. (A1.15)–(A1.17) now become

X1

k¼1
l
1ð Þp
k ¼

X1

mn

l A;1ð Þp
m l B;1ð Þp

n ¼
X1

mn

l C;1ð Þp
m � B Dð Þ

p ¼ B A;1ð Þ
p B B;1ð Þ

p ; ðA1:35Þ

The Fredholm determinate (A1.7), with (A1.17), now factors (from (A1.31a)).
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Acoustic communications, 6

Adaptive beam, 167

Adaptive procedures, 308

Additive signals, 242

Ad hoc noise pdf, 9

Ad hoc statistics, 8

All-pass beam pattern, 470

All-pass filter, 469

Alternative hypothesis, 18

Amplitude

coherent estimation of, 287–293

estimation of signal amplitudes

[P(H1)� 1], 350

incoherent estimation of, 294–300

random, 70

spectrum for discrete samples, 102–107

Amplitude estimation, 298, 352–355

Bayes estimators, 352

Pdfs of a*p¼ 1(x), 352–354

Bayes risk, minimum average error, 354–355

coherent estimation, 287–293

biased/unbiased estimates, 293

by (real) q filters, 291–293

signal amplitude quadratic cost function,

coherent estimation, 287–290

simple cost functions, 290–291

comprehensive theory, 287

Amplitude factor, estimation, 287

Analytic continuation, 61, 602

Aperiodic sampling, 108

Aperture/array, explicit role of, 463–465

Aperture elements, 132

Aperture functions, 134

beam function, 116

Aperture response, 470

Aperture system function, 117

Aperture weighting function, 125

Array processing (quadratic arrays), 165–169

Arrays and finite duration sources, 527

scalar fields, 532

source, field, and aperture dimensions, 534

vector fields, 533

Associated field and equivalent solutions, for

volumes and surfaces, 478–479

simple volume example, 480

Associative law, 611

Asymmetrical intensity spectrum, 187

Autocorrelation, 160

discrete, 168

of normalized signal and, 254

of received data, 160, 167, 168

Average

ensemble, 597

error, 359, 372

intensity constraint, 294

loss, 32
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Average (Continued )

loss rating, 28–30

risk, 34, 50, 57, 64, 66, 69, 258, 265, 279, 305,

315, 385, 402, 429

Background noise, 141

Bandwidths, 125, 136, 151, 154, 229

Bayes conditional probabilities, 261. See also

Conditional probability

Bayes criterion, 216

Bayes decision rule, 32, 34, 36, 38, 48, 52, 53

Bayes detection

and estimation with weak coupling, 331

probability, 367

theory, for the cases of overlapping

signal, 402

Bayes detection analysis, 199

Bayes detectors, 66, 356

Bayes error, 357–358, 359, 360, 372

actual evaluation, 358

relative, 348

Bayes estimations, 277, 279, 281, 282, 284, 285,

286, 288, 289, 298, 299, 301, 316,

356–357, 358

of amplitude, 295, 356

properties, 281

structure, 379

of waveform, 315

Bayes extraction systems, 282

calculation, 287

coherent estimation of amplitude, 287–293

decision theory formulation, 272–287

with quadratic cost function, 278–281

signal amplitude incoherent estimation,

294–300

signal estimation and analysis, 271–305

with a simple cost function, 274

waveform estimation (random fields),

300–304

Bayesian approach, 310

Bayesian decision methods, 15

Bayesian features of joint detection and

estimation under uncertainty, 407

Bayesian formulation, 339

Bayesian framework, 64

Bayesian sequential detectors, 57

Bayesian statistical decision theory

(BSDT), 39, 73

Bayes matched filters, 115, 138, 189, 190, 193,

196, 197, 209, 216, 217, 229, 249

bilinear and quadratic forms, 188–219

clutter and reverberation

inverse/matched filters, 227–230

coherent detection, 214–216

coherent reception, causal matched

filters, 190–192

detection parameter, separated

structure, 204–205

discrete integral equations solutions,

207–214

discrete matched filters in wave number–

frequency domain, 223–230

example, 231–233

extensions, 200–202

Fourier transforms of discrete series, 219–222

incoherent reception

causal matched filters, 192–195

realizable matched filters, 195–198

independent beam forming and temporal

processing, 230–235

matched filters and separation, 202–207

matrix reduction and evaluation, 214

narrowband incoherent detection, 216–217

narrowband signals, 233–234

remarks, 218–219, 234–235

signal-to-noise intensity ratios, 214–219

space and time separation, 210–212

space–time matched filter as optimum beam

former, 225–226

test statistic, separated structure, 203–204

unnormalized covariances, 212–214

wave number as frequency functions,

219–235, 226–227

white noise, 191–192

in space and time, 205–207

Wiener–Kolmogoroff filters, 198–200

Bayes probability of error, 164

Bayes risks, 66, 256, 258, 267, 277, 278, 280,

281, 289, 290, 291, 302, 318, 324, 330,

333, 362, 371

for coherent multiple-alternative

detection, 254

Bayes’ rule, 392

Bayes sequential detectors, 68

Bayes space–time matched filters, 142

Bayes’s theorem, 54, 328, 334

Bayes systems, 32, 35, 49, 272, 273, 282, 311

Bayes tests, 53

Beam pattern, 231

Bessel function, 158, 159, 162, 178, 186

Bethe–Salpeter equation (BSE), 540, 565, 580

feedback operational representation, 567

Betting curves, 67–68

Biased estimators, 293
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Binary decisions, 40, 245, 259, 339

Binary detection, 344, 345

and estimation, 396

systems, 18, 245–246, 271

region of decision, 246

Binary hypothesis classes, 41

Binary on–off detection, 396, 408

Binary sources, 543

in VT, 543

Binary systems coupling, 414, 416, 417

joint DþE for, 414

multiple tracking, 417, 418

strong coupling, 415

estimation, 416

weak coupling, 416, 417

Binary systems with joint uncoupled

DþE, 407, 408

consistency and convergence, of

estimators, 413, 414

detection, 408, 409

uncoupled estimators

for r intervals, with QCF, 410–412

simple cost functions, 412–413

Binary theory, 250

Binary (on–off) uncoupled simultaneous

detection and estimation

sequence, 408

“Black box” approach, 74

Born approximations, 593–594, 596

Branch factor, 185

Broadband systems, 233

Bromwich contour, 121

Bulk modulus, 512

Campbell’s theorem, 228

Canonical channel, 8

propagation, noise, and signal processing in, 2

scalar channel, 434

schematic anatomy, 541

Canonical channel II

“classical” operator solutions, 539–599

equivalent representations, elementary

Feynman diagrams, 580–598

approximations, 586–594

elementary statistics of received field,

596–598

random channel, characterization, 594–596

vocabulary, 581–586

Langevin equation, higher order moments

operational solutions for, 565–580,

570–572

integral operator, structure of, 568–570

remarks, 579–580

second-order moments, 565–568

strong scatter, 575–579

transport equations, 572–574, 574–575

random media, operational solutions-first/

second-order moments, 541–564

Dyson’s equation in statistically

homogeneous and stationary

media, 551–560

Gaussian case, 563–564

mass operator, statistical structure of, 560

operator forms, moment solutions and

Dyson’s equation, 543–551

remarks, 564

stochastic time-dependent Helmholtz

equation, 560–563

scattering in random media, 539–599

Canonical momentum density, 512

Capacity as space–time filter, 125

Cauchy’s theorem, 61

Causal time-invariant filter, 202

Causal time-varying filter, 196

Central limit theorem (CLT), 169, 574

Channel phenomenon, 77

Characteristic functions

for Bayes risk, 302

in error probabilities and contour

integration, 60

for Gaussian fields, 602

in homogeneous—stationary fields—finite

and infinite samples, 100, 101

for incoherent detection, 184, 185

in probability distributions and detection

probabilities, 160

for suboptimum systems, 252

Cholesky matrices, 194, 214

Classical fixed sample theory, 345

“Classical” statistical-physics (S-P)

approach, 540

Coherent detection, 176–180, 214–216

performance, 180

problem, 187

Coherent extraction, 21

Coherent reception, 145

causal matched filters, 190–192

Coherent signals, 20

Collecting coefficients, 242

Column vectors, 146

Communication, 3

decision theoretic formulation for, 272

process, 4

theory, 437
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Commutative law, 611

Compact operators, components,

16–17

Complete class theorem, 36, 48

Concomitant probability of detection, 359

Conditional error probabilities, 341

Conditional probabilities, 52, 70

Conditional probability, 25, 68, 250, 260, 275,

367. See also Bayes conditional

probabilities

Conditional risk, 46

Conditional unbiased estimators, 293

Conditional variance, 281

Confidence intervals, 273

Congruent matrix, 192, 194

Constant cost function, 70, 332

Constant false alarm (CFA) detector, 50

Constant false alarm rate detector (CFAR), 50

Continuous identity, 111

Continuous non-Hom-Stat fields, 95–100

Continuous random field concept, 115

Continuous sampling, 136

Continuous space–time Wiener–Khintchine

relations, 91–102

directly sampled approximation, 93–95

extended Wiener–Khintchine theorems,

95–100

homogeneous—stationary fields—finite

and infinite samples, special

case, 100–102

Convenience, 105

Convergence in mean-square (CMS), 543, 544

Conversion

factor, 102

of space–time field into a temporal

process, 137

Correction decision, 266

Correlation detector, 192, 229, 400

Correlation function, 589, 597

Correlation receiver, 201

Cost functions, 30, 43, 255, 272, 273, 275, 278,

283, 285, 287, 302, 303, 310, 316, 324,

326, 331, 334, 337, 338, 342, 355, 385,

401, 402, 426. See also Simple cost

functions (SCFs)

assigned to original binary on–off

problem, 421

exponential (See Exponential cost function)

quadratic (SeeQuadratic cost function (QCF))

“rectangular,” 283

for signal, 286

Coupled detection, 326

Coupled joint detection and estimation

situation, 309, 327

Coupling, 384–386

Covariances, 78, 89, 90, 100, 111, 193,

208, 212

function, 78, 595, 596

matrix, 78, 269, 288, 302, 378, 393

Cross-correlation receiver, 191

Data acquisition interval, 309

Data processing

elements, 15

systems, 282

Data space, 263

Decision curves, 66–68

Decision errors, costs, 313

Decision model, formulation, 240–241

Decision processes, 72, 73, 144, 149, 170, 178,

179, 218, 246, 247, 314, 367

for detection, 340

procedures, 265

schematic diagram, 245

Decision regions, 72

Decision rules, 25–26, 240, 241, 256, 258, 266,

273, 274, 315, 328, 340

of detector’s operation, 332

function, 34

nonrandomized, 243

Decision space, 242

Decision theory formulation, 17, 24, 272–287

applications, 19

Bayes extraction

with quadratic cost function, 278–281

with simple cost function, 274–278

cost functions, 283–287

framework, 272

nonrandomized decision rules and average

risk, 272–274

prediction/extrapolation, 274

simple/coincidental extrapolation, 274

smoothing/interpolation, 274

properties, 281–283

techniques, 272

theoretical approach, 42

Decision vector, 311

Decoding, 22

Degradation criteria, 342

Degradation factor, 218

Degree of suboptimality, 93

Delay-line filter, 145

Delta functions, 276, 335

Density flux, 514
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Detection performance parameter (DPP),

146, 156

Detection process, 21, 315, 344, 370, 372

algorithm, 143–144, 177–179, 308

estimation, 308

decision, 310

with decisions rejection, nonoverlapping

signal classes, 262–267

optimum (Kþ 1)-ary decisions with

rejection, 264–266

remarks, 267

simple cost assignment, 266

directed estimation, 315

with decision rejection, 314

parameter, 146, 153, 169, 170

separated structure, 204–205

probabilities, 160–164, 163, 368

problems classification, 17

signal and hypothesis classes in, 16

system, 65

Detector

decision, 314, 333

system, 57

Deterministic inhomogeneous media, 473

propagation in, 481

Deterministic mass operators (DMO), 545, 546

estimation, 507–508

Deterministic media, 465

Deterministic medium

propagation model, 82, 539

Deterministic scattered field in wave

number, 494–496

commutation, and convolution, 498–499

transform operator solutions, 496

full spectrum with backscatter, 498

space-frequency with backscatter,

496–497

wave number–frequency, 497

Deterministic volume, and surface scatter,

475–478

Diagonal matrix, 193

Differential equation, 540

Diffusion mechanism, 576

Dilation strain D0i, 513

Dimensional error functions, 252

Dimensionless amplitude factor, 169

Dirac delta function, 10, 328

Discrete elements, 126

Discrete filter, 192

Discrete Fourier transforms, 127, 222

Discrete integral equations, 145, 190, 203, 205,

207–214

Discrete matched filters, 168, 215, 219

in wave number–frequency domain, 223–230

Discrete nonlinear integral equations, 195

Discrete periodic temporal sampling, 220

Discrete point sensors, 225

Discrete sampling, 8, 129, 137

operator, 102, 136

procedure, 112

Discrete space–time matched filters, 167

Discrete spatial sampling, 135

Disjoint cases, 239–254

binary detection, 245–246

detection, 240–242

error probabilities, average risk, and system

evaluation, 250–252

geometric interpretation, 244–245

minimization of average risk, 242–244

simple (Kþ 1)-ary detection, 248–249

ternary detection, 246–248

Disjoint signal classes, 259

Distortion, 514

Distribution densities, 70, 272

Distributive law, 611

Doppler effects, 472

Doppler scenario, 345

Dyson equations, 540, 552, 555, 556, 557, 558,

560, 564, 565, 566, 570, 571, 572, 580

equivalent deterministic mass operator, 545

first-order, 584, 585, 587, 589

second-order, 585, 586, 587, 588, 589, 590

third- and higher order, 591

Dyson formulation, 565

Eckart filter, 228, 229

Eigenvectors, 613

Elastic medium, 510

Elastic wave propagation, in viscous

media, 522–524

Electromagnetic communications, 6

Electromagnetic energy, 524

electric displacement vector, 525

electric field strength, 525

electromagnetic poynting’s vector, 526

EM field equations, 525

equations of propagation, 527

Hertz vector potentials, 526

total energy flux, 525

vector Hertzian propagation, solution of, 527

Electromagnetic radiation, 513

Energy densities, 120, 509, 514

in dissipative media, 522

fluid, 514
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Energy flux, in gases, liquids, and solids

selected models, 528–531

Energy propagation, in gases, liquids, and solids

selected models, 528–531

Engineering approach, 465, 542

inhomogeneous deterministic media,

508–509

Engineering model, for field aH, 470

Equal nonviscous elastic media, 516–517

acoustic waves, 519–520

elastic wave propagation in ideal solid/elastic

fluid medium, 520–522

ideal shearless media, 517–519

Equation of continuity, 514

Equivalent deterministic medium (EDM), 572

Equivalent Fourier transform, 128

Equivalent numbering system, 23

Error probabilities, 61, 205, 251, 260, 262

for incoherent detection, 165

Estimation process, 332, 335

under multiple hypotheses, 383

Estimation theory, 304

Estimator bias, 336

Estimator-dependent cost functions, 342

Estimator rule, 329

Euler equation, 511

Explicit decision systems, 31

Exponential cost function, 283

Extraction process, 20, 273

Extrapolation, 20, 21

Fading mechanism, 176

False alarm probability, 148, 162, 169, 186, 340,

343, 367, 368

False rejection probability, 182

Far-field approximation, 123

Far-field operation, 542

Far-field regimes, 11

Feedback formulations, 437

Feedback operational representation

(FOR), 503, 505, 543

Feynman diagram equivalent (FD), 583

FOS representations, 505–507

loop iterations, 506

and solution, 503–507

Feedback operational solution (FOS), 543

FOR representations, 505–507

Feynman diagram, 581

Filter’s weighting function, 129

Finite space–time sample interval, 102

Fixed-sample tests, 44

Fluctuating noise intensity, 176

Flux densities, in dissipative media, 522

Formulation, 383

for disjoint signal classes, 384

no coupling, 384

optimum decision rule, 386–389

specific cost functions, 389

strong coupling, 385–386

weak coupling, 384

Fourier representation, 83

Fourier transform (FT), 61, 79, 92, 93, 95–100,

97, 100, 109, 116, 119, 138, 150, 223,

227, 235, 552, 588

definition, 102

of discrete series, 219–222

expressions, 568

space, 220

Fraunhofer approximation, 122

Fraunhofer condition, 122

Fraunhofer constraint, 467

Fraunhofer field region, 121, 130

Fraunhofer regimes. See Far-field regimes

Fredholm determinant, 605, 609, 614

Frequency space, 494

Fresnel region, 124

Gaussian case, 574

Gaussian detection, 160

Gaussian distribution, 18

Gaussian environments, 601

Gaussian fields, 142, 175, 603

det(Iþ gL) for nonseparable fields,
diagonalization of, 603–609

continuous samplings, eigenvalue and trace

methods, 614–616

eigenvalue approach, 615–616

continuous sampling, 605–606

discrete sampling, 603–604

Kronecker product algebra elements,

610–612

reduction of det(Icþ gL), 614

reduction of L to diagonal form, 612–613

trace method, 616

continuous sampling, 608–609

discrete sampling, 606–608, 614

det(Iþ gL) for separable space–time fields,

diagonalization of, 610–616

probability distributions for, 601–616

Gaussian incoherent narrowband

detectors, 165

Gaussian model, 351

Gaussian noise fields, 78, 112, 141–235, 176,

183, 189, 197, 251

622 INDEX



Bayes matched filters/bilinear and quadratic

forms, 188–219

clutter and reverberation, inverse

(Urkowitz) and (Eckart) matched

filters, 227–230

coherent detection, 214–216

coherent reception, causal matched

filters, 190–192

detection parameter, separated

structure, 204–205

discrete integral equations solutions,

207–214

discrete matched filters in wave number–

frequency domain, 223–230

extensions, 200–202

Fourier transforms of discrete series,

219–222

incoherent reception

causal matched filters, 192–195

realizable matched filters, 195–198

independent beam forming and temporal

processing, 230–235

matched filters and separation in space and

time I, 202–207

matrix reduction and evaluation, 214

narrowband incoherent detection, 216–217

narrowband signals, 233–234

remarks, 218–219

signal-to-noise ratios, processing gains,

and minimum detectable

signals, 214–219

space–timematched filter as optimum beam

former, 225–226

space/time separation, 210–212

test statistic, separated structure, 203–204

unnormalized covariances, 212–214

in wave number–frequency domain,

219–235

white noise in space and time, 191–192,

205–207

Wiener–Kolmogoroff filters, 198–200

optimal detection III, slowly fluctuating noise

backgrounds, 176–188

broadband signals in normal noise,

incoherent detection, 183–188

coherent detection, 176–180, 187

algorithm, 177–179

detector performance, 180

Gaussian noise, optimum threshold

detection in, 183–184

incoherent detection, 184–187

detector performance, 181–182

narrowband incoherent detection

algorithms, 180–182

with asymmetrical intensity spectrum,

187–188

Neyman–Pearson and ideal observers, 182

optimum detection II, selected Gaussian

prototypes—incoherent reception,

154–176

array processing (quadratic arrays),

165–169

incoherent detection II, deterministic

narrowband signals with slow

Rayleigh fading, 169–171

incoherent detection III, narrowband

equivalent envelope inputs—

representations, 172–176

incoherent detection, narrowband

deterministic signals, 154–169

incoherent detector structures, 155–160

matched filters, 155–160

Neyman–Pearson and ideal

observers, 164–165

performance probabilities, 176

distributions and detection

probabilities, 160–164

spectral symmetry, 174

statistical tests, 155–160

evaluation, 174–176

optimum detection I, selected gaussian

prototypes—coherent reception,

142–154

array processing II, beam forming with

linear arrays, 150–154

detection algorithm, 143–144

deterministic signals in Gauss noise,

142–146

Neyman–Pearson and ideal

observers, 148–150

performance, 146–150

space–time matched filter, 145–146

optimum threshold detection in, 183–184

Gaussian random processes, 95

Gaussian signals, 300

Gaussian statistics, 154, 563, 575

Gauss noise, 163

deterministic signals in, 142–146

Gauss processes, 609

Generalized cost function for K-signals,

403–406

Generalized Huygens principle, 437, 453

evaluation of surface integrals, 457–459

for field aH, 453, 455–457
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Generalized Huygens principle (Continued )

geometry of finite distributed source, 455

homogeneous media, and volume sources

only, 461, 463

for inhomogeneous deterministic media

including backscatter, 484–487

frequency dispersion, 492–493

integral equations, 487–489

time-dependent Helmholtz equation,

489–492

inhomogeneous media, 459–461

Generalized likelihood ratio (GLR), 47, 138,

141, 242, 265, 312, 313, 317, 331, 332,

388. See also Likelihood ratios

Generalized likelihood-ratio test (GLRT), 48

Generalized loss function, 27

Generic channel, components of, 438

Generic detection algorithm, 159

Generic deterministic channel, 437

Global intensity operator (GIO), 565

Global mass operator, 539

Green’s function, 8, 86, 116, 117, 126, 465, 466

ideal medium, 441–447

measure of medium’s dispersion, 453

reciprocity, 449

regularity at infinity, 448

selected, 449

diffusion equation, 451

diffusion, maximum velocity of heat

absorption, 451–453

time-dependent Helmholtz equation, 450

wave equation with radiation

absorption, 450, 451

wave equation with relaxation

absorption, 451

space–time causality/radiation condition, 448

transient response of, 494

uniqueness, 448–449

Green’s functions (GFs), 128, 437,

549, 576

Guarding, advantage, 33

Hamiltonian energy density, 512

Hankel’s first exponential integral, 170

Heisenberg’s uncertainty principle, 4

Helmholtz equation, 120, 563

in ideal unbounded medium, 447–448

Helmholtz field, 515

Helmholtz medium, 127, 130–132, 134, 137

Hessian matrix, 390, 391

Homogeneous isotropic dispersive unbounded

media, 454

Homogeneous–stationary Wiener–Khintchine

relations, 97

Homogeneous unbounded media, 437

Hom-Stat assumption, 553

Hom-Stat character, 553

Hom-Stat conditions, 82, 593

Hom-Stat fields, 208, 564

Hom-Stat properties, 552, 557

Hom-Stat situations, 91, 559

Hooke’s law, 515

Hypothesis classes, 18, 69

Hypothesis testing, 271

Ideal compressible nonviscous fluid, 515

applying Hooke’s law, 515

displacement potential, 516

Ideal incompressible fluid medium, 514

Ideal medium

Green’s function for, 441–447

propagation of, 439–441

Ideal observer, 148, 164, 182, 262

approach, 150

detection system, 51–52

system, 51, 52

Ideal observers, 148–150

Identity matrix, 208

Incoherent broadband reception, 187

Incoherent detection, 184–187

broadband signals in normal noise, 183–188

detection II, deterministic narrowband

signals with slow Rayleigh

fading, 169–171

detection III, narrowband equivalent envelope

inputs, 172–176

Incoherent detector, 158

performance, 181–182

structures, 155–160

Incoherent extraction, 21

Incoherent reception, 90, 150

amplitude estimation, 297

causal matched filters, 192–195

realizable matched filters, 195–198

Incoherent signals, 20

Independent beam forming and temporal

processing, 230–235

Information theory, 17, 29

Inherent simplification, advantage, 99

Inhomogeneity operator, 434

Inhomogeneous media and channels, 473–475

Inhomogeneous reciprocity, 480

surfaces, 483–484

volume, 482–483
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Integration, equivalent contours, 61, 62

Intensity spectrum, 96, 109

Interpolation, 20, 21

Interval estimate concept, 338–339

Invariant filter, 195

Inverse/matched filters, 229

clutter and reverberation, 227–230

Inverse transform, 96, 103, 220

Fourier transform, 106

Irreducible risk, 46, 47

Isotropic Helmholtz medium, 116

Joint DþE process

for binary systems with strong and weak

coupling, 414–417

under multiple hypotheses with strong and

weak coupling, 417–419

with no coupling, 423

Joint detection and estimation p(H1)� 11,

307–379, 348

optimal estimation [p(H1)� 11], 315–325

quadratic cost function, MMSE and Bayes

risk, 316–319

simple cost functions, UMLE and Bayes

Risk, 319–325

p � 1:H1 vs. H0, 346–347

under prior uncertainty, 309–315

case 2, coupling, 314–315

case 1, no coupling, 312–314

signal amplitudes, examples–

estimation, 350–372

acceptance/rejection of estimator,

367–371

amplitude estimation, 352–355

Bayes error/relative Bayes error, p � 1,

QCF, 359–365

Bayes estimators/Bayes error, 355–358

performance degradation, 358–367

relative Bayes error, 358–359

signal intensity Io� a2o, 371–372

simultaneous joint detection and

estimation, 326–350

Bayes detection and estimation with weak

coupling, 331–333

detection probabilities, 339–341

estimator Bias(p� 1), 336–338

extensions and modifications, 342–345

g*p<1QCF for weak/no coupling, 333–336

interval estimation , p(H1)� 1, 338–339

limited generalization, 335–336

performance degradation, 348

Sherman’s theorem, 334–335

strong coupling, 326–331

waveform estimation, 341–342

without coupling, 312

Joint DþE under multiple hypotheses with

strong and weak coupling, 417–419

with no coupling, 423–424

simple cost functions, 421–422

strong coupling, 419–421

supervised learning, 425–428

weak coupling, 422–423

Joint distribution density, 288

Joint hypotheses, 336

Jointly optimum detection, 383

Joint probability densities, 251, 261

K-ary detection, 271

Khintchine (W–Kh) theorem, 77

Kinetic energy density, 514

Kronecker delta, 109, 275

Kronecker powers, 612

Kronecker product, 93, 212

inverses, 611

matrix, 610

Lagrange density, 511

Lagrange integral, 511

Lagrange multiplier, 198, 328

LAN detector, 184

Langevin equation, 539, 540, 541, 544, 560,

564, 567, 570, 576, 578, 580

nth-order moment, 578

Langevin equations, 540, 564, 574

Langevin mass operator, 560

Langevin propagation, 575

Large-sample threshold theory, 299

Least favorable distribution, 33, 282

L�evy continuity theorem, 101

Likelihood detector, 57

Likelihood ratios, 144, 155, 179, 219, 243, 260,

261, 266, 330, 355. See also

Generalized likelihood ratio (GLR)

Likelihood-ratio test, 52

Linear arrays, 151

beam forming with, 150–154

Linear equations, 244

Linear time–variable filter, 10

Lo�eve’s approach, 91

Lower triangular matrix, 201

Low-frequency components, 176

Marginal probabilities, 275

Markoff assumptions, 9
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Mass operators, 541

deterministic nature, 551

Matched filters, 155–160, 170, 202, 204, 205,

224, 227, 228

classes of, 214

factors, 230

response, 157

and separation in space and time I, 202–207

structure, 189

Matrix reduction and evaluation, 214

Maximum aposteriori (MAP) detectors

from Bayesian viewpoint, 53–57

test, 56

Maximum likelihood estimators, 305, 343, 345

Maximum likelihood receiver, 305

Maximum power constraint, 294, 296

Memory (t), 438
Minimax decision process, 33

Minimax decision rule, 32

Minimax detectors, 52–53

Minimax error probabilities, 53

Minimax extractor, 302

Minimax situation, 34

Minimax systems, 52

Minimization equation, 330, 342

Minimization process, 324

Minimum detectable signal, 66

Minimum mean square error (MMSE), 308,

351, 352

estimators, 316

filter, 198, 291, 365

Monofrequentic signals, 125

Monotonic function, 65

Monotonic transformations, 59

Multimedia, 437

interactions, 500

ocean environments—three media,

502–503

one- and two-media models, 500–502

Multiple alternative detection, 18, 239–269, 267

detection with decisions rejection,

nonoverlapping signal classes,

262–267

optimum (Kþ 1)-ary decision with

rejection, 265–266

remarks, 267

simple cost assignment, 266

disjoint cases, 239–254

binary detection, 245–246

detection, 240–242

error probabilities, average risk, and system

evaluation, 250–252

geometric interpretation, 244–245

minimization of average risk, 242–244

simple (Kþ 1)-ary detection, 248–249

ternary detection, 246–248

overlapping hypothesis classes, 254–262

average risk minimization for overlapping

hypothesis classes, 257–259

error probabilities, average and Bayes risk,

and system evaluations, 260–262

reformulation, 255–257

simple (Kþ 1)-ary detection, 259–260

Narrowband approximations, 156, 157, 173

Narrowband conditions, 173

Narrowband deterministic signals

incoherent detection, 154–169

Narrowband incoherent detection

algorithms, 180–182

with asymmetrical intensity spectrum,

187–188

Narrowband input signal, 135

Narrowband sensor, outputs, 85–88

Narrowband signals, 80, 90–91, 233

Narrowband systems, 81

Navier–Stokes equation, 522–524

Nearest neighbors distributions, 255

Neyman–Pearson (NP) class, 340

Neyman–Pearson detection theory, 50–51

Neyman–Pearson detectors, 50, 144, 148, 149,

164, 182

Neyman–Pearson observers, 148–150,

164–165, 182, 262

Noise covariances, 209

Noise fields, 234

components, 172

Noise processes, 44, 326

Noise theory, 4

Nonadaptive (“one-shot”) systems, 309

Non-Gaussian noise, 2, 5, 74, 115, 189

regimes, 609

Non-Gaussian statistical communication

theory, 8, 540

elements, 2

Non-Hom-Stat character, 110

Nonlocal propagator, 542

Nonoverlapping hypothesis, 43

Nonrandomized decision rule, 25

Normalization process, 82

Normalized sensor, 81

Normalizing factor, 108

Normal noise process, covariance matrix, 288

Nuisance parameters, 334
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Null hypothesis, 18, 185

Null signals, 71, 240

Number–frequency domain, 223

On-Off test, 143

Optimal data processing algorithms, 57

Optimal detection III, slowly fluctuating noise

backgrounds, 176–188

Optimum aperture function, 234

Optimum binary on–off detection, 49

Optimum decision process, 31, 48, 250

rule for detector, 387

Optimum detection I

selected Gaussian prototypes—coherent

reception, 142–154

performance, 146–150

space–time matched filter, 145–146

Optimum detection II

selected Gaussian prototypes—incoherent

reception, 154–176

Optimum detection process, 198, 342

Optimum detection rules, 330

Optimum detector analysis, 199

Optimum detector structure incoherent

detection, 164

Optimum estimators, 278, 301, 324, 334

weak-signal forms, 300

Optimum extraction procedure, 274

Optimum multiple-alternative systems, 249

Optimum probability, 148

Optimum systems, 22, 249, 283

error probabilities for, 253

Orthogonal matrix, 212

Overlapping hypothesis classes, 254–262

average risk minimization for overlapping

hypothesis classes, 257–259

error probabilities, average andBayes risk, and

system evaluations, 260–262

reformulation, 255–257

simple (Kþ 1)-ary detection, 259–260

Paley–Wiener criterion, extensions of, 471–473

causality, 473

causality condition, 471

Doppler effects, 472

Fourier transforms, 472

inverse relations, for time-variable weighting

function, 473

Parameter estimation, 20

Parseval’s theorem, 473

Peak-value constraint, 299

Performance probabilities, 160–164, 176, 177

Periodic sampling, 107, 133, 219

Perturbation series solution (PSS), 543, 547, 549

Perturbation techniques (PSS), 544

Physical communication processes, 98

Physically-based non-Gaussian noise models, 7

Planar hypersurfaces, 244

Point estimation, 20, 271

Potential energy, 511

Principal theorems, 37–38

Probability, 340

density functions, 24, 27, 58, 60, 147, 251,

276, 277, 279, 327, 540

of detection vs. a priori probability, 370

distributions, 160–164, 434

Propagating velocity potential, 515

Propagation classical theory, 539

Propagation equation, 120

Quadratic cost functions (QCFs), 269, 278, 279,

281, 287, 288, 290, 294–298, 300–301,

308, 338, 361, 389–392. See also Cost

functions

amplitude estimator under, 362

Bayes estimation with, 316–318

Bayes risk with, 318–319

estimators, 333

and Gaussian statistics, 393

MMSE and Bayes risk, 316–319

multistage uncoupled detection and estimation

with, 412

sample, 357

Quadratic detector, 188

Quadratic error, 363

Random (scalar) channels, 435

Randomized decision rule, 25

Random operator, 541

Random variables, 252, 261

Rayleigh fading, 235

Rayleigh distribution, 578

Rayleigh fading, 142, 170, 171

Rayleigh pdf, 169

Received-data vector, 241

Receiver operating characteristic (ROC), 49

diagrams, 180

Receiving array element, 225

Reception process, 129–134

binary bayes detection, 40–46

average risk, 43

cost assignments, 43–45

error probabilities, 45–46

on–off signal detection, 42
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Reception process (Continued )

binary two-signal detection, disjoint and

overlapping hypothesis classes, 69–73

disjoint signal classes, 69–70

overlapping hypothesis classes, 70–73

continuous sampling (Helmholtz

medium), 130–132

definitions and principal theorems, 35–40

admissible decision rules, 35

complete class theorem, 36

optimum decision rules, properties, 35–36

prior probabilities, cost assignments, and

system invariants, 38–40

discrete sampling, 132–134

optimum detection, on–off optimum

processing algorithms, 46–50

logarithmic GLRT, 48

remarks on bayes optimality ofGLR, 48–50

optimum detection, on–off performance

measures and system

comparisons, 57–68

betting curves, 67–68

decision curves and system

comparisons, 66–68

error probabilities

and contour integration, 60–65

optimum systems, 58–65

suboptimum systems, 65–66

performance measures, 68

performance vs. sample size, 68

sufficient statistics and monotonic

mapping, 59–60

receiving aperture, geometry, 130

signal detection and estimation, 15–17, 17–22

nature of data processing, 19, 20–21

nature of estimate, 20

nature of hypotheses, 18

number of signal classes to be

distinguished, 18

reception problems, 21–22

signal and noise statistics, 19–20, 21

types of extraction, 20–21

situation, 22–27, 23

assumptions, space–time sampling, 22–25

decision problem, 26–27

decision rule, 25–26

generic similarity of detection and

extraction, 27

special on-off optimum binary systems,

50–57

Bayesian sequential detectors, 57

ideal observer detection system, 51–52

maximum aposteriori (MAP) detectors

from a Bayesian viewpoint, 53–57

minimax detectors, 52–53

Neyman–Pearson detection theory, 50–51

as statistical decision problem, 15–74

system evaluation, 27–35

Bayes systems optimization, 31–32

evaluation functions, 27–30

minimax systems optimization, 32–35

system comparisons and error

probabilities, 30–31

Reception situation model, 309

Reciprocal linearity, 104

Reformulation, 255–257

Rejection procedures, 262

Relative Bayes error, 348, 364–366. See also

Bayes error

Relative normalizing factor, 210

Risk theory, 36

application, 43

Sampling interval, 103

Sampling process, 22, 25, 107, 133, 239

Scale factor, 331

Scale-normalizing factors, 83

Scaling function, 343

Scattering theory, 7

Sensor elements, 86

apertures and arrays, 115

Sensor geometry, 152

Sensor position, 133

Sequential detection, 19

Shape factor, 278

Shear modulus, 512

Sherman’s theorem, 334–335

Signal amplitude

coherent Bayes estimator, 292

incoherent estimation, 294–300

quadratic cost function, 294–298

simple cost functions SCF1, 298–300

Signal processes, 4, 280

binary on–off signals, 396

classes, 241

detection probability, 378

estimation, decision theoretic

formulation, 272

extraction system, 271

information-bearing features, 271

null, 383

overlapping signal classes, 404

parameter space W, 402

probability distribution, 26
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Signal processors, 9

Signal-to-noise intensity ratios, 217–219

Signal-to-noise ratio, 66, 68, 147, 157, 291,

354, 370

Signal uncertainty, 352

Signal waveform, 80

Simple (Kþ 1)-ary detection, 248–249,

259–260

Simple cost functions (SCFs), 55, 301–304, 308,

319–325, 336, 393–396, 406

Bayes error, 357

Bayes estimators, 322–324

Bayes risk, 301–303, 319–325

extensions, 303–304

minimax estimators, 303

nonstrict “simple” cost function, 324–325

Bayes risk and estimators, 324–325

type one (SCF1), 285

types of, 319–320

UMLE, 319–325

Simple estimation, 20, 21

Single-alternative detection systems theory, 40

Smoothing and prediction theory, 303

Solenoidal vector displacement, 513

Source density function (GT), 438

Source, field, and aperture dimensions, 534

Space–time bandwidth, 136

Space–time Bayes matched filters, 8

Space–time covariance, 80

Space–time covariances, 77–139

aperture and arrays, 115–138

continuous space–time Wiener–Khintchine

relations, 91–102

directly sampled approximation, 93–95

extended Wiener–Khintchine

theorems, 95–100

homogeneous—stationary fields—finite

and infinite samples, special

case, 100–102

inhomogeneous and nonstationary signal and

noise fields I, 78–91

Wiener–Khintchine relations for discretely

sampled random fields, 108–115

comments, 112–115

Hom-Stat Wiener–Khintchine

theorem, 110–112

Wiener–Khintchine relations for discrete

samples in non-hom-stat

situation, 102–108

amplitude spectrum for discrete

samples, 102–107

periodic sampling, 107–108

Space–time cross-correlation, 145

Space–time diagram elements

dictionary of, 582

Space–time discrete matched

filters, 141

Space–time fields, 84, 137, 226, 351

intensity spectra and covariance

functions, 113–114

Space–time filter, 117

Space–time formulation, 7, 78

Space–time generalized channel

temporal channel equivalent, 542

Space–time geometry, 105

Space–time matched filter, 188, 211, 292

Space–time narrowband noise, 84

Space–time processing, 87

Space–time processor, 166

Space–time sampling, 88, 274

interval, 207

procedure, 78

Space–time separability, 610

Space–time spectrum, 103

Spatial causality, 120

Spatial Fourier transform, 126

Spatial processing, 166, 183

Spectral symmetry, 174

Square-law rectifier, 196

Statistical communication theory (SCT), 2–5,

540

elements, 42

role, 2–5

scientific method, 2–5

scope of analysis, 5–6

Statistical decision theory (SDT), 39

applications, 307

methods, 40

Statistically equivalent test statistic, 163

Statistical–physical (S-P) approach, 435, 540

Statistical signal processing (SSP)

role, 4

Statistical tests, 155–160

Steering vector, 89, 123, 131, 133, 152, 181,

227, 231

Stochastic signals, 256

Strain, 510

Stress energy tensor, 511

Strict simple cost function (SCF2), 285, 301, 321

Strong coupling, 326–331, 338

alternative approach, 329–331

nonrandomized decision rules, 328–329

Strong-signals, 295, 296, 299, 300

estimators, 304
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Subjective approach, 38

Suboptimum average risk, 363

Suboptimum detectors, 214

Suboptimum estimator, 358, 361, 365

Suboptimum systems, 251, 261, 292

Superposition principle, 2

Surface elevation, 550

Symmetrical linear arrays, 221

Symmetric channel, 341

Symmetric distance function, 283

Symmetric matrix, 166, 187, 195, 201

Synthetic aperture radar (SAR), 125

Synthetic aperture sonar (SAS), 125

System function, 211

Taylor expansion, 335

Taylor series approximations, 591, 592

Temporal processing, 23

Temporal signals, 19

waveform, 19

Ternary detection, 246–248

regions of decision, 247, 248

Test functions, 206

Testing hypotheses, 17

Test statistics, 150, 158, 159, 160, 172, 177, 180,

181, 184, 188

evaluation, 174–176

Threshold reception, 154,

163, 299

Threshold theory, 9

Time-invariant linear filter hC, 471

equivalency conditions for, 471

Time processing, 146

Time-variable filters, 195, 470

matched filters, 221

Time-variable operations, 192

Time-varying linear filters, 465–466

equivalent temporal filters, 466–471

Total energy density, 514

Trace method, 616

Transmission, geometry of, 121

Transmitted signal, 134

Ultrawide-band (UWB) signals, 7

Unconditional maximum likelihood estimate

(UMLE), 55, 276, 277, 278,

284, 285, 290, 298, 304, 308,

322, 333, 352, 393

Unconditional unbiased estimators, 293

Uncoupled detection and estimation, 408

Bayesian detection, 400

optimum detection, 400

Unnormalized covariances, 213

Variance matrix, 253

Vector fields, 7

Vector interval, geometry, 106

Velocity potential cv, 514

Wald’s assumptions, 37

Wald’s complete class theorem, 27

Wald’s fundamental theorem, 36

Wald theory of sequential tests, 26

Waveform estimation (random fields), 277, 280,

300–304

normal noise signals in normal noise fields

(See Quadratic cost function; Simple

cost functions)

Waveform vector, 404

Wavelength–frequency relation, 124

Wave number frequency. See also Space-time

covariances

Wave number–frequency bounds, 106

Wave number–frequency domain, 219–235

Wave number frequency spectra, 77–139

aperture and arrays, 115–138

continuous space–time Wiener–Khintchine

relations, 91–102

directly sampled approximation, 93–95

extended Wiener–Khintchine

theorems, 95–100

homogeneous—stationary fields—finite

and infinite samples, special

case, 100–102

inhomogeneous and nonstationary signal and

noise fields I, 78–91

Wiener–Khintchine relations for discretely

sampled random fields, 108–115

comments, 112–115

discrete Hom-Stat Wiener–Khintchine

Theorem, 110–112

Wiener–Khintchine relations for discrete

samples in non-hom-stat

situation, 102–108

amplitude spectrum for discrete

samples, 102–107

periodic sampling, 107–108

Wave number–frequency spectrum, 221

Wavenumber frequency(WNF)

amplitude, 554

transform, 77

transport equation, 573

Weak coupling, 313, 338

Weak-signals, 295, 296

estimators, 304
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Weighting coefficients, 400

Weighting functions, 118, 128, 190, 199, 229.

See Green’s function

White noise, 225, 232

cases, 191–192

Wiener-Khintchine filter, 199, 200, 292

Wiener–Khintchine relations, 78, 91, 93, 112,

568

for discretely sampled randomfields, 108–115

comments, 112–115

discrete Hom-Stat Wiener–Khintchine

Theorem, 110–112

for discrete samples in non-hom-stat

situation, 102–108

amplitude spectrum for discrete

samples, 102–107

periodic sampling, 107–108

Wiener–Khintchine theorem, 79, 92, 98, 99,

101, 222

Wiener–Kolmogoroff cases, 142

Wiener–Kolmogoroff filter, 214, 291,

292, 297

Zero-memory nonlinear rectifiers, 249
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